Παρουσίαση/Προβολή

Εικόνα επιλογής

Μηχανική μάθηση και όραση υπολογιστών

(AIDA 105) -  ΕΥΤΥΧΙΟΣ ΠΡΩΤΟΠΑΠΑΔΑΚΗΣ

Περιγραφή Μαθήματος

Το μάθημα δεν διαθέτει περιγραφή

Ημερομηνία δημιουργίας

Τρίτη 3 Οκτωβρίου 2023

  • Διδάσκοντες

    Επίκουρος Καθηγητής Ευτύχιος Πρωτοπαπαδάκης

    Περιεχόμενο μαθήματος

    Lesson 1: Introduction to Machine Learning and Computer Vision

    • Overview of machine learning and computer vision
    • Image representation and processing
    • Key challenges in computer vision

    Lesson 2: Probability, Statistics, and Linear Algebra Review

    • Probability theory essentials for machine learning
    • Statistical concepts and distributions
    • Linear algebra concepts for computer vision

    Lesson 3: Feature Extraction Techniques

    • What is an image, basic properties
    • Image feature representation (e.g., color, texture, edges)
    • Local feature descriptors (e.g., SIFT, SURF, ORB)
    • Bag of Visual Words (BoW) model

    Lesson 4: Supervised Learning Algorithms

    • Linear regression and regularization techniques
    • Support Vector Machines (SVM)
    • Decision Trees and Random Forests
    • Naïve Bayes
    • Performance evaluation metrics

    Lesson 5: Neural Networks and Deep Learning

    • Feedforward neural networks
    • Activation functions and backpropagation
    • Stacked autoencoders for classification
    • Training deep neural networks

    Lesson 6: Unsupervised Learning and Dimensionality Reduction

    • K-means clustering
    • Principal Component Analysis (PCA)
    • t-distributed Stochastic Neighbor Embedding (t-SNE)
    • Encoding using SAEs

    Lesson 7: Convolutional Neural Networks (CNNs)

    • CNN architecture and components
    • Transfer learning and fine-tuning in computer vision
    • Object detection with CNNs
    • Additional performance scores IoU

    Lesson 8: Object Detection Techniques

    • Introduction to object detection
    • One-shot detectors (YOLO, SSD)
    • Two-step detectors (R-CNN, Faster R-CNN)

    Lesson 9: Semantic Segmentation

    • Introduction to semantic segmentation
    • Fully Convolutional Networks (FCN)
    • U-Net and its variations

    Lesson 10: Generative adversarial networks

    • Introduction to GANs and their architecture
    • Training process and loss functions
    • Applications of GANs in image synthesis
    • StyleGAN2, BigGAN, and other variations, as well as applications beyond image synthesis, such as data augmentation and domain adaptation.

    Lesson 11: Other Computer Vision Techniques

    • Object tracking in videos
    • Face recognition and emotion detection
    • Optical character recognition (OCR)

    Lesson 12: Interpretability and Adversarial Robustness in Computer Vision

    • Interpreting deep learning models
    • Adversarial attacks and defenses
    • Model robustness and uncertainty estimation

    Lesson 13: Final Project

    • Students work on a hands-on computer vision project
    • Project presentation and review

    Course grade

    1. 3 x exercises [up to four person teams] - 25%
      1. Comparing feature extraction techniques and classification approaches
      2. Clustering over deep learning embeddings vs classical feature extraction techniques
      3. Object detection and/or semantic segmentation application
    2. Presentation of a case study [up to two person teams] - 25%
      1. Motivation & related work
      2. Dataset description
      3. Proposed methodology
      4. Experimental results
    3. Final exam - 50%
      1. Multiple choice questions
      2. No notes, no calculators
      3. 1 hour duration