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2 Chapter 1. The Forecasting Perspective

1/1 Why forecast?

Frequently there is a time lag between awareness of an impending
event or need and occurrence of that event. This lead time is the
main reason for planning and forecasting. If the lead time is zero
or very small, there is no need for planning. If the lead time is
long, and the outcome of the final event is conditional on identifiable
factors, planning can perform an important role. In such situations,
forecasting is needed to determine when an event will occur or a need
arise, so that appropriate actions can be taken.

In management and administrative situations the need for planning
is great because the lead time for decision making ranges from several
years (for the case of capital investments) to a few days or hours
(for transportation or production schedules) to a few seconds (for
telecommunication routing or electrical utility loading). Forecasting
is an important aid in effective and efficient planning.

Opinions on forecasting are probably as diverse as views on any
set of scientific methods used by decision makers. The layperson may
question the validity and efficacy of a discipline aimed at predicting an
uncertain future. However, it should be recognized that substantial
progress has been made in forecasting over the past several centuries.
There are a large number of phenomena whose outcomes can now
be predicted easily. The sunrise can be predicted, as can the speed
of a falling object, the trajectory of a satellite, rainy weather, and a
myriad of other events. However, that was not always the case.

The evolution of science has increased the understanding of various
aspects of the environment and consequently the predictability of
many events. For example when the Ptolemaic system of astronomy
was developed almost 1900 years ago, it could predict the movement
of any star with an accuracy unheard of before that time. Even then,
however, systematic errors were common. Then came the emergence
of Copernican astronomy, which was much more accurate than its
Ptolemaic predecessor and could predict the movement of the stars
to within hundredths of a second. Today, modern astronomy is far
more accurate than Copernican astronomy. The same increase in
accuracy is shown in the theory of motion, which Aristotle, Galileo,
Newton, and Einstein each improved.

The trend to be able to more accurately predict a wider variety
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of events, particularly those in the economic/business environment,
will continue to provide a better base from which to plan. Formal
forecasting methods are the means by which this improvement is
occurring.

Regardless of these improvements, two important comments must
be kept in view. The first is that successful forecasting is not always
directly useful to managers and others. More than 100 years ago,
Jules Verne correctly predicted such developments as submarines,
nuclear energy, and travel to the moon. Similarly, in the mid-1800s,
Charles Babbage not only predicted the need for computers, but also
proposed the design and did the actual construction for one. In spite
of the accuracy of these forecasts, they were of little value in helping
organizations to profit from such forecasts or achieve greater success.

A second important point is the distinction between uncontrollable
external events (originating with the national economy, governments,
customers, and competitors) and controllable internal events (such as
marketing or manufacturing decisions within the firm). The success
of a company depends on both types of events, but forecasting applies
directly to the former, while decision making applies directly to the decision making

latter. Planning is the link that integrates both. planning

For the important areas of sales forecasting, planning, and decision
making, these relationships are shown in Figure 1-1. Recognizing the
role of forecasting in its organizational and managerial context is
usually as important as selecting the forecasting method itself, and
thus it will be addressed throughout this book.

A wide variety of forecasting methods are available to management
(see, for example, Makridakis and Wheelwright, 1989). These range
from the most näıve methods, such as use of the most recent ob-
servation as a forecast, to highly complex approaches such as neural
nets and econometric systems of simultaneous equations. In addition,
the widespread introduction of computers has led to readily available
software for applying forecasting techniques. Complementing such
software and hardware has been the availability of data describing
the state of economic events (GNP, consumption, etc.) and natural
phenomena (temperature, rainfall, etc.). These data in conjunction
with organizational statistics (sales, prices, advertising, etc.) and
technological know-how provide the base of past information needed
for the various forecasting methods.
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Old Figure 1-1 about here

Figure 1-1: Information flows in sales forecasting and business planning. (Adapted
from Lippitt, 1969. Used by permission.)
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As suggested above, forecasting is an integral part of the decision
making activities of management. An organization establishes goals
and objectives, seeks to predict environmental factors, then selects
actions that it hopes will result in attainment of these goals and
objectives. The need for forecasting is increasing as management
attempts to decrease its dependence on chance and becomes more
scientific in dealing with its environment. Since each area of an
organization is related to all others, a good or bad forecast can
affect the entire organization. Some of the areas in which forecasting
currently plays an important role are:

1. Scheduling: Efficient use of resources requires the scheduling
of production, transportation, cash, personnel, and so on.
Forecasts of the level of demand for product, material, labor,
financing, or service are an essential input to such scheduling.

2. Acquiring resources: The lead time for acquiring raw materials,
hiring personnel, or buying machinery and equipment can vary
from a few days to several years. Forecasting is required to
determine future resource requirements.

3. Determining resource requirements: all organizations must de-
termine what resources they want to have in the long-term.
Such decisions depend on market opportunities, environmen-
tal factors, and the internal development of financial, human,
product, and technological resources. These determinations
all require good forecasts and managers who can interpret the
predictions and make appropriate decisions.

Although there are many different areas requiring forecasts, the
preceding three categories are typical of the short-, medium-, and
long-term forecasting requirements of today’s organizations. This
range of needs requires that a company develop multiple approaches
to predicting uncertain events and build up a system for forecasting.
This, in turn, requires that an organization possess knowledge and
skills covering at least four areas: identification and definition of
forecasting problems; application of a range of forecasting methods;
procedures for selecting the appropriate methods for a specific situ-
ation; and organizational support for applying and using formalized
forecasting methods.
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A forecasting system must establish linkages among forecasts made
by different management areas. There is a high degree of interde-
pendence among the forecasts of various divisions or departments,
which cannot be ignored if forecasting is to be successful. For
example, errors in sales projections can trigger a series of reactions
affecting budget forecasts, operating expenses, cash flows, inventory
levels, pricing, and so on. Similarly, budgeting errors in projecting
the amount of money available to each division will affect product
development, modernization of equipment, hiring of personnel, and
advertising expenditures. This, in turn, will influence, if not deter-
mine, the level of sales, operating costs, and cash flows. Clearly there
is a strong interdependence among the different forecasting areas in
an organization.

A major aim of this book is not only to examine the techniques
available for meeting an organization’s forecasting requirements, but
also to consider the interdependence of needs in areas such as pur-
chasing, production, marketing, finance, and general management.

1/2 An overview of forecasting techniques

Forecasting situations vary widely in their time horizons, factors
determining actual outcomes, types of data patterns, and many other
aspects. Figure 1-2 shows graphs of four variables for which forecasts
might be required.

Figure 1-2a Monthly Australian electricity production from March
1956 to August 1995. (Source: Australian Bureau of Statistics.)
Note the increasing trend, increasing variation each year, and
the strong seasonal pattern that is slowly changing in shape.
These strong historical patterns make this variable an easy
one to forecast. Because of the changing seasonal patterns,
some of the early data may not be useful in constructing a
model. Forecasts are important for future planning of electricity
production facilities and for ensuring existing facilities can meet
peak demands.

Figure 1-2b U.S. Treasury Bill contracts on the Chicago market for
100 consecutive trading days in 1981. The downward trend is
interesting, but it may only be a short downward movement
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Figure 1-2: Historical data on four variables for which forecasts might be required.

in the middle of a highly variable series of observations. The
critical question is whether this downward trend is likely to
continue.

Figure 1-2c Sales of “product C” from a major oil company. This
product was a lubricant sold only in units of large volume. To
forecast a variable of this nature, it is necessary to investigate
the nature of the product market, who is buying it, and what
their future needs are likely to be.
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Figure 1-2d Australian monthly clay brick production from March
1956 to September 1994. (Source: Australian Bureau of
Statistics.) Clearly, the market is seasonal and quite volatile.
Accurate forecasts are very difficult unless the cause of the
fluctuations can be identified.

To deal with such diverse applications, several techniques have
been developed. These fall into two major categories: quantitative
and qualitative methods. Table 1-1 summarizes this categorization
scheme and provides examples of situations that might be addressed
by forecasting methods in these categories.

QUANTITATIVE: Sufficient quantitative information is available.
• Time series: Predicting the continuation of historical patterns such as

the growth in sales or gross national product.
• Explanatory: Understanding how explanatory variables such as prices

and advertising affect sales.

QUALITATIVE: Little or no quantitative information is avail-
able, but sufficient qualitative knowledge exists.

• Predicting the speed of telecommunications around the year 2020.
• Forecasting how a large increase in oil prices will affect the consumption

of oil.

UNPREDICTABLE: Little or no information is available.
• Predicting the effects of interplanetary travel.
• Predicting the discovery of a new, very cheap form of energy that

produces no pollution.

Table 1-1: Categories of forecasting methods and examples of their application.
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Quantitative forecasting can be applied when three conditions quantitative

forecastingexist:

1. Information about the past is available.
2. This information can be quantified in the form of numerical

data.
3. It can be assumed that some aspects of the past pattern will

continue into the future.

This last condition is known as the assumption of continuity ; it
is an underlying premise of all quantitative and many qualitative
forecasting methods, no matter how sophisticated they may be.

Quantitative forecasting techniques vary considerably, having been
developed by diverse disciplines for different purposes. Each has its
own properties, accuracies, and costs that must be considered in
choosing a specific method. Quantitative forecasting procedures fall
on a continuum between two extremes: intuitive or ad hoc methods,
and formal quantitative methods based on statistical principles. The
first type is based on empirical experience that varies widely from
business to business, product to product, and forecaster to forecaster.
Intuitive methods are simple and easy to use but not always as
accurate as formal quantitative methods. Also, they usually give
little or no information about the accuracy of the forecast. Because
of these limitations, their use has declined as formal methods have
gained in popularity. Many businesses still use these methods, either
because they do not know about simple formal methods or because
they prefer a judgmental approach to forecasting instead of more
objective approaches.

Formal statistical methods can also involve extrapolation, but it is
done in a standard way using a systematic approach that attempts to
minimize the forecasting errors. There are several formal methods,
often requiring limited historical data, that are inexpensive and
easy to use and that can be applied in a mechanical manner (see
Chapter 4). These methods are useful when forecasts are needed for
a large number of items and when forecasting errors on a single item
will not be extremely costly.

Persons unfamiliar with quantitative forecasting methods often
think that the past cannot describe the future accurately because
everything is constantly changing. After some familiarity with data
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and forecasting techniques, however, it becomes clear that although
nothing remains exactly the same, some aspects of history do repeat
themselves in a sense. Application of the right method can often
identify the relationship between the variable to be forecasted and
time itself (or several other variables), making improved forecasting
possible.

1/2/1 Explanatory versus time series forecasting

An additional dimension for classifying quantitative forecasting meth-
ods is to consider the underlying model involved. There are two major
types of forecasting models: time series and explanatory models.

Explanatory models assume that the variable to be forecastedexplanatory models

exhibits an explanatory relationship with one or more independent
variables. For example,

GNP = f(monetary and fiscal policies, inflation, (1.1)
capital spending, imports, exports, error).

Notice that the relationship is not exact. There will always be
changes in GNP that can not be accounted for by the variables in the
model, and thus some part of GNP changes will remain unpredictable.
Therefore, we include the “error” term on the right which represents
random effects, beyond the variables in the model, that affect the
GNP figures.

Explanatory models can be applied to many systems—a national
economy, a company’s market, or a household. The purpose of the
explanatory model is to discover the form of the relationship and
use it to forecast future values of the forecast variable. According
to explanatory forecasting, any change in inputs will affect the out-
put of the system in a predictable way, assuming the explanatory
relationship will not change (assumption of continuity).

The procedure for selecting an appropriate functional form of
equation (1.1) and estimating its parameters will be discussed in
detail later on. At this point it should be emphasized that according
to (1.1), GNP depends upon, or is explained by, the factors on the
right-hand side of the equation. As these factors change, GNP will
vary in the manner specified by (1.1).

Unlike explanatory forecasting, time series forecasting treats thetime series models
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system as a black box and makes no attempt to discover the factors
affecting its behavior. Therefore, prediction of the future is based on
past values of a variable and/or past errors, but not on explanatory
variables which may affect the system. The objective of such time
series forecasting methods is to discover the pattern in the historical
data series and extrapolate that pattern into the future.

There are two main reasons for wanting to treat a system as a black
box. First, the system may not be understood, and even if it were
understood it may be extremely difficult to measure the relationships
assumed to govern its behavior. Second, the main concern may be
only to predict what will happen and not to know why it happens.
During the eighteenth, nineteenth, and first part of the twentieth
centuries, for example, there were several people concerned with the
magnitude of sunspots. There was little known at that time as to
the reasons for the sunspots or the sources of energy of the sun. This
lack of knowledge, however, did not hinder many investigators who
collected and analyzed the frequency of sunspots. Schuster (1906)
found that there was a regular pattern in the magnitude of sunspots,
and he and several others were able to predict their continuation
through time series analysis.

If the only purpose is to forecast future values of GNP without
concern as to why a certain level of GNP will be realized, a time
series approach would be appropriate. It is known that the magnitude
of GNP does not change drastically from one month to another, or
even from one year to another. Thus the GNP of next month will
depend upon the GNP of the previous month and possibly that of the
months before. Based on this observation, GNP might be expressed
as follows:

GNPt+1 = f(GNPt, GNPt−1, GNPt−2, GNPt−3, . . . , error), (1.2)

where t is the present month, t+1 is the next month, t−1 is the last
month, t− 2 is two months ago, and so on.

Equation (1.2) is similar to (1.1) except that the factors on the
right-hand side are previous values of the left-hand side. This makes
the job of forecasting easier once (1.2) is known, since it requires no
special input values as (1.1) does. However, a requirement with both
equations (1.1) and (1.2) is that the relationship between the left- and
right-hand sides of the equations must be discovered and measured.
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Both time series and explanatory models have advantages in cer-
tain situations. Time series models can often be used more easily to
forecast, whereas explanatory models can be used with greater success
for policy and decision making. Whenever the necessary data are
available, a forecasting relationship can be hypothesized either as a
function of time or as a function of explanatory variables, and tested.
As demonstrated by the GNP example, quite often it is possible to
forecast by using either explanatory or time series approaches. It is
also possible to combine the two approaches. Models which involve
both time series and explanatory features are discussed in Chapter 8.

1/2/2 Qualitative forecasting

Qualitative forecasting methods, on the other hand, do not requirequalitative

forecasting data in the same manner as quantitative forecasting methods. The
inputs required depend on the specific method and are mainly the
product of judgment and accumulated knowledge. (See Table 1-1.)
Qualitative approaches often require inputs from a number of spe-
cially trained people.

As with their quantitative counterparts, qualitative techniques
vary widely in cost, complexity, and value. They can be used
separately but are more often used in combination with each other
or in conjunction with quantitative methods.

It is more difficult to measure the usefulness of qualitative fore-
casts. They are used mainly to provide hints, to aid the planner,
and to supplement quantitative forecasts, rather than to provide a
specific numerical forecast. Because of their nature and cost, they are
used almost exclusively for medium- and long-range situations such as
formulating strategy, developing new products and technologies, and
developing long-range plans. Although doubts are often expressed
about the value of qualitative forecasting, it frequently provides
useful information for managers. It is a premise of the authors
that qualitative methods can be used successfully in conjunction
with quantitative methods in such areas as product development,
capital expenditures, goal and strategy formulation, and mergers, by
even medium and small organizations. Whatever the shortcomings
of qualitative methods, frequently the only alternative is no forecast
at all.
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The forecaster has a wide range of methods available that vary in
accuracy, scope, time horizon, and cost. Key tasks are deciding which
method to apply in each situation, how much reliance to place on the
method itself, and how much modification is required to incorporate
personal judgment before predictions are used as a basis for planning
future actions. These issues will be addressed throughout this book.

1/3 The basic steps in a forecasting task

There are five basic steps in any forecasting task for which quantita-
tive data are available.

Step 1: Problem definition
The definition of the problem is sometimes the most difficult problem definition

aspect of the forecaster’s task. It involves developing a deep
understanding of how the forecasts will be used, who requires
the forecasts, and how the forecasting function fits within the
organization. It is worth spending time talking to everyone who
will be involved in collecting data, maintaining databases, and
using the forecasts for future planning.

Consider the following statement by the manager of a paper
products manufacturing company:

We have a computerized inventory control system and
we can get daily, weekly, and monthly reports at the
drop of a hat. But our inventory situation is bad. We
have far too much inventory at the factories, in the
warehouses, and in the pipeline. Can we get better
forecasts of future production and demand so we can
reduce our inventory and save storage costs?

A forecaster has a great deal of work to do to properly define the
forecasting problem, before any answers can be provided. For
example, we need to know exactly what products are stored,
who uses them, how long it takes to produce each item, what
level of unsatisfied demand the company is prepared to bear,
and so on.
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Step 2: Gathering information
There are always at least two kinds of information available:gathering information

(a) statistical (usually numerical) data, and (b) the accumu-
lated judgment and expertise of key personnel. Both kinds of
information must be tapped.

It is necessary to collect historical data of the items of interest.
We use the historical data to construct a model which can
be used for forecasting. In the case of the paper products
inventory, the data collected may consist of monthly demand
and production for each item of interest over the previous three
years. Other relevant data such as the timing and length of
any significant production downtime due to equipment failure
or industrial disputes may also need to be collected.

Step 3: Preliminary (exploratory) analysis
What do the data tell us? We start by graphing the data forpreliminary analysis

visual inspection. Then we compute some simple descriptive
statistics (e.g., mean, standard deviation, minimum, maximum,
percentiles) associated with each set of data. Where more
than one series of historical data is available and relevant, we
can produce scatter plots of each pair of series and related
descriptive statistics (e.g., correlations). These graphical and
numerical summaries are discussed in Chapter 2. Another
useful tool is decomposition analysis (Chapter 3) to check the
relative strengths of trend, seasonality, cycles, and to identify
unusual data points.

The purpose in all cases at this stage is to get a feel for the data.
Are there consistent patterns? Is there a significant trend? Is
seasonality important? Is there evidence of the presence of
business cycles? Are there any outliers (extreme points) in the
data that need to be explained by those with expert knowledge?
How strong are the relationships among the variables available
for analysis?

Such preliminary analyses will help suggest a class of quantita-
tive models that might be useful in the forecasting assignment.

Step 4: Choosing and fitting models
This step involves choosing and fitting several quantitative
forecasting models. In this book we will be discussing manyforecasting models

types of quantitative forecasting models and will explain the
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technical details with completely worked-out examples. For
now, we merely mention that the preliminary analysis (Step 3
above) serves to limit the search for an appropriate forecasting
model and we would pursue one or two leading contenders for
subsequent analysis.

Each model is itself an artificial construct. It is based on a
set of assumptions (explicit and implicit) and usually involves
one or more parameters which must be “fitted” using the known
historical data. We will discuss exponential smoothing methods
(Chapter 4), regression models (Chapters 5 and 6), Box-Jenkins
ARIMA models (Chapter 7), and a variety of other topics in-
cluding non-linear models, regression with ARIMA errors, inter-
vention models, transfer function models, multivariate ARMA
models, and state space models (Chapter 8).

When forecasting the long-term, a less formal approach is often
better. This can involve identifying and extrapolating mega
trends going back in time, using analogies, and constructing
scenarios to consider future possibilities. These issues are
discussed in Chapter 9.

Step 5: Using and evaluating a forecasting model
Once a model has been selected judiciously and its parameters
estimated appropriately, the model is to be used to make
forecasts, and the users of the forecasts will be evaluating the
pros and cons of the model as time progresses. A forecasting
assignment is not complete when the model has been fitted to
the known data. The performance of the model can only be
properly evaluated after the data for the forecast period have
become available.

In this book, we have made a clear distinction between “fitting
errors” and “forecasting errors.” We will examine a variety of errors

accuracy measures for both fitting and forecasting (in Chap-
ter 2) and we will emphasize that, in practice, the model’s fore-
casts are seldom used without modification. Expert judgment
is invariably brought to bear on the use of the forecasts. The
incorporation of expert judgment is addressed in Chapter 10.

It is important to be aware of how each forecasting method
has performed in practice in other forecasting contexts. There
has now been quite a lot of research on this issue looking at
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users’ preferences and experiences with a range of forecasting
methods. This research is summarized in Chapter 11.

In addition, the accuracy of future forecasts is not the only
criterion for assessing the success of a forecasting assignment. A
successful forecasting assignment will usually also be a stimulus
to action within the organization. If the forecasts suggest a
gloomy picture ahead, then management will do its best to
try to change the scenario so that the gloomy forecast will
not come true. If the forecasts suggest a positive future, then
the management will work hard to make that come true. In
general, forecasts act as new information and management must
incorporate such information into its basic objective to enhance
the likelihood of a favorable outcome. Implementing forecast-
ing is often at least as important as the forecasts themselves.
Chapter 12 addresses this important subject.
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Exercises

1.1 Several approaches have been suggested by those attempting
to predict stock market movements. Three of them are de-
scribed briefly below. How does each relate to the different
approaches to forecasting described in this chapter?

(a) Dow Theory: There tend to be support levels (lower
bounds) and resistance levels (upper bounds) for stock
prices both for the overall market and for individual
stocks. These levels can be found by plotting prices of
the market or stock over time.

(b) Random Walk Theory: There is no way to predict future
movements in the stock market or individual stocks, since
all available information is quickly assimilated by the
investors and moves market prices in the appropriate
direction.

(c) The prices of individual stocks or of the market in general
are largely determined by earnings.

1.2 You are asked to provide sales forecasts of several products for
a large biscuit manufacturing company. Define the five steps
of forecasting in the context of this project.
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To develop an understanding of the field of quantitative forecasting
requires some basic notation and terminology. This chapter presents
such fundamentals. In Appendix 2-A the notation used throughout
the book is presented, and in the body of this chapter the following
topics are discussed: graphical methods for visualizing data to be used
for forecasting (Section 2/2), the most important summary statistics
(Section 2/3), and the various measures of forecasting accuracy that
are used to help judge the appropriateness of a model (Section 2/4),
calculation of prediction intervals (Section 2/5), the least squares
procedure for estimating parameters of a model (Section 2/6), and
the use of transformations to simplify data patterns (Section 2/7).

2/1 Time series and cross-sectional data

Throughout this chapter, we will use two data sets to illustrate ideas.

• Price ($US), mileage (mpg), and country of origin for 45 auto-
mobiles from Consumer Reports, April 1990, pp. 235–255.

• Monthly Australian beer production (megaliters, Ml) from Jan-
uary 1991–August 1995.

These data are given in Tables 2-1 and 2-2.

Often our historical data will consist of a sequence of observations
over time. We call such a sequence a time series. For example, time series

monthly sales figures, daily stock prices, weekly interest rates, yearly
profits, daily maximum temperatures, annual crop production, and
electrocardiograph measurements are all time series.

In forecasting, we are trying to estimate how the sequence of
observations will continue into the future. To make things simple, we
will assume that the times of observation are equally spaced. This
is not a great restriction because most business series are measured
daily, monthly, quarterly, or yearly and so will be equally spaced.

Of the two examples above, the beer data form a time series as they
are monthly figures over a period of time. However, the automobile
data do not form a time series. They are cross-sectional data; all cross-sectional data

observations are from the same time.
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Make Country Mileage Price
(mpg) ($)

Chevrolet Caprice V8 USA 18 14525
Chevrolet Lumina APV V6 USA 18 13995
Dodge Grand Caravan V6 USA 18 15395
Ford Aerostar V6 USA 18 12267
Ford Mustang V8 USA 19 12164
Mazda MPV V6 Japan 19 14944
Nissan Van 4 Japan 19 14799
Chevrolet Camaro V8 USA 20 11545
Acura Legend V6 Japan 20 24760
Ford LTD Crown Victoria V8 USA 20 17257
Mitsubishi Wagon 4 Japan 20 14929
Nissan Axxess 4 Japan 20 13949
Mitsubishi Sigma V6 Japan 21 17879
Nissan Stanza 4 Japan 21 11650
Buick Century 4 USA 21 13150
Mazda 929 V6 Japan 21 23300
Oldsmobile Cutlass Ciera 4 USA 21 13150
Oldsmobile Cutlass Supreme V6 USA 21 14495
Chrysler Le Baron Coupe USA 22 12495
Chrysler New Yorker V6 USA 22 16342
Eagle Premier V6 USA 22 15350
Ford Taurus V6 USA 22 13195
Nissan Maxima V6 Japan 22 17899
Buick Skylark 4 USA 23 10565
Oldsmobile Calais 4 USA 23 9995
Ford Thunderbird V6 USA 23 14980
Toyota Cressida 6 Japan 23 21498
Buick Le Sabre V6 USA 23 16145
Nissan 240SX 4 Japan 24 13249
Ford Tempo 4 USA 24 9483
Subaru Loyale 4 Japan 25 9599
Chrysler Le Baron V6 USA 25 10945
Mitsubishi Galant 4 Japan 25 10989
Plymouth Laser USA 26 10855
Chevrolet Beretta 4 USA 26 10320
Dodge Daytona USA 27 9745
Honda Prelude Si 4WS 4 Japan 27 13945
Subaru XT 4 Japan 28 13071
Ford Probe USA 30 11470
Mazda Protege 4 Japan 32 6599
Eagle Summit 4 USA 33 8895
Ford Escort 4 USA 33 7402
Honda Civic CRX Si 4 Japan 33 9410
Subaru Justy 3 Japan 34 5866
Toyota Tercel 4 Japan 35 6488

Table 2-1: Price, mileage, and country of origin for 45 automobiles from Consumer
Reports, April 1990, pp. 235–255.
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Month 1991 1992 1993 1994 1995
January 164 147 139 151 138
February 148 133 143 134 136
March 152 163 150 164 152
April 144 150 154 126 127
May 155 129 137 131 151
June 125 131 129 125 130
July 153 145 128 127 119
August 146 137 140 143 153
September 138 138 143 143
October 190 168 151 160
November 192 176 177 190
December 192 188 184 182

Table 2-2: Monthly Australian beer production: January 1991–August 1995.

2/2 Graphical summaries

The single most important thing to do when first exploring the data
is to visualize the data through graphs. The basic features of the data visualization

data including patterns and unusual observations are most easily seen
through graphs. Sometimes graphs also suggest possible explanations
for some of the variation in the data.

For example, industrial disputes will often affect time series of
production; changes in government will affect economic time series;
changes in definitions may result in identifiable changes in time series
patterns. Graphs are the most effective way of identifying the effect
of such events in the data. Where possible, these events should be
adjusted for or included in the eventual model.

The type of data will determine which type of graph is most
appropriate. Figures 2-1, 2-2, and 2-3 show three plots that provide
useful information for forecasting. These graphical forms should be
routinely used in forecasting projects and will be utilized throughout
the rest of the book.
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Monthly Australian beer production
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Figure 2-1: Time plot of monthly Australian beer production (megaliters, Ml) from
January 1991–August 1995.

2/2/1 Time plots and time series patterns

For time series, the most obvious graphical form is a time plot intime plot

which the data are plotted over time. Figure 1-2 (p. 7) shows some
examples. A time plot immediately reveals any trends over time,
any regular seasonal behavior, and other systematic features of the
data. These need to be identified so they can be incorporated into
the statistical model.

Figure 2-1 shows a time plot of the beer data. This reveals the
range of the data and the time at which peaks occur. It also shows
the relative size of the peaks compared with the rest of the series and
the randomness in the series since the data pattern is not perfect.

An important step in selecting an appropriate forecasting method
is to consider the types of data patterns, so that the methods most
appropriate to those patterns can be utilized. Four types of time se-
ries data patterns can be distinguished: horizontal, seasonal, cyclical,time series patterns

and trend.
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1. A horizontal (H) pattern exists when the data values fluctuate horizontal

around a constant mean. (Such a series is called “stationary”
in its mean.) A product whose sales do not increase or decrease stationary

over time would be of this type. Similarly, a quality control sit-
uation involving sampling from a continuous production process
that theoretically does not change would also show a horizontal
pattern.

2. A seasonal (S) pattern exists when a series is influenced by seasonal

seasonal factors (e.g., the quarter of the year, the month, or
day of the week). Sales of products such as soft drinks, ice
creams, and household electricity consumption all exhibit this
type of pattern. The beer data show seasonality with a peak
in production in November and December (in preparation for
Christmas) each year. Seasonal series are sometimes also called
“periodic” although they do not exactly repeat themselves over periodic

each period.

3. A cyclical (C) pattern exists when the data exhibit rises and cyclical

falls that are not of a fixed period. For economic series, these
are usually due to economic fluctuations such as those asso-
ciated with the business cycle. The sales of products such
as automobiles, steel, and major appliances exhibit this type
of pattern. The clay brick production shown in Figure 1-2d
(p. 7) shows cycles of several years in addition to the quarterly
seasonal pattern. The major distinction between a seasonal
and a cyclical pattern is that the former is of a constant length
and recurs on a regular periodic basis, while the latter varies
in length. Moreover, the average length of a cycle is usually
longer than that of seasonality and the magnitude of a cycle is
usually more variable than that of seasonality.

4. A trend (T) pattern exists when there is a long-term increase or trend

decrease in the data. The sales of many companies, the gross
national product (GNP), and many other business or economic
indicators follow a trend pattern in their movement over time.
The electricity production data shown in Figure 1-2a (p. 7)
exhibit a strong trend in addition to the monthly seasonality.
The beer data in Figure 2-1 show no trend.

Many data series include combinations of the preceding patterns.
For example, Figure 1-2d (p. 7) shows trend, seasonality, and cyclical
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Figure 2-2: A seasonal plot of the Australian beer production data. Note that pro-
duction peaks in November and December in preparation for the southern hemisphere
summer and is least in winter.

behavior. One of the things that makes forecasting interesting and
challenging is the huge variety of patterns that commonly occur
in real time series data. Forecasting methods that are capable of
distinguishing each of the patterns must be employed if a separation
of the component patterns is needed. Similarly, alternative methods
of forecasting can be used to identify the pattern and to best fit the
data so that future values can be forecasted.

2/2/2 Seasonal plots

For time series data that are seasonal, it is often useful to also
produce a seasonal plot. Figure 2-2 shows a seasonal plot of the beerseasonal plot

data. This graph consists of the data plotted against the individual
“seasons” in which the data were observed. (In this case a “season”
is a month.) This is something like a time plot except that the
data from each season are overlapped. A seasonal plot enables the
underlying seasonal pattern to be seen more clearly, and also allows
any substantial departures from the seasonal pattern to be easily
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Price/mileage relationship for 45 automobiles
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Figure 2-3: A scatterplot of price versus mileage for the automobile data.

identified. For example, there is one year (1991) in which the October
beer production was higher than the pattern evident in the other
years.

2/2/3 Scatterplots

The automobile data of Table 2-1 are not a time series making time
or seasonal plots inappropriate for these data. However, these data
are well suited to a scatterplot (see Figure 2-3) such as that of price scatterplot

against mileage. In Figure 2-3 we have plotted the variable we wish
to forecast (price) against one of the explanatory variables (mileage).
Each point on the graph represents one type of vehicle. The plot
shows the relationship between price and mileage: vehicles with
high mileage per gallon are generally cheaper than less fuel-efficient
vehicles. (Both price and fuel-efficiency are related to the vehicle and
engine size.) Vehicles with low mileage per gallon are generally priced
over a range from around $12,000 to $18,000, with three vehicles
much more expensive than other vehicles of comparable efficiency.
The scatterplot helps us visualize the relationship and suggests that
a forecasting model must include mileage as an explanatory variable.
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Price/mileage relationship for 45 automobiles
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Figure 2-4: A scatterplot showing price, mileage, and the country of origin for the
automobile data.

With the automobile data there is an additional explanatory vari-
able, country of origin, which is a categorical (qualitative) variable
rather than a numerical variable (its values are categories rather
than numbers). Thus we cannot plot price against country in the
same way. However, we can augment our scatterplot of price against
mileage to also show the country of origin information. This is
displayed in Figure 2-4. Here we have a scatterplot showing three
variables. It shows that the two most efficient automobiles and the
three expensive automobiles are all Japanese. It also shows that
overall U.S.A. automobiles may be more efficient than the Japanese
ones. A forecasting model might also include the country of origin
as an explanatory variable, but that it is probably going to be less
effective than mileage in giving accurate predictions.

2/3 Numerical summaries

In addition to graphics, it is also helpful to provide numerical sum-
maries. A summary number for a data set is called a statistic.statistic



2/3 Numerical summaries 29

For a single data set (univariate data) or a single time series, univariate data

the most common descriptive statistics are the mean, the standard
deviation, and the variance. Section 2/3/1 deals with these univariate
statistics.

For a pair of random variables (bivariate data) it is of interest bivariate data

to describe how the two data sets relate to each other. The most
widely used summary numbers (statistics) for this purpose are the
covariance and the correlation, and these will be defined in Section
2/3/2.

Then for a single time series, it is very useful to compare the
observation at one time period with the observation at another time
period. The two most common statistics here are the autocovariance
and the autocorrelation, which are defined in Section 2/3/3. These
measures will be used extensively in Chapter 7.

2/3/1 Univariate statistics

Consider the mileage of the 19 Japanese automobiles given in Table
2-1, reproduced in Table 2-3. The vehicles have been numbered from
1 to 19 for easy reference.

Using the letter M to denote mileage and a subscript i (i =
1, 2, 3, . . . , 19) to denote the ith vehicle, the mean mileage can be mean

written1

M̄ = (M1 + M2 + M3 + · · ·+ M19)/19

=
1
19

19∑

i=1

Mi

= 469/19 = 24.68 mpg.

The mean should not be confused with the median, which is the median

middle observation. So for the preceding 19 vehicles, the median is
the mileage of the tenth vehicle when they are arranged in increasing
order as shown in Table 2-3. That is, the median of the mileage
data is 23. Both the mean and the median are designed to provide a
numerical measure of the center of the data set.

1The summation notation, Σ, used here is explained in Appendix 2-A.
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Make Vehicle Mileage
(mpg)

Mazda MPV V6 1 19
Nissan Van 4 2 19
Acura Legend V6 3 20
Mitsubishi Wagon 4 4 20
Nissan Axxess 4 5 20
Mitsubishi Sigma V6 6 21
Nissan Stanza 4 7 21
Mazda 929 V6 8 21
Nissan Maxima V6 9 22
Toyota Cressida 6 10 23 ← median
Nissan 240SX 4 11 24
Subaru Loyale 4 12 25
Mitsubishi Galant 4 13 25
Honda Prelude Si 4WS 4 14 27
Subaru XT 4 15 28
Mazda Protege 4 16 32
Honda Civic CRX Si 4 17 33
Subaru Justy 3 18 34
Toyota Tercel 4 19 35

Table 2-3: Mileage of Japanese automobiles listed in Table 2-1.

As well as measuring the center of a data set, it is also valuable
to measure the spread of the data. That is, we want a numerical
measure indicating if the data are tightly bunched together or spread
across a wide range.

To develop a measure of spread, we first need to calculate for each
vehicle how far its mileage is from the mean mileage. The mean M̄
is subtracted from each Mi to give the ith deviation from the mean,
(Mi − M̄).deviation from mean

The sum of the deviations will always equal zero (as shown under
column 3 of Table 2-4). Therefore, to develop a useful descriptive
statistic from these deviations, they are either squared (as in column
5 of Table 2-4), or, occasionally, the absolute value is taken (as in
column 4). The mean of the absolute deviations is denoted MAD,mean absolute

deviation
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and for the mileage data

MAD =
1
19

19∑

i=1

|Mi − M̄ | = 83.1/19 = 4.37 mpg.

The mean of the squared deviations is designated MSD: mean squared

deviation

MSD =
1
19

19∑

i=1

(Mi − M̄)2 = 514.11/19 = 27.1.

Closely related to the mean squared deviation (MSD) is the vari-
ance, which is defined as the sum of squared deviations divided by variance

one less than the total number of observations.2 For the mileage data
the variance of age is

S2 =
1
18

19∑

i=1

(Mi − M̄)2 = 514.11/18 = 28.6.

Note that since the variance formula uses 18 in the denominator
and MSD formula uses 19, S2 is larger than MSD. The variance S2

is less intuitive than MSD but it has some desirable mathematical
properties.3

The deviations (Mi − M̄) are defined in units of miles per gallon.
Therefore, the squared deviations are in units of squared mpg and
so the mean squared deviation, MSD, and the variance, S2, are also
defined in units of squared mpg. By taking the square root of these
two summary numbers, we get summary statistics in the same units
as the data. In particular, we will define the standard deviation as standard deviation

S =
√

S2 =
√

28.6 = 5.34.

Both the MAD and the standard deviation S provide measures
of spread. They (roughly) measure the average deviation of the measures of spread

2The sum of squared deviations is divided by the “degrees of freedom” which
can be defined as the number of data points minus the number of parameters
estimated. When calculating a variance, we have to estimate the mean using the
data, so the degrees of freedom is one less than the total number of observations.

3In statistics, a distinction is made between a biased estimator and an unbiased
estimator. For sample data, the MSD is a biased estimator of population variance
and the variance S2 is an unbiased estimator of the population variance. See Rice
(1995), p. 192, for a definition of unbiasedness.
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observations from their mean. If the observations are spread out,
they will tend to be far from the mean, both above and below.
Some deviations will be large positive numbers, and some will be
large negative numbers. But the squared deviations (or the absolute
deviations) will be all positive. So both MAD and S will be large
when the data are spread out, and small when the data are close
together. Both MAD and S have the same units as the observations.

For many data sets the following useful rules of thumb hold:

• approximately two-thirds of the observations lie within 1 stan-
dard deviation of the mean; and

• approximately 95% of the observations lie within 2 standard
deviations of the mean.

To summarize, suppose there are n observations and the individual
observations are denoted by Yi for i = 1, . . . , n. Then the univariate
statistics (summary numbers) that will be used in this text are defined
(generally) as follows:

mean

median

mean absolute
deviation

mean squared
deviation

variance

standard deviation

Ȳ =
1
n

∑
Yi (2.1)

Median =





middle observation if n odd;
average of middle two

observations if n even.
(2.2)

MAD =
1
n

∑
|Yi − Ȳ | (2.3)

MSD =
1
n

∑
(Yi − Ȳ )2 (2.4)

S2 =
1

n− 1

∑
(Yi − Ȳ )2 (2.5)

S =
√

S2 =

√
1

n− 1

∑
(Yi − Ȳ )2. (2.6)

All summations are over the index i from 1 through n.

Of course, with much statistical software readily accessible, there
is usually no need to compute these statistics by hand. However,
it is important to understand the formulae behind them in order to
understand what they mean.
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(1) (2) (3) (4) (5)
Vehicle Mileage Deviation

i Mi (Mi − M̄) |Mi − M̄ | (Mi − M̄)2

1 19 −5.7 5.7 32.31
2 19 −5.7 5.7 32.31
3 20 −4.7 4.7 21.94
4 20 −4.7 4.7 21.94
5 20 −4.7 4.7 21.94
6 21 −3.7 3.7 13.57
7 21 −3.7 3.7 13.57
8 21 −3.7 3.7 13.57
9 22 −2.7 2.7 7.20

10 23 −1.7 1.7 2.84
11 24 −0.7 0.7 0.47
12 25 0.3 0.3 0.10
13 25 0.3 0.3 0.10
14 27 2.3 2.3 5.36
15 28 3.3 3.3 10.99
16 32 7.3 7.3 53.52
17 33 8.3 8.3 69.15
18 34 9.3 9.3 86.78
19 35 10.3 10.3 106.42

Sums 469 0.0 83.1 514.11

Mean M̄ = (col 2 sum)/19 = 24.68 using (2.1)

Median Median = (col 2 middle observation) = 23 using (2.2)

Mean Absolute Deviation MAD = (col 4 sum)/19 = 4.37 using (2.3)

Mean Squared Deviation MSD = (col 5 sum)/19 = 27.1 using (2.4)

Variance S2 = (col 5 sum)/18 = 28.6 using (2.5)

Standard Deviation S =
√

S2 = 5.34 using (2.6)

Table 2-4: Computation of the univariate statistics for the mileage of Japanese
automobiles.
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Make Vehicle Mileage Price
(mpg) ($’000)

Mazda MPV V6 1 19 14.944
Nissan Van 4 2 19 14.799
Acura Legend V6 3 20 24.760
Mitsubishi Wagon 4 4 20 14.929
Nissan Axxess 4 5 20 13.949
Mitsubishi Sigma V6 6 21 17.879
Nissan Stanza 4 7 21 11.650
Mazda 929 V6 8 21 23.300
Nissan Maxima V6 9 22 17.899
Toyota Cressida 6 10 23 21.498
Nissan 240SX 4 11 24 13.249
Subaru Loyale 4 12 25 9.599
Mitsubishi Galant 4 13 25 10.989
Honda Prelude Si 4WS 4 14 27 13.945
Subaru XT 4 15 28 13.071
Mazda Protege 4 16 32 6.599
Honda Civic CRX Si 4 17 33 9.410
Subaru Justy 3 18 34 5.866
Toyota Tercel 4 19 35 6.488

Table 2-5: Price and mileage for the Japanese automobiles listed in Table 2-1.

2/3/2 Bivariate statistics

Table 2-5 shows the price and mileage for the Japanese automobiles
given in Table 2-1. To prevent the computations from becoming
cumbersome, we will deal with the price variable in units of thousands
of dollars.

When these data are plotted, as in Figure 2-5, it can be seen
that a negative relationship exists between these two variables. Bynegative/positive

relationships negative relationship we mean that as mileage increases, price tends
to decrease. (A positive relationship would be similar to the height
versus weight relationship—as height increases weight increases too.)
Whenever we are dealing with two paired observations (e.g., price
and mileage, height and weight, price and demand), it is of interest
to examine and measure the extent of the relationship between the
two variables.

Suppose we denote the two variables by X and Y . A statistic



2/3 Numerical summaries 35

Price/mileage relationship for Japanese automobiles
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Figure 2-5: A scatterplot of price versus mileage for the Japanese automobile data
in Table 2-5.

which indicates how two variables “co-vary” is called the covariance covariance

and is defined as follows:

CovXY =
1

n− 1

n∑

i=1

(Xi − X̄)(Yi − Ȳ ) (2.7)

where X̄ and Ȳ are the means of X and Y , respectively, and n is the
number of observations on each variable.

For the price and mileage data in Table 2-5, the computations
necessary for determining the covariance (CovPM) between price (P )
and mileage (M) are shown in Table 2-6. First, the mean price
(P̄ ) and the mean mileage (M̄) are computed using columns 2 and
3, respectively. Then deviations from the mean are calculated in
columns 4 and 5, and column 8 gives the product of these two
deviations. Summing the deviation products (column 8) and dividing
by the degrees of freedom, n− 1 = 18, yields the desired covariance,

CovPM = −378.03/18 = −21.00.
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(1) (2) (3) (4) (5) (6) (7) (8)
i Mi Pi Mi − M̄ Pi − P̄ (Mi − M̄)2 (Pi − P̄ )2 (Mi − M̄)(Pi − P̄ )
1 19 14.944 −5.68 1.01 32.31 1.01 −5.72
2 19 14.799 −5.68 0.86 32.31 0.74 −4.89
3 20 24.760 −4.68 10.82 21.94 117.12 −50.69
4 20 14.929 −4.68 0.99 21.94 0.98 −4.64
5 20 13.949 −4.68 0.01 21.94 0.00 −0.05
6 21 17.879 −3.68 3.94 13.57 15.53 −14.52
7 21 11.650 −3.68 −2.29 13.57 5.24 8.43
8 21 23.300 −3.68 9.36 13.57 87.65 −34.49
9 22 17.899 −2.68 3.96 7.21 15.69 −10.63

10 23 21.498 −1.68 7.56 2.84 57.15 −12.73
11 24 13.249 −0.68 −0.67 0.47 0.48 0.47
12 25 9.599 0.32 −4.34 0.10 18.83 −1.37
13 25 10.989 0.32 −2.95 0.10 8.70 −0.93
14 27 13.945 2.32 0.01 5.36 0.00 0.02
15 28 13.071 3.32 −0.87 10.99 0.75 −2.88
16 32 6.599 7.32 −7.34 53.52 53.86 −53.69
17 33 9.410 8.32 −4.53 69.15 20.50 −37.65
18 34 5.866 9.32 −8.07 86.78 65.16 −75.20
19 35 6.488 10.32 −7.45 106.42 55.50 −76.85

Sums 469 264.823 0.00 0.00 514.11 524.88 −378.03

Mean mileage M̄ = 469/19 = 24.68 mpg

Mean price P̄ = 264.823/19 = 13.938 thousands of dollars

Standard deviation of M SM =
√

514.11/18 = 5.34

Standard deviation of P SP =
√

524.88/18 = 5.40

Covariance between P and M CovPM = −378.03/18 = −21.00

Correlation between P and M rPM =
CovPM

SP SM

=
−21.00

(5.40)(5.34)
= −0.73

Table 2-6: Computations for determining the covariance and the correlation of the
price and mileage data of Table 2-5.
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Note that the units of covariance are problematical. It is difficult
to interpret thousands of dollar-miles per gallon. Hence the value of
computing the correlation coefficient, described below. Note that the
covariance between price and mileage is negative, but the magnitude
of CovPM clearly depends on the units involved. If the mileage figures
were converted to km per liter and the prices to dollars, the plot
(Figure 2-5) would look the same but the covariance would be quite
different.

The correlation coefficient, designated r, is a special covariance correlation

measure that takes care of the scale problem just mentioned. If the
covariance (CovXY ) is divided by the two standard deviations (SX and
SY ), then the units in the numerator and the denominator cancel out,
leaving a dimensionless number, which is the correlation coefficient
between X and Y . This is written as follows:

rXY =
CovXY

SXSY

=
∑

(Xi − X̄)(Yi − Ȳ )√∑
(Xi − X̄)2

√∑
(Yi − Ȳ )2

(2.8)

The effect of this scaling (dividing CovXY by SX and SY ) is to
restrict the range of rXY to the interval −1 to +1. No matter what
the units of measurement for X and Y the correlation coefficient,
rXY , is always restricted to lie within that interval. More information
about correlation is given in Sections 5/2/2 and 5/2/3.

For the data in Table 2-5 the computations involved in getting to
the correlation coefficient are included in Table 2-6. Columns 6 and
7 are the squared deviations for height and weight, respectively, and
can be used to determine the standard deviations SP and SM , using
equation (2.6). Then the covariance between P and M can be divided
by SP and SM to yield the correlation between price and mileage,

rPM =
−21.00

(5.34)(5.40)
= −0.73. (2.9)

This summary number is readily interpretable. There is a correlation
of−0.73 between price and mileage, which is negative and substantial.
There is a strong negative association between price and mileage.

Covariance and especially correlation are the basic statistics for
bivariate data sets, and for more extensive multivariate data sets.
Care should be taken, however, to remember that these are measures
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of linear association between two variables, so that it is not appro-
priate (meaningful) to apply the correlation measure when there is a
pronounced curvilinear relationship between the two variables. This
point is amplified in Chapter 5.

In summary, the two “vital” statistics for bivariate data sets are

covariance

correlation

CovXY =
1

n− 1

∑
(Xi − X̄)(Yi − Ȳ )

rXY =
CovXY

SXSY

=
∑

(Xi − X̄)(Yi − Ȳ )√∑
(Xi − X̄)2

√∑
(Yi − Ȳ )2

In practice these calculations are done by computer.

2/3/3 Autocorrelation

The covariance and correlation coefficient are statistics (summary
measures) that measure the extent of the linear relationship between
two variables. As such, they can be used to identify explanatory
relationships. Autocovariance and autocorrelation are comparableautocovariance

autocorrelation measures that serve the same purpose for a single time series.

For example, if we compare Yt (the observation at time t) with Yt−1

(the observation at time t− 1), then we see how consecutive observa-
tions are related. The observation Yt−1 is described as “lagged” bylagged variable

one period. Similarly, it is possible to compare observations lagged
by two periods, three periods, and so on.

Table 2-7 shows the beer series, which is a single time series over
56 months from January 1991 to August 1995. The observations Y1,
Y2, . . . , Y56 are observed at time periods 1, 2, . . . , 56, respectively.
If we lag the series by one period, as shown in column 3, then there
will be 55 pairs of observations to compare. For these 55 overlapping
observations we can compute the covariance and the correlation as
if they were two separate series. However, since they are one and
the same series (with a lag of one period) the summary measures are
called autocovariance and autocorrelation.

Because the two series are almost the same, rather than use
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the equations (2.7) and (2.8) to compute the autocovariance and
autocorrelation, we normally use simpler formulas which give almost
the same answers. We denote the autocovariance at lag k by ck and
the autocorrelation at lag k by rk. Then define

autocovariance

autocorrelation

ck =
1
n

n∑

t=k+1

(Yt − Ȳ )(Yt−k − Ȳ ) (2.10)

and rk =

n∑

t=k+1

(Yt − Ȳ )(Yt−k − Ȳ )

n∑

t=1

(Yt − Ȳ )2
(2.11)

By way of illustration, consider the beer data and the calculations
of autocovariance and autocorrelation in Table 2-7. The mean of all
the data points in column 2 is Ȳ = 149.30, and the deviations in
columns 4 and 5 are deviations from Ȳ . Column 6 is the squared
deviations from column 4 and the sum of these squares is the de-
nominator in equation (2.11). Column 7 is the column of deviation
products (column 4 times column 5). The calculations, using (2.10)
and (2.11), are given at the bottom of Table 2-7.

Using exactly similar procedures, the autocorrelations for lags two,
three, and beyond can be obtained. The results for the beer data are
as follows:

r1 = 0.421 r8 = −0.156
r2 = 0.057 r9 = −0.008
r3 = −0.059 r10 = 0.051
r4 = −0.188 r11 = 0.374
r5 = −0.287 r12 = 0.596
r6 = −0.424 r13 = 0.303
r7 = −0.343 r14 = 0.082

Notice that the autocorrelation at lag 12 is higher than for the other
lags. This is due to the seasonal pattern in the data: the peaks tend
to be 12 months apart and the troughs tend to be 12 months apart.
Similarly, the autocorrelation at lag 6 is more negative than for the
other lags because troughs tend to be 6 months behind peaks.
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(1) (2) (3) (4) (5) (6) (7)
t Yt Yt−1 (Yt − Ȳ ) (Yt−1 − Ȳ ) (Yt − Ȳ )2 (Yt − Ȳ )(Yt−1 − Ȳ )
1 164 — 14.70 — 215.99 —
2 148 164 −1.30 14.70 1.70 −19.16
3 152 148 2.70 −1.30 7.27 −3.51
4 144 152 −5.30 2.70 28.13 −14.30
5 155 144 5.70 −5.30 32.45 −30.21
6 125 155 −24.30 5.70 590.66 −138.44
...

...
...

...
...

...
...

53 151 127 1.70 −22.30 2.88 −37.84
54 130 151 −19.30 1.70 372.63 −32.75
55 119 130 −30.30 −19.30 918.31 584.97
56 153 119 3.70 −30.30 13.66 −112.01

Sums 8361 21135.84 8893.51

Mean Ȳ =
8361
56

= 149.30

Autocovariance lag 1 c1 =
8893.51

56
= 158.8

Autocorrelation lag 1 r1 =
8893.51
21135.84

= 0.421

Table 2-7: Computing the autocovariance and the autocorrelation using equations
(2.10) and (2.11), and a lag of one period.

Together, the autocorrelations at lags 1, 2, . . . , make up theautocorrelation

function autocorrelation function or ACF. Rather than scanning a list of
numbers, it is much easier to plot the autocorrelations against the
lag. Such a plot is known as a correlogram and helps us visualize thecorrelogram

ACF quickly and easily. Figure 2-6 shows the ACF for the beer data.
Here the seasonal pattern is seen very clearly.

A plot of the ACF is a standard tool in exploring a time series
before forecasting. It provides a useful check for seasonality, cycles,
and other time series patterns. In the exercises at the end of this
chapter are some data sets that display various kinds of pattern
(trend, seasonality, and cycles) and the autocorrelations for these
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Figure 2-6: The correlogram (or ACF plot) for the beer production data.

series will be very helpful in verifying the pattern.

The ACF also helps us identify if previous values of the series
contain much information about the next value, or whether there is
little relationship between one observation and the next.

To sum up, much is to be learned about a single time series by
examining the autocorrelations of the series with itself, lagged one
period, two periods, and so on. The ACF plays a very important role
in time series forecasting.

2/4 Measuring forecast accuracy

We now turn to another fundamental concern—how to measure the
suitability of a particular forecasting method for a given data set.
In most forecasting situations, accuracy is treated as the overriding
criterion for selecting a forecasting method. In many instances, the
word “accuracy” refers to “goodness of fit,” which in turn refers to goodness of fit
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how well the forecasting model is able to reproduce the data that are
already known. To the consumer of forecasts, it is the accuracy of
the future forecast that is most important.

In this section, a variety of measures of forecasting (or modeling)
accuracy will be defined and in subsequent chapters these measures
will be used in the context of worked examples.

To illustrate the computations involved, we will refer to the Aus-
tralian monthly beer production. Table 2-8 shows the last 8 months
of observations (January–August 1995). The second column shows
forecasts for these values, obtained using a very simple method, by
taking the average of each month over the past four years. So, for
example, the forecast for January 1995 is the average production for
January 1991, January 1992, January 1993, and January 1994.

Period Observation Forecast
t Yt Ft

1 138 150.25
2 136 139.50
3 152 157.25
4 127 143.50
5 151 138.00
6 130 127.50
7 119 138.25
8 153 141.50
9 — 140.50

10 — 167.25

Table 2-8: The last eight beer production figures and forecasts obtained by taking
the average of each month over the past four years.

2/4/1 Standard statistical measures

If Yt is the actual observation for time period t and Ft is the forecast
for the same period, then the error is defined as

et = Yt − Ft. (2.12)

Usually, Ft is calculated using data Y1, . . . , Yt−1. It is a one-step
forecast because it is forecasting one period ahead of the last obser-one-step forecast
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vation used in the calculation. Therefore, we describe et as a one-step
forecast error. It is the difference between the observation Yt and the
forecast made using all the observations up to but not including Yt.

If there are observations and forecasts for n time periods, then
there will be n error terms, and the following standard statistical
measures can be defined:

mean error

mean absolute error

mean squared error

ME =
1
n

n∑

t=1

et (2.13)

MAE =
1
n

n∑

t=1

|et| (2.14)

MSE =
1
n

n∑

t=1

e2
t . (2.15)

Table 2-9 illustrates the computation of these standard statistical
measures.

Equation (2.12) can be used to compute the error for each period.
These can then be averaged as in equation (2.13) to give the mean
error. However, the ME is likely to be small since positive and
negative errors tend to offset one another. In fact, the ME will only
tell you if there is systematic under- or over-forecasting, called the
forecast bias. It does not give much indication as to the size of the
typical errors.

Therefore, the MAE is defined by first making each error positive
by taking its absolute value, and then averaging the results. A similar
idea is behind the definition of MSE. Here the errors are made positive
by squaring each one, then the squared errors are averaged. The
MAE has the advantage of being more interpretable and is easier
to explain to non-specialists. The MSE has the advantage of being
easier to handle mathematically (and so it is often used in statistical
optimization).

Each of these statistics deals with measures of accuracy whose
size depends on the scale of the data. Therefore, they do not
facilitate comparison across different time series and for different
time intervals. An error of 10 Ml when forecasting monthly beer
production is quite different from an error of 10 Ml when forecasting
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Absolute Squared
Period Observation Forecast Error Error Error

t Yt Ft Yt − Ft |Yt − Ft| (Yt − Ft)2

1 138 150.25 −12.25 12.25 150.06
2 136 139.50 −3.50 3.50 12.25
3 152 157.25 −5.25 5.25 27.56
4 127 143.50 −16.50 16.50 272.25
5 151 138.00 13.00 13.00 169.00
6 130 127.50 2.50 2.50 6.25
7 119 138.25 −19.25 19.25 370.56
8 153 141.50 11.50 11.50 132.25

Total −29.75 83.75 1140.20

ME = −29.75/8 = −3.72 = using equation (2.13)
MAE = 83.75/8 = 10.47 = using equation (2.14)
MSE = 1140.20/8 = 142.52 = using equation (2.15)

Table 2-9: Computations of the standard measures for the beer data.

annual beer production or an error of 10 Ml when forecasting the
water consumption of a city. To make comparisons like these, we
need to work with relative or percentage error measures.

First we need to define a relative or percentage error asrelative or percentage

error

PEt =
(

Yt − Ft

Yt

)
× 100. (2.16)

Then the following two relative measures are frequently used:

mean percentage
error

mean absolute

percentage error

MPE =
1
n

n∑

t=1

PEt (2.17)

MAPE =
1
n

n∑

t=1

|PEt| (2.18)

Equation (2.16) can be used to compute the percentage error for any
time period. These can then be averaged as in equation (2.17) to give
the mean percentage error. However, as with the ME, the MPE is
likely to be small since positive and negative PEs tend to offset one
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Percent Absolute
Period Observation Forecast Error Error Percent Error

t Yt Ft Yt − Ft

(
Yt−Ft

Yt

)
100

∣∣∣Yt−Ft
Yt

∣∣∣ 100
1 138 150.25 −12.25 −8.9 8.9
2 136 139.50 −3.50 −2.6 2.6
3 152 157.25 −5.25 −3.5 3.5
4 127 143.50 −16.50 −13.0 13.0
5 151 138.00 13.00 8.6 8.6
6 130 127.50 2.50 1.9 1.9
7 119 138.25 −19.25 −16.2 16.2
8 153 141.50 11.50 7.5 7.5

Total −26.0 62.1

MPE = −26.0/8 = −3.3% using equation (2.17)
MAPE = 62.1/8 = 7.8% using equation (2.18)

Table 2-10: Computations of the percentage measures for the beer data.

another. Hence the MAPE is defined using absolute values of PE in
equation (2.18). Table 2-10 shows how to compute the PE, MPE,
and MAPE measures.

From the point of view of the ultimate user of forecasting, knowing
that the MAPE of a method is 5% means a great deal more than
simply knowing that the MSE is 183. However, the MAPE is only
meaningful if the scale has a meaningful origin. For example, one
would not use MAPE for assessing the accuracy of temperature
forecasting since the common temperature scales (Fahrenheit and
Celsius) have fairly arbitrary zero points. Difficulties also arise when
the time series contains zeros, since the percentage error (2.16) cannot
then be computed. (When the time series values are very close to
zero, the computations involving PE can be meaningless.)

2/4/2 Out-of-sample accuracy measurement

The summary statistics described so far measure the goodness of fit of
the model to historical data. Such fitting does not necessarily imply
good forecasting. An MSE or MAPE of zero can always be obtained
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in the fitting phase by using a polynomial of sufficiently high order.
Over-fitting a model to a data series, which is equivalent to includingover-fitting

randomness as part of the generating process, is as bad as failing to
identify the systematic pattern in the data.

A second drawback of these measures of accuracy is that that
different methods use different procedures in the fitting phase. For
example, smoothing methods (Chapter 4) are highly dependent upon
initial forecasting estimates; decomposition methods (Chapter 3)
include the trend-cycle in the fitting phase as though it were known;
regression methods (Chapter 5–6) minimize the MSE by giving equal
weight to all observations; and Box-Jenkins methods (Chapter 7)
minimize the MSE by a non-linear optimization procedure. Thus,
comparison of such methods on a single criterion is of limited value.

These problems can be overcome by measuring true out-of-sample
forecast accuracy. That is, the total data are divided into an “initial-
ization” set and a “test” set or “holdout” set. Then, the initializationtest set

holdout set set is used to estimate any parameters and to initialize the method.
Forecasts are made for the test set. Since the test set was not used in
the model fitting, these forecasts are genuine forecasts made without
using the values of the observations for these times. The accuracy
measures are computed for the errors in the test set only.

2/4/3 Comparing forecast methods

None of these measures give a good basis of comparison as to the gainscomparing forecast

methods in accuracy made by applying a specific forecasting method. Does a
MSE of 5 or a MAPE of 3.2% indicate a good or bad forecasting
performance? One basis for making such a comparison is to define
some very simple näıve methods against which the performance of
more sophisticated methods can be compared.

We have found it useful to define two different näıve methods
of forecasting for use as a basis in evaluating other methods in a
given situation. The first is referred to as Näıve Forecast 1 or NF1.Näıve Forecast 1

This method uses the most recent observation available as a forecast.
Table 2-11 shows NF1 used to forecast the monthly beer production.
Each forecast is produced by taking the value of the previous month’s
production. So the forecast for January 1995 is the production figure
from December 1994, the forecast for February 1995 is the production
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NF1 Absolute Absolute
Period Observation Forecast Error Percent Error

t Yt Ft |Yt − Ft|
∣∣∣Yt−Ft

Yt

∣∣∣ 100
1 138 182 44 31.9
2 136 138 2 1.5
3 152 136 16 10.5
4 127 152 25 19.7
5 151 127 24 15.9
6 130 151 21 16.2
7 119 130 11 9.2
8 153 119 34 22.2

Total 177 127.1

MAE = 177/8 = 22.1 using equation (2.17)
MAPE = 127.1/8 = 15.9% using equation (2.18)

Table 2-11: Computations of the percentage measures for the NF1 forecasts of the
beer data.

figure from January 1995, and so on.

The difference between the MAE or MAPE obtained from a more
sophisticated method of forecasting and that obtained using NF1
provides a measure of the improvement attainable through use of
that more sophisticated forecasting method. This type of comparison
is much more useful than simply computing the MAPE or MAE of
the first method, since it provides a basis for evaluating the relative
accuracy of those results. In this case, the first forecasting method
achieved a MAPE of 7.8% compared to about twice that for NF1 and
a MAE of 10.5 Ml compared to 22.1 Ml for NF1. Clearly the first
method provides much better forecasts.

A second näıve method of forecasting has also been found to be
extremely useful as a basis for evaluating more formal forecasting
methods. This method is referred to as Näıve Forecast 2 or NF2 and Näıve Forecast 2

goes beyond NF1 in that it considers the possibility of seasonality
in the series. Since seasonality often accounts for a substantial
percentage of the fluctuation in a series, this method can frequently
do much better than NF1 and yet is still a very simple straightforward
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approach. The procedure is to remove seasonality from the original
data in order to obtain seasonally adjusted data. Once the seasonality
has been removed, NF2 is comparable to NF1 in that it uses the most
recent seasonally adjusted value as a forecast for the next seasonally
adjusted value. In practice, NF2 allows one to decide whether or
not the improvement obtained from going beyond a simple seasonal
adjustment of the data is worth the time and cost involved.

2/4/4 Theil’s U-statistic

The relative measures in the previous section all give equal weight to
all errors in contrast to the MSE, which squares the errors and thereby
emphasizes large errors. It would be helpful to have a measure that
considers both the disproportionate cost of large errors and provides
a relative basis for comparison with näıve methods. One measure
that has these characteristics is the U -statistic developed by Theil
(1966).

This statistic allows a relative comparison of formal forecasting
methods with näıve approaches and also squares the errors involved
so that large errors are given much more weight than small errors.
The positive characteristic that is given up in moving to Theil’s U -
statistic as a measure of accuracy is that of intuitive interpretation.
This difficulty will become more apparent as the computation of this
statistic and its application are examined. Mathematically, Theil’s
U -statistic is defined as

Theil’s U-statistic U =

√√√√√√√√√√

n−1∑

t=1

(FPEt+1 −APEt+1)2

n−1∑

t=1

(APEt+1)2
(2.19)

where FPEt+1 =
Ft+1 − Yt

Yt
(forecast relative change)

and APEt+1 =
Yt+1 − Yt

Yt
(actual relative change).

Equation (2.19) is actually very straightforward, as can be seen
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Period Observation Forecast Numerator Denominator

t Yt Ft

(
Ft+1−Yt+1

Yt

)2 (
Yt+1−Yt

Yt

)2

1 138 150.25 0.0006 0.0002
2 136 139.50 0.0015 0.0138
3 152 157.25 0.0118 0.0271
4 127 143.50 0.0105 0.0357
5 151 138.00 0.0003 0.0193
6 130 127.50 0.0219 0.0072
7 119 138.25 0.0093 0.0816
8 153 141.50 — —

Total 0.0560 0.1849

Theil’s U =
√

0.0560
0.1849

= 0.550

Table 2-12: Computations involved in determining Theil’s U-statistic for the beer forecasts.

by simplifying it to the form shown in (2.20). When the values of
FPEt+1 and APEt+1 are substituted into equation (2.19), the result
is

U =

√√√√√√√√√√

n−1∑

t=1

(
Ft+1 − Yt − Yt+1 + Yt

Yt

)2

n−1∑

t=1

(
Yt+1 − Yt

Yt

)2
=

√√√√√√√√√√

n−1∑

t=1

(
Ft+1 − Yt+1

Yt

)2

n−1∑

t=1

(
Yt+1 − Yt

Yt

)2
.

(2.20)

Comparing the numerator of equation (2.20) with equation (2.18)
shows that it is similar to what was defined previously as the MAPE
of a given forecasting method. The denominator is equivalent to the
numerator with Ft+1 replaced by Yt. So it is similar to the MAPE of
NF1. Thus, the U -statistic is an accuracy measure that incorporates
both concepts.

Table 2-12 shows how to compute Theil’s U -statistic for the beer
data.

Theil’s U -statistic can be better understood by examining its
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interpretation. The value of the U -statistic given by equation (2.19)
will be 0 only if FPEt+1 = APEt+1 for t = 1, 2, . . . , n−1. That in turn
occurs only when the forecasts are exact (give 0 error). Alternatively,
the U -statistic will have a value of 1 only when FPEt+1 is equal to 0.
That would be the case only if the errors in the forecasting method
were the same as those that would be obtained by forecasting no
change at all in the actual values. That is comparable to assuming
an NF1 approach. If FPEt+1 is in the opposite direction of APEt+1,
the U -statistic will be greater than unity since the numerator will be
larger than the denominator. The ranges of the U -statistic can thus
be summarized as follows:

U = 1: the näıve method is as good as the forecasting technique being
evaluated.

U < 1: the forecasting technique being used is better than the näıve
method. The smaller the U -statistic, the better the forecasting
technique is relative to the näıve method.

U > 1: there is no point in using a formal forecasting method, since
using a näıve method will produce better results.

2/4/5 ACF of forecast error

One other tool for analyzing forecast error needs to be mentioned.
The autocorrelation function of the one-step forecast errors is very
useful in determining if there is any remaining pattern in the errors
(or residuals) after a forecasting model has been applied. This is not
a measure of accuracy per se, but rather can be used to indicate if
the forecasting method could be improved.

For example, suppose the näıve forecast method NF1 was used for
the beer data. We analyze the forecast errors by a time plot and an
ACF plot as shown in Figure 2-7.

Note that there is a pattern remaining in these errors—the January
value is particularly low each year. Clearly, there is not what would
be called a random set of errors. The autocorrelation statistics are
sensitive to such patterns.

The ACF plot in the lower panel of Figure 2-7 tells a similar
story. The autocorrelation at lag 12 is much larger than the other
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Errors from NF1 forecasts
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Figure 2-7: Top: Forecast errors obtained by applying the NF1 method to the beer
data. Bottom: The ACF of the forecast errors.

autocorrelations. This shows there is some seasonal pattern in the
error series (the low January values are 12 months apart).

It is important not to read too much into the other autocorrelations
shown in Figure 2-7. With random series, no autocorrelations will
be exactly zero, even if the series is entirely random. These small
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fluctuations around zero are quite acceptable and do not indicate
there is information in the series which is not being captured by the
forecasts.

It is useful to have a benchmark to determine if an autocorrelation
is significantly large. A simple rule is to only consider autocorrela-
tions that are larger than the critical values of 2/

√
n in magnitude.

(Why this works will be discussed in Chapter 7.) For the beer data,
n = 56, so the critical values are at 2/

√
56 = 0.27. Figure 2-7 showsACF critical values

the boundary as two horizontal lines at ±0.27. Autocorrelations that
fall within these boundaries can be safely ignored. Autocorrelations
that fall outside the boundaries suggest there may be some additional
information in the series which is not being captured by the forecast
method.

In this example, only the autocorrelation at lag 12 falls outside
the critical values. This is another indication that there is some
seasonality in the forecast errors, and that the forecast method could
be improved. This is not surprising since the forecast method NF1
does not use the seasonal pattern in producing forecasts.

2/5 Prediction intervals

It is usually desirable to provide not only forecast values but ac-
companying uncertainty statements, usually in the form of prediction
intervals. This is useful because it provides the user of the forecastsprediction intervals

with “worst” or “best” case estimates and with a sense of how
dependable the forecast is, and because it protects the forecaster
from the criticism that the forecasts are “wrong.” Forecasts cannot
be expected to be perfect and intervals emphasize this.

Prediction intervals are usually based on the MSE because it
provides an estimate of the variance of the one-step forecast error. So
the square root of the MSE is an estimate of the standard deviation of
the forecast error. The usual assumption for constructing prediction
intervals is that the forecast errors are normally distributed with zero
mean. Under this assumption, an approximate prediction interval for
the next observation is

Fn+1 ± z
√

MSE .

The value of z determines the width and probability of the prediction
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interval. For example, z = 1.96 gives a 95% prediction interval. That
is, the interval has probability of 95% of containing the true value,
as yet unknown.

For other percentages, different values of z can be used. The table
below gives the most common values of z.

z Probability
0.674 0.50
1.000 0.68
1.150 0.75
1.282 0.80
1.645 0.90
1.960 0.95
2.576 0.99

Other values of z are given in Table D of Appendix III. The rules of
thumb given on page 32 are based on this table.

The September 1995 forecast for the beer data can be calculated
as the average production for the previous four Septembers. This
gives Fn+1 = 140.50. Table 2-9 gives the MSE for the beer forecasts
as 142.52. So a 90% prediction interval is

140.50± 1.645
√

142.52 = 140.50± 19.64 = [120.86, 160.01].

That is, we can be 90% sure that the actual beer production figure
for September 1995 will lie between 120.86 and 160.01 megaliters. (In
fact, it was 144 megaliters.) A similar calculation gives the October
1995 forecast as 167.25 Ml with a 90% prediction interval of

167.25± 1.645
√

142.52 = 167.25± 19.64 = [147.61, 186.89].

The actual figure for October was 166 Ml.

Although October is two periods ahead of the last observation,
these are both one-step forecasts since the forecast method is based
only on data from previous years. The forecast method treats the
data from each month as separate series. That is why we could use
the same MSE value in computing the prediction interval for October.
If we had used the NF1 method, then the forecast for October would
have been a two-step forecast, and the MSE would not have been
valid for calculating a prediction interval.

This procedure only works for one-step forecasts since the MSE
is based on one-step forecasts. For multi-step forecasts, we need to
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modify the MSE to be based on multi-step forecasts. One approach
is to define the h-step MSE ash-step MSE

MSEh =
1

n− h

n∑

t=h+1

(e(h)
t )2

where e
(h)
t is the error from making an h-step forecast of the obser-

vation at time t. Then, if we assume the h-step forecast error is
normally distributed with zero mean, we have the prediction interval

Fn+h ± z
√

MSEh .

Before calculating any prediction intervals in this way, the errors
should be checked to ensure the assumptions of zero mean and normal
distribution have been met.

2/6 Least squares estimates

In Chapter 1 we introduced two kinds of quantitative forecasting
models: explanatory models and time series models. An explanatory
model for GNP is of the form

GNP = f(monetary and fiscal policies, inflation,
capital spending, imports, exports, error)

whereas a time series model is of the form

GNPt+1 = f(GNPt, GNPt−1, GNPt−2, GNPt−3, . . . , error).

Neither model can be exact. That is why the error term is included
on the right-hand sides of these equations. The error term representsrandom error

variations in GNP that are not accounted for by the relationship f .

In both cases, what is observed as the output of the system
is dependent on two things: the functional relationship governing
the system (or the pattern, as it will be called from now on) and
randomness (or error). That is,

data = pattern + error. (2.21)
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The critical task in forecasting is to separate the pattern from the
error component so that the former can be used for forecasting.

The general procedure for estimating the pattern of a relationship,
whether explanatory or time series, is through fitting some functional
form in such a way as to minimize the error component of equation
(2.21). One form of this estimation is least squares. This approach is
very old (developed first by Gauss in the 1800s) and is the one most
widely used in classical statistics.

The name least squares is based on the fact that this estimation least squares

procedure seeks to minimize the sum of the squared errors in equation
(2.21). The example shown below illustrates the basis of the least
squares method. Its application to all types of functional forms (i.e.,
linear or non-linear) is analogous to that shown here.

Suppose that the manager of a supermarket wants to know how
much a typical customer spends in the store. The manager might
start by taking a sample of say 12 clients, at random, obtaining the
results shown in Table 2-13.

From Table 2-13, it is clear that not all customers spend the same
amount. Some of the variation might be explained through factors
such as time of the day, day of the week, discounts offered, maximum
or minimum amount of checks cashed, and so on, while part of the
variation may be random or unexplainable. For purposes of this
illustration, it will be assumed that no variation can be explained
through explanatory or time series relationships. In such a case, the
store manager faced with finding an appropriate estimator to describe

Client Amount Spent Client Amount Spent
($) ($)

1 9 7 11
2 8 8 7
3 9 9 13
4 12 10 9
5 9 11 11
6 12 12 10

Table 2-13: Sample expenditures for supermarket clients.
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Estimate of Estimate of Estimate of
Ŷ = 7 Ŷ = 10 Ŷ = 12

Amount Error Error Error
Client spent Errora squared Error squared Error squared

1 9 2 4 −1 1 −3 9
2 8 1 1 −2 4 −4 16
3 9 2 4 −1 1 −3 9
4 12 5 25 2 4 0 0
5 9 2 4 −1 1 −3 9
6 12 5 25 2 4 0 0
7 11 4 16 1 1 −1 1
8 7 0 0 −3 9 −5 25
9 13 6 36 3 9 1 1

10 9 2 4 −1 1 −3 9
11 11 4 16 1 1 −1 1
12 10 3 9 0 0 −2 4

SSE (sum of squared errors) 144 36 84
MSE (mean squared error) 12 3 7

aError = amount spent− estimated value.

Table 2-14: Mean squared errors for estimates of client expenditure.

the data may take a fixed value as an estimate. Having made this
decision, the manager might decide to select an estimate in such a
way as to minimize the mean (average) squared error. This could
be done by trial and error. Suppose we denote the estimate by the
symbol Ŷ . The manager tries values of Ŷ = 7, Ŷ = 10, and Ŷ = 12.
The resulting mean squared errors are shown in Table 2-14.

From Table 2-14 it is clear that the squared error is least when the
manager chooses 10 as the estimate. However, there may be a better
estimate. Figure 2-8 shows the resulting MSEs for all estimates from
0 through 20, and it can be seen that the MSEs form a parabola.
Furthermore, the minimum value on this parabola is indeed at the
point where the estimate is 10. Thus, the minimum MSE will be
achieved when the value of the estimate is 10, and we say that 10 is
the least squares estimate of customer spending.
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Figure 2-8: Relating MSE to estimate value.

Because Figure 2-8 is a mathematical function whose properties
can be found exactly, it is not necessary to use trial and error to find
the estimator that minimizes the MSE. Rather, this value can be
found mathematically with the help of differentiation. The first step
is to rewrite equation (2.21) so as to isolate the error on the left-hand
side:

error = data− pattern. (2.22)

As usual, the error will be denoted by e, the data by Y , and the
estimate pattern by Ŷ . In addition, the subscript i (i = 1, 2, 3, . . . , 12)
will be added to denote the ith customer. Using this notation,
equation (2.22) becomes: ei = Yi − Ŷ . Then the sum of squared
errors is

SSE =
12∑

i=1

e2
i =

12∑

i=1

(Yi − Ŷ )2 (2.23)

and the mean squared error is

MSE =
1
12

SSE =
1
12

12∑

i=1

(Yi − Ŷ )2.
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Now initially the value Ŷ will not be known, but the store manager
wants that value of Ŷ which will minimize the sum of the squared
errors (or, equivalently, to minimize the MSE).4

This can be found by taking the derivative of (2.23), setting it
equal to zero, and solving for Ŷ , as follows:

d SSE
d Ŷ

= −2
12∑

i=1

(Yi − Ŷ ) = 0

so that
12∑

i=1

(Yi − Ŷ ) = 0

or
12∑

i=1

Yi − 12Ŷ = 0

which implies Ŷ =
1
12

12∑

i=1

Yi = Ȳ . (2.24)

Solution (2.24) is easily recognized as the mean of the data, and it
gives a value that minimizes the sum of the squared errors. Applying
(2.24) to the store manager’s data in Table 2-13 gives

Ŷ = Ȳ =
1
12

12∑

i=1

Yi =
120
12

= 10.

This value is the minimum point of Figure 2-8. As a single point
estimate of the pattern of the data, the mean fits the data as closely
as possible, given the criterion of minimizing the MSE. While theminimum MSE

estimate mean is a somewhat simple estimate of the data in most situations,
the procedure of least squares that was used to determine a MSE
estimate can be applied no matter how complex or sophisticated the
estimation situation is.

It is of course possible to minimize some other criterion (e.g., MAE)
instead of minimizing the MSE. However, minimizing MAE is not
as easy mathematically as minimizing the MSE. Also, squaring the

4Note that minimizing SSE (the sum of squared errors) is the “least squares”
procedure. Dividing by n (which is 12 in the example given) gives the MSE. Thus
minimizing the MSE is an exactly equivalent procedure.
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errors magnifies (or gives more weight to) extreme values, and this
result is attractive because large errors are less desirable than small
errors. (Many cost relationships are quadratic in nature, suggesting
the appropriateness of squaring.)

2/6/1 Discovering and describing relationships

If the measurable output of a system is viewed as data that include
a pattern and some error, a major consideration in forecasting,
whether explanatory or time series, is to identify and fit the most
appropriate pattern (functional form) so as to minimize the MSE.
The basic procedure is illustrated by comparing two different methods
for forecasting the price of a Japanese automobile using the data for
the 19 vehicles listed in Table 2-5.

The first method is simply to use the mean as a forecast (as was
done for the store expenditure data). Table 2-15 gives the price data
along with the forecasts and the resulting errors.

The forecasting model underlying Table 2-15 is

Ŷ = a. (2.25)

That is, the forecasts are the same for all vehicles because we are
not using other information about the vehicles. The value of a is
estimated from the data to be equal to the mean of the data. Hence,
Ŷ = a = Ȳ .

Using the mean as the estimate of the pattern might be acceptable
if we had no other information about these vehicles. But we have
already seen that price is correlated with mileage. We can use the
mileage information to form a more accurate estimate of price than
the mean. Figure 2-9 shows a straight line fitted to the price-mileage
relationship. Notice that the errors (vertical distances from the points
to the line) are smaller in this plot than the errors obtained using the
mean as an estimate.

Using a straight line forecast model with mileage as the explana-
tory variable means straight line model

Ŷ = a + b×mileage (2.26)

where a and b are suitably chosen values representing the intercept
and slope of the line. The values of a and b can be chosen in the same
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Mean Squared
Price value Error error
14.944 13.938 1.01 1.01
14.799 13.938 0.86 0.74
24.760 13.938 10.82 117.12
14.929 13.938 0.99 0.98
13.949 13.938 0.01 0.00
17.879 13.938 3.94 15.53
11.650 13.938 −2.29 5.24
23.300 13.938 9.36 87.65
17.899 13.938 3.96 15.69
21.498 13.938 7.56 57.15
13.249 13.938 −0.67 0.48
9.599 13.938 −4.34 18.83

10.989 13.938 −2.95 8.70
13.945 13.938 0.01 0.00
13.071 13.938 −0.87 0.75
6.599 13.938 −7.34 53.86
9.410 13.938 −4.53 20.50
5.866 13.938 −8.07 65.16
6.488 13.938 −7.45 55.50

Total 264.823 264.823 0.00 524.88

Ȳ = 264.823
19 = 13.938 MSE = 524.88

19 = 27.63

Table 2-15: The mean as an estimate of the price of Japanese automobile.

way as a was chosen in (2.25): that is, by minimizing the MSE. This
procedure is known as simple linear regression and will be examinedsimple linear

regression in detail in Chapter 5. The mechanics of how a and b are calculated
are not important at this point.

For these data, the values of a and b which minimize the MSE are
32.1 and −0.735 respectively. So the forecast model is

Ŷ = 32.1− 0.735×mileage. (2.27)

This line is shown in Figure 2-9.
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Price/mileage relationship for Japanese automobiles
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Figure 2-9: Straight line estimate of vehicle price using mileage as an explanatory variable.

It is important not to confuse an explanatory relationship (such as
that between price and mileage) with a causal relationship. Of course, causal relationship

higher mileage does not cause lower prices—both depend on other
variables such as the size of the engine. The straight line forecast
model (2.27) is used when we know the mileage of a vehicle and wish
to predict its price.

For forecasting purposes, either the mean forecasting model or the
straight line forecasting model can be used to predict the price of
a Japanese automobile not listed. For example, if a vehicle has a
mileage of 23 mpg, the mean gives a forecast of $13,938 while the
straight line model gives a forecast of [32.1 − 0.736(23)] × 1, 000 =
$15,176. From historical data, one would expect the straight line
model to be better since it had a smaller MSE value (13.00 compared
with 27.63).

A little care must be taken in comparing MSE values (or any
other measure of accuracy) from different models. More complicated
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Squared
Price Mileage Forecast Error error

($’000) (mpg) ($’000)
14.944 19 18.118 −3.174 10.072
14.799 19 18.118 −3.319 11.014
24.760 20 17.382 7.378 54.429
14.929 20 17.382 −2.453 6.019
13.949 20 17.382 −3.433 11.788
17.879 21 16.647 1.232 1.518
11.650 21 16.647 −4.997 24.971
23.300 21 16.647 6.653 44.261
17.899 22 15.912 1.987 3.949
21.498 23 15.176 6.322 39.962
13.249 24 14.441 −1.192 1.421
9.599 25 13.706 −4.107 16.866

10.989 25 13.706 −2.717 7.381
13.945 27 12.235 1.710 2.923
13.071 28 11.500 1.571 2.468
6.599 32 8.559 −1.960 3.840
9.410 33 7.823 1.587 2.517
5.866 34 7.088 −1.222 1.493
6.488 35 6.353 0.135 0.018

Sum of squared errors (SSE): 264.913

MSE = 246.913/19 = 13.00

Table 2-16: Straight line estimate of vehicle price using mileage as explanatory
variable. Straight line formula: Ŷ = 32.1− 0.735(mileage).

models generally have smaller MSE values, even if they do not
give more accurate forecasts. This is because they measure the
goodness of fit of the model to historical data, rather than true
out-of-sample forecasting performance. However, in this case the
scatterplot (Figure 2-5) and negative correlation (Equation 2.9) both
indicate that mileage should be included in the forecasting model.
Also, the straight line model has only half the MSE of the mean
model. Such a reduction is unlikely to be due to the additional
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complexity of the straight line model.

In general, there is no way that a statistical method can automati-
cally determine the best pattern (functional form) to describe a given
set of data. Rather, this decision must be based on judgment. Then
a statistical method can be used to fit the specified pattern in such
a way as to minimize the MSE.

2/7 Transformations and adjustments

Sometimes, adjusting the historical data will lead to a simpler and
more interpretable forecasting model. In this section we deal with
three kinds of adjustment: mathematical transformations (such as
logarithms and square roots) are discussed in Section 2/7/1; adjust-
ments to remove data variation due to the effects of the calendar
are discussed in Section 2/7/2; and adjustments due to population
changes and inflation are discussed in Section 2/7/3.

2/7/1 Mathematical transformations

Figure 2-10 shows monthly Australian electricity production data, the
same data that were plotted in Figure 1-2a (p. 7). Notice that the
size of the annual seasonal variation increases as the level of the series
increases. At the start of the series, the total variation throughout the
year was only about 300 million kwh, but in the most recent years,
when the production is very high, the total variation is over 2,500
million kwh. Clearly any forecasts for these data must take account
of the obvious increasing trend, the strong seasonal pattern, and this
increasing variation with level. A mathematical transformation is a mathematical

transformationconvenient method for accounting for the increasing variation.

One such transformation is the square root function. The top plot square root

transformationin Figure 2-11 shows the square roots of the electricity production
data. The new data set was formed simply by taking the square
root of each observation in the original data set. This mathematical
transformation has helped in reducing the variation in the size of
the annual cycles, making it easier to forecast these data than those
shown in Figure 2-10.

Square roots are only one kind of transformation that can be
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Australian monthly electricity production
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Figure 2-10: Monthly Australian electricity production from January 1956 to
August 1995. Note the increasing variation as the level of the series increases.

used in this way. Many other transformations are possible, but in
practice the square root and logarithm are most useful. Logarithms,
in particular, are useful because they are more interpretable: changes
in a log value are relative (percent) changes on the original scale.

Other useful transformations are given in Table 2-17. Here we
denote the original observations as Y1, . . . , Yn and the transformed
observations as W1, . . . , Wn. Figure 2-11 displays the electricity data
transformed using some of the transformations given in Table 2-17,
showing the effect of the increasing strength of the transformations.

Each of the transformations in Table 2-17 is a member of the family
of power transformations:power transformation

Wt =





−Y p
t , p < 0;

log(Yt), p = 0;
Y p

t , p > 0.
(2.28)

For p = 1 the transformation is simply Wt = Yt, so this leaves
the data alone. Choosing p = 1

2 gives a square root and p = −1
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Figure 2-11: Transformations of the electricity production data. Of these, either a
square root, cube root, or a log transformation could be used to stabilize the variation
to form a series which has variation approximately constant over the series.
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Square root Wt =
√

Yt ↓

Cube root Wt = 3
√

Yt Increasing

Logarithm Wt = log(Yt) strength

Negative reciprocal Wt = −1/Yt ↓
Table 2-17: Mathematical transformations for stabilizing variation.

gives the negative reciprocal. It might seem artificial to define the
power transformation for p = 0 to be the logarithm, but it actually
belongs there because Y p

t for p close to zero behaves much like the
logarithm. For p < 0, the negative of the power transformation is
used so that all transformations result in increasing functions (i.e.,
the transformed variable increases as Yt increases). The parameter
p can be any number if the data are positive, but p must be greater
than zero if the data have zeros. If the data have negative values,
no power transformation is possible unless they are adjusted first by
adding a constant to all values.

Forecasts are calculated on the transformed data rather than the
original data. But since we are really interested in forecasts of the
original data, not the transformed data, we must reverse the transfor-
mation (or back-transform) to obtain forecasts on the original scale.back-transforming

For example, the reverse of the square root function is the square
function, the reverse of the logarithm function is the exponential
function, and so on. Generally, the reverse power transformations
are given by

Yt =





(−Wt)1/p, p < 0;
exp(Wt), p = 0;
(Wt)1/p, p > 0.

For example, if we were to forecast the square root of the electricity
data, we could obtain forecasts on the original scale by taking the
square of the forecasts of the square root data.

It is preferable to choose a simple value of p to give a transfor-
mation such as those given in Table 2-17. Models and forecasts of a
time series are relatively insensitive to the value of p chosen—nearby
values of p will produce similar results. This is seen in Figure 2-11



2/7 Transformations and adjustments 67

where either p = 1/2, p = 1/3, or p = 0 could be used to stabilize
the variation. Also, simple values of p such as 0, −1, or 1/2 make
the results much easier to interpret than a number like p = 0.38463.
Very often it is found that no transformation (i.e., p = 1) is needed.

When the data have been transformed, then prediction intervals
also need to be transformed back to the original scale. The simplest
way to proceed is to apply the inverse transform to the end points
of the prediction interval. So, if logarithms have been used, and
the forecast on the log scale is Fn+1 and the prediction interval is
(Ln+1, Un+1), then the forecast on the original scale is eFn+1 with the
prediction interval (eLn+1 , eUn+1). Note that these prediction intervals
need not be symmetric around the forecast.

Empirical studies which have considered the merits of mathe-
matical transformations have demonstrated that, for many series,
transformation does not often have a major effect on forecast accuracy
(Makridakis and Hibon, 1979; Makridakis et al., 1982; Meese and
Geweke, 1984). This is because most forecast methods place more
weight on the most recent data. Therefore the small annual variation
earlier in the electricity series is unlikely to influence the forecasts
very much. Only when the series is rapidly changing in variation
will mathematical transformations make a large difference to the
forecasts.

However, the MSE (and the other measures of accuracy) gives
equal weight to all data and so prediction intervals will be affected
by transformations. In calculating prediction intervals, it is assumed
that the variation is approximately constant over the series.

2/7/2 Calendar adjustments

Some of the variation in a time series may be due to the variation in
the number of days (or trading days) each month. It is a good idea
to adjust for this known source of variation to allow study of other
interesting features.

Month length can have quite a large effect, since length can month length

adjustmentdiffer by about 31−28
30 = 10%. If this is not removed, it shows up

as a seasonal effect, which may not cause problems with forecasts
though it does make any seasonal pattern hard to interpret. It is
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easily adjusted for:

Wt = Yt × no. of days in an average month
no. of days in month t

= Yt × 365.25/12
no. of days in month t

.

Figure 2-12 shows monthly milk production per cow over a period
of 14 years. Month length will, of course, affect the total monthly
milk production of a cow. Figure 2-12 shows the milk production
data adjusted for month length. The simpler pattern will lead to
better forecasts and easier identification of unusual observations.

Trading day adjustment is similar to month length adjustmenttrading day

adjustment but is not completely predictable. Trading days adjustments are often
necessary because a given month may not have the same number of
working, or trading, days in different years. In some industries such
as retail sales and banks, this factor becomes very important, since
it can have a significant influence on the level of sales. This source of
variation occurs in monthly data when there is also a weekly cycle,
since the proportions of the various days in a given month vary from
year to year. For example, March may have four or five Sundays, and
if Sunday is a non-trading day this must be accounted for. While
the various proportions are completely predictable from the calendar
(like month length adjustment) the effects of the various days are not
predictable so this must be estimated.

In the simplest case, days are classified as either trading or non-
trading days, and all trading days are assumed to have the same
effect. In this case the adjustment is analogous to month length:

Wt = Yt × no. of trading days in an average month
no. of trading days in month t

.

where Yt has already been adjusted for month length and transformed
if necessary. More complicated cases are discussed in Section 6/2/2.
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Figure 2-12: Monthly milk production per cow over 14 years (Source: Cryer,
1986). The second graph shows the data adjusted for the length of month. This
yields a simpler pattern enabling better forecasts and easier identification of unusual
observations.
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2/7/3 Adjustments for inflation and population changes

One obvious source of variation that afflicts time series is the effect
of inflation or changes in population. For example, when forecastingadjusting for inflation

the price of a new motor vehicle, it is essential to take into account
the effect of inflation. A $15,000 vehicle this year is not the same
as a $15,000 vehicle 10 years ago. The standard approach is to
use equivalent value in 1990 dollars (for instance). Then the data
are directly comparable and forecasts will not be affected by this
additional source of variation.

Adjusting for population changes is similar. For example, whenadjusting for

population changes forecasting the number of public transport users in a city, it is
preferable to take into account the effect of population changes. In
this case, the data could be adjusted by the total number of people in
the city. Rather than forecasting the total number of public transport
users, it will probably be more accurate to forecast the proportion
of people who are public transport users. Demographic studies are
needed to provide forecasts of population and these can then be used
to obtain forecasts of the number of public transport users in the
future. A more refined approach would be to produce forecasts for
different age groups and/or different socioeconomic groups.



Appendix 2-A
Notation for quantitative forecasting

Quantitative forecasts are based on data, or observations, that de-
scribe some factor of interest. In this book a single observed value
will be represented by Yt. (See Table 2-18.) This variable can be the
actual number of units sold, the cost of production, the advertising
budget, price per unit, gross national product, or any other event of
interest, as long as it can be quantified. The objective of forecasting is
to predict future values of Y . The individual forecasts will be denoted
by Ft, or Ŷt, and the error by et, where the error is the difference
between the actual value and the forecast value for observation i:

et = Yt − Ŷt or et = Yt − Ft.

In time series forecasting and in explanatory forecasting, when the
data are taken at equal time intervals, n will denote the present time
period, n− 1 last period, n− 2 two periods ago, and so on. A period
can be a day, a week, a month, quarter, year, and so forth. The
forecasts usually will be for future time periods such as n + 1.

Observed Values Forecasted Values

Y1 Y2 Y3 . . . Yn−1 Yn

Period t 1 2 3 . . . n− 1 n n + 1 n + 2 . . . n + m

Estimated values Ŷ1 Ŷ2 Ŷ3 . . . Ŷn−1 Ŷn Ŷn+1 Ŷn+2 . . . Ŷn+m

or F1 F2 F3 . . . Fn−1 Fn Fn+1 Fn+2 . . . Fn+m

Error e1 e2 e3 . . . en−1 en

↑
Present

Table 2-18: Notation used in time series forecasting.

71



Appendix 2-B
Summation sign Σ

In order to simplify the manipulation of expressions involving the
adding of many numbers, it is convenient to use a summation sign,
Σ. The use of this sign and the elements of notation mentioned
previously can be demonstrated using the data in Table 2-19.

Based on Table 2-19,

Yt is the actual sales value,
Ŷt or Ft is the forecast values for sales, and

et is the error or difference Yt − Ŷt.

If one wants the sum of the errors, it can be obtained from

e1 + e2 + e3 + · · ·+ e23 =
23∑

t=1

et

or 3− 3− 2− · · · − 7 = −2.

Below and above the summation sign are the “limits” showing the
variable which is indexing the sum (t) and the range of the summation
(from 1 to 23). If it is obvious what the limits are, sometimes they
are omitted.

The cumulative sales for the years 1985 through 1994 can be
obtained from

20∑

t=11

Yt = Y11 + Y12 + Y13 + · · ·+ Y20

= 175 + 175 + 176 + · · ·+ 251
= 2071.

72
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No. of Units Sold No. of Units Sold
Period Period

Year t Actual Forecast Error Year t Actual Forecast Error
1975 1 123 120 3 1986 12 175 173 2
1976 2 125 128 −3 1987 13 176 177 −1
1977 3 133 135 −2 1988 14 192 188 −4
1978 4 140 138 2 1989 15 199 195 −4
1979 5 144 148 −4 1990 16 210 215 5
1980 6 158 157 3 1991 17 225 230 5
1981 7 161 155 6 1993 18 230 236 −6
1982 8 160 168 −6 1993 19 238 242 −4
1983 9 163 168 −5 1994 20 251 248 3
1984 10 171 171 0 1995 21 259 255 4
1985 11 175 176 −1 1996 22 275 263 12

1997 23 283 290 −7

Table 2-19: Use of quantitative forecasting notation.

The following rules apply to the use of summation signs:

1.
n∑

t=1

Ȳ Yt = Ȳ
n∑

t=1

Yt , where Ȳ is the sample mean (therefore a

constant) of the variable Yt .

2.
n∑

t=1

Ȳ = nȲ .

3.
n∑

t=1

(Yt − Ŷt) =
n∑

t=1

Yt −
n∑

t=1

Ŷt .

4.
n∑

t=1

(Yt − Ȳ ) =
n∑

t=1

Yt −
n∑

t=1

Ȳ =
n∑

t=1
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Exercises

2.1 Table 2-20 gives average monthly temperatures in Paris.

(a) What is your best estimate of the average temperature
in June 1995?

(b) Make a time plot of the data. Is there any time pattern
in the temperature readings?

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1994 7.6 7.1 8.3 11.5 13.7 17.2 18.5 19.7 15.1 8.9 8.5 8.5
1995 7.7 6.9 6.1 10.5 12.9

Table 2-20: Average monthly temperature in Paris (degrees Celsius).

2.2 For each of the following series, what sort of time patterns
would you expect to see?

(a) Monthly retail sales of computer disks for the past 10
years at your local store.

(b) Hourly pulse rate of a person for one week.

(c) Daily sales at a fast-food store for six months.

(d) Weekly electricity consumption for your local area over
the past 10 years.

2.3 For each of the following series on the web page, make a graph
of the data (using a computer package), describe the main
features and, if transforming seems appropriate, do so and
describe the effect.

(a) Monthly total of people on unemployed benefits in Aus-
tralia (January 1956–July 1992).

(b) Daily morning temperature of a cow for 75 days.

(c) Number of lynx trapped annually in the McKenzie River
district of northwest Canada (1821–1934).

(d) Monthly total of accidental deaths in the United States
(January 1973–December 1978).

(e) Quarterly production of bricks (in millions of units) at
Portland, Australia (March 1956–September 1994).
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2.4 In the graphs on the previous page, four time series are plotted
along with their ACFs. Which ACF goes with which time
series?

2.5 Table 2-21 shows data on the performance of 14 trained female
distance runners. The variables measured are the running
time (minutes) in a 10 kilometer road race and the maximal
aerobic power collected during the week following the run.

(a) Calculate the mean, median, MAD, MSD, and standard
deviation for each variable.

(b) Which of these statistics give a measure of the center of
data and which give a measure of the spread of data?

(c) Calculate the correlation of the two variables and pro-
duce a scatterplot of Y against X.

(d) Why is it inappropriate to calculate the autocorrelation
of these data?

X 61.32 55.29 52.83 57.94 53.31 51.32 52.18 52.37 57.91 53.93 47.88 47.41 47.17 51.05
Y 39.37 39.80 40.03 41.32 42.03 42.37 43.93 44.90 44.90 45.12 45.60 46.03 47.83 48.55

Table 2-21: Running times (Y ) and maximal aerobic capacity (X) for 14 female
runners. Source: Conley et al. (1981).

2.6 Column 1 on the following page is the actual demand for prod-
uct E15 over 20 months. Columns 2 and 3 are the one-month
ahead forecasts according to two different forecasting models
to be discussed in Chapter 4. (Method 1 gives forecasts from
Table 4-4 and Method 2 gives forecasts from Table 4-6.)

(a) Plot the actual demand on a graph along with the fore-
casts from the two methods.

(b) For each method, compute the Mean Error, Mean Abso-
lute Error, Mean Squared Error, Mean Percentage Error,
and Mean Absolute Percentage Error using equations
(2.13) through (2.18).

(c) Repeat Part (b) using columns 1 and 3 below. Which
forecasting method appears to be better?
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(1) (2) (3)
Actual Method 1 Method 2

Period Demand Forecast Forecast
1 139 157 170
2 137 145 162
3 174 140 157
4 142 162 173
5 141 149 164
6 162 144 158
7 180 156 166
8 164 172 179
9 171 167 177
10 206 169 180
11 193 193 199
12 207 193 202
13 218 202 211
14 229 213 221
15 225 223 232
16 204 224 235
17 227 211 225
18 223 221 232
19 242 222 233
20 239 235 243

2.7 Download the Dow Jones index from the web page and pro-
duce a time plot of the series using a computer package.

(a) Calculate the change in the index for each day by sub-
tracting the value for the previous day. (This is known
as “differencing” the data and is discussed in Chapter 6.)

(b) Forecast the change in the index for each of the next 20
days by taking the average of the historical changes.

(c) From these forecasts, compute forecasts for the original
index for each of the 20 days.

(d) Add the forecasts to the graph.

(e) Show that the graphed forecasts are identical to extend-
ing the line drawn between the first and last observations.
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1950 32 1960 482 1970 5289 1980 11043
1951 38 1961 814 1971 5811 1981 11180
1952 39 1962 991 1972 6294 1982 10732
1953 50 1963 1284 1973 7083 1983 11112
1954 70 1964 1702 1974 6552 1984 11465
1955 69 1965 1876 1975 6942 1985 12271
1956 111 1966 2286 1976 7842 1986 12260

1947 11 1957 182 1967 3146 1977 8514 1987 12249
1948 20 1958 188 1968 4086 1978 9269 1988 12700
1948 29 1959 263 1969 4675 1979 9636 1989 13026

Table 2-22: Japanese motor vehicle production (1947–1989) in thousands. Source:
World motor vehicle data, Motor Vehicle Manufacturers Association of U.S. Inc.,
Detroit, 1991.

2.8 Japanese motor vehicle production for 1947–1989 is given in
Table 2-22.

(a) Plot the data in a time plot. What features of the data
indicate a transformation may be appropriate?

(b) Transform the data using logarithms and do another time
plot.

(c) Calculate forecasts for the transformed data for each year
from 1948 to 1990 using Näıve Forecast 1.

(d) Compute the forecast errors and calculate the MSE and
MAPE from these errors.

(e) Transform your forecast for 1990 back to the original
scale by find the exponential of your forecast in (c). Add
the forecast to your graph.

(f) From the graphs you have made, can you suggest a better
forecasting method?

(g) The world motor vehicle market was greatly affected by
the oil crisis in 1973–1974. How did it affect Japanese
motor vehicle production? If this information could be
included in the forecasts, how would it affect the values
of the MSE and MAPE?
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Many forecasting methods are based on the concept that when
an underlying pattern exists in a data series, that pattern can be
distinguished from randomness by smoothing (averaging) past values.
The effect of this smoothing is to eliminate randomness so the pattern
can be projected into the future and used as the forecast. In many
instances the pattern can be broken down (decomposed) into subpat-
terns that identify each component of the time series separately. Such
a breakdown can frequently aid in better understanding the behavior
of the series, which facilitates improved accuracy in forecasting.

Decomposition methods usually try to identify two separate com-
ponents of the basic underlying pattern that tend to characterize
economic and business series. These are the trend-cycle and the
seasonal factors. The seasonal factor relates to periodic fluctuations
of constant length that are caused by such things as temperature,
rainfall, month of the year, timing of holidays, and corporate poli-
cies. The trend-cycle represents longer-term changes in the level of trend-cycle

the series. The trend-cycle is sometimes separated into trend and
cyclical components, but the distinction is somewhat artificial and
most decomposition procedures leave the trend and cycle as a single
component known as the trend-cycle.

Decomposition assumes that the data are made up as follows: time series

decompositiondata = pattern + error
= f(trend-cycle, seasonality, error).

Thus, in addition to the components of the pattern, an element of
error or randomness is also assumed to be present. This error is
assumed to be the difference between the combined effect of the two
subpatterns of the series and the actual data. Therefore, it is often
called the “irregular” or the “remainder” component.

There are several alternative approaches to decomposing a time
series, all of which aim to isolate each component of the series
as accurately as possible. The basic concept in such separation
is empirical and consists of first removing the trend-cycle, then
isolating the seasonal component. Any residual is assumed to be
randomness which, while it cannot be predicted, can be identified.
From a statistical point of view there are a number of theoretical
weaknesses in the decomposition approach. Practitioners, however,
have largely ignored these weaknesses and have used the approach
with considerable success.
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Decomposition methods are among the oldest approaches to time
series analysis. They originated around the beginning of this cen-
tury and were initiated from two different directions. First, it was
recognized that to study the serial correlation within or between
variable(s), any spurious correlation that might exist because of
trend must be eliminated. As early as 1884, Poynting attempted to
eliminate trend and some seasonal fluctuations by averaging prices
over several years. Hooker (1901) followed Poynting’s example, but
was more precise in his methods for eliminating trend. His work was
followed by Spencer (1904) and Anderson and Nochmals (1914), who
generalized the procedure of trend elimination to include higher-order
polynomials.

A second direction for work in this area originated with economists
who worried about the impact of depressions and sought ways to
predict them. They felt that the elements of economic activity should
be separated so that changes in the business cycle could be isolated
from seasonal and other changes. France appointed a committee that
in 1911 presented a report analyzing the causes of the 1907 economic
crisis. This group introduced the idea of leading and coincidental
indicators and attempted to separate the trend from the cycle so
that the movement of the latter could be followed.

In the United States this idea was expanded and the concept of
constructing barometers of business activity was developed. Further-
more, an attempt to separate the seasonal fluctuation from the rest of
the components was made as early as 1915 (Copeland). The process
of decomposition, as it is known today, was introduced by Macauley
(1930) who, in the 1920s, introduced the ratio-to-moving averages
method that forms the basis of Census II. (For a summary article,
see Burman, 1979.)

An impetus in the development of decomposition came with the
introduction and widespread use of computers. Shiskin (1957) de-
veloped a computer program that could perform the needed compu-
tations easily and quickly. This gave rise to Census II, which has
become the most widely used of the decomposition methods. Since
that time, decomposition approaches have been used widely by both
economists and business analysts.

More recently, the advantages of decomposition approaches have
been recognized and efforts have been made to upgrade these ap-
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proaches. These efforts have been in the direction of introducing
statistical rigor into the approach without losing its intuitive appeal.
(See Dagum, 1982; Cleveland, 1983.)

We introduce the ideas behind decomposition and seasonal ad-
justment in Section 3/2. A key step in all decomposition methods
involves smoothing the original data. In Section 3/3 we describe
moving average smoothers and their variations that are used in
most decomposition methodology. An alternative smoother which is
becoming increasingly popular is a local linear regression smoother;
it is introduced in Section 3/4. The classical decomposition method,
dating back to the 1920s, was once the most popular technique and
still forms the basis for most other methods. Classical decomposition
is discussed in Section 3/5. Today, the most popular method of
decomposition is Census II, which lies behind a great many basic
economic series used in the private and public sectors. We will
study the latest variant of Census II (X-12-ARIMA) in Section 3/6.
Then, in Section 3/7 we look at a relatively new decomposition
method, STL, which is based on local linear regressions. Finally, in
Section 3/8, we briefly review the role of time series decomposition
in forecasting.

3/1 Principles of decomposition

3/1/1 Decomposition models

The general mathematical representation of the decomposition ap-
proach is:

Yt = f(St, Tt, Et) (3.1)

where Yt is the time series value (actual data) at period t,
St is the seasonal component (or index) at period t,
Tt is the trend-cycle component at period t, and
Et is the irregular (or remainder) component at period t.

The exact functional form of (3.1) depends on the decomposition
method actually used. A common approach is to assume equation
(3.1) has the additive form additive

decomposition
Yt = St + Tt + Et.
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That is, the seasonal, trend-cycle and irregular components are
simply added together to give the observed series.

Alternatively, the multiplicative decomposition has the formmultiplicative

decomposition
Yt = St × Tt ×Et.

That is, the seasonal, trend-cycle and irregular components are
multiplied together to give the observed series.

An additive model is appropriate if the magnitude of the seasonal
fluctuations does not vary with the level of the series. But if the
seasonal fluctuations increase and decrease proportionally with in-
creases and decreases in the level of the series, then a multiplicative
model is appropriate. Multiplicative decomposition is more prevalent
with economic series because most seasonal economic series do have
seasonal variation which increases with the level of the series. (See,
for example, the electricity production data in Figure 2-10.)

Rather than choosing either an additive or multiplicative decom-
position, we could use a transformation as discussed in Section 2/5/1.
Very often the transformed series can be modeled additively, when
the original data are not additive. Logarithms, in particular, turn a
multiplicative relationship into an additive relationship, since if

Yt = St × Tt ×Et,

then log Yt = log St + log Tt + log Et.

So we can fit a multiplicative relationship by fitting an additive
relationship to the logarithms of the data. Other transformations
allow a decomposition which is somewhere between the additive and
multiplicative forms.

A further decomposition method is pseudo-additive decomposition
which takes the form

Yt = Tt(St + Et − 1).

This type of decomposition is useful in series where there is one month
(or quarter) that is much higher or lower than all the other months
(or quarters). For example, many European series take large dips in
August when companies shut down for vacations. We will not discuss
pseudo-additive decomposition in this book; Baxter (1994) describes
it and its applications in detail.
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Figure 3-1: Top: Monthly sales (in thousands) of new one-family houses sold in
the United States since 1973. [Source: U.S. Census Bureau, Manufacturing and
Construction Division.] The other panels give the components which, when added,
make up the original data. The bars on the right-hand side show the different
scales used in the plots; the bars represent the same length. The decomposition
was computed using the STL method, described in Section 3/7.
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3/1/2 Decomposition graphics

Figure 3-1 shows an additive decomposition of monthly sales of
new one-family houses sold in the United States since 1973. The
original data are given in the top panel. This series shows both
cyclical and seasonal behavior. The cyclical behavior is related to
the economic health and confidence of the nation. The other panels
in Figure 3-1 show estimates of the cyclical, seasonal, and irregular
components. These were obtained by an additive decomposition using
the STL method outlined in Section 3/6. When the three components
(trend-cycle, seasonal, and irregular) are added together, the original
data are obtained. This plot is known as a decomposition plot and isdecomposition plot

helpful in visualizing the decomposition procedure. Decomposition
plots were introduced by Cleveland and Terpenning (1992).

In this example, the seasonal component does not change much
over time. The seasonal pattern at the start of the series is almost
the same as the seasonal pattern at the end of the series. To see
this more clearly, a seasonal sub-series plot is useful. This plotseasonal sub-series

plot was also introduced by Cleveland and Terpenning (1992). Figure
3-2 shows the seasonal sub-series plot for the housing sales data.
This is constructed by collecting together the values of the seasonal
component in each month. First, the January values of the seasonal
component are collected together to form the January sub-series. The
mean of these is plotted as a horizontal line and the values of the
sub-series are shown by the vertical lines emanating from the mean
line. Each vertical line corresponds to one year. For this series, there
is a very small increase in the seasonal component in January across
the period of the time series. The other sub-series are similar. The
largest changes in the seasonal pattern have occurred in May and
December, and even these are small.

Sub-series plots help in visualizing the overall seasonal pattern
shown by the horizontal mean lines. In this example, we can see that
house purchases are high in spring and summer months and lower
in winter. Sub-series plots also show how the seasonal component is
changing over time. We can see whether the change in any sub-series
is large or small compared with the overall pattern of the seasonal
component. In this example, the seasonal component of housing sales
is stable in the sense that the changes in the monthly sub-series are
small compared with the overall seasonal pattern.
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Figure 3-2: Seasonal sub-series plot of the housing sales data. This shows the
seasonal component plotted in Figure 3-1. For each month, the values of the seasonal
component are collected together to form a sub-series. The mean of these values is
shown as a horizontal line; the values of the sub-series are shown by the vertical
lines emanating from the mean line. For this series, there is very little change in
the seasonal component in any month.

3/1/3 Seasonal adjustment

A useful by-product of decomposition is that it provides an easy way
to calculate seasonally adjusted data. For an additive decomposition, seasonal adjustment

the seasonally adjusted data are computed by simply subtracting the
seasonal component:

Yt − St = Tt + Et

leaving only trend-cycle and irregular components. For a multiplica-
tive decomposition, the data are divided by the seasonal component
to give seasonally adjusted data.

Most published economic series are seasonally adjusted because
seasonal variation is typically not of primary interest. For example,
for monthly unemployment we want to know whether an increase
from one month to the next means a worsening in the economy. If
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the increase is due to the addition of a large number of school-leavers
seeking work (a seasonal variation) we would not want to conclude
the economy has weakened. The seasonally adjusted series show the
data after any seasonal variation has been removed.

3/2 Moving averages

Table 3-1 lists three years of monthly sales of a shampoo product. The
data are plotted in Figure 3-3. The series has no seasonal component,
consisting only of a trend and an irregular component. Therefore, the
decomposition of this series involves estimating only the trend-cycle.

The trend-cycle can be estimated by smoothing the series to reducesmoothing

the random variation. A range of smoothers is available, but we will
begin with the simplest and oldest smoother, a moving average.moving average

Moving averages provide a simple method for smoothing the “past
history” data. In this section we consider several straightforward
moving average methods, including simple moving averages, double
moving averages, and weighted moving averages. In all cases the ob-
jective is to smooth past data to estimate the trend-cycle component.

Moving averages are a fundamental building block in all decompo-
sition methods, and later we will apply the ideas introduced here to
other aspects of the decomposition problem.

3/2/1 Simple moving averages

We wish to estimate the trend-cycle component at each observation.
The idea behind moving averages is that observations which are
nearby in time are also likely to be close in value. So taking an average

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1 266.0 145.9 183.1 119.3 180.3 168.5 231.8 224.5 192.8 122.9 336.5 185.9
2 194.3 149.5 210.1 273.3 191.4 287.0 226.0 303.6 289.9 421.6 264.5 342.3
3 339.7 440.4 315.9 439.3 401.3 437.4 575.5 407.6 682.0 475.3 581.3 646.9

Table 3-1: Sales of shampoo (in liters) over a three-year period.
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Figure 3-3: Sales of shampoo over a three-year period.

of the points near an observation will provide a reasonable estimate of
the trend-cycle at that observation. The average eliminates some of
the randomness in the data, leaving a smooth trend-cycle component.

We need to decide how many data points to include in each average.
Suppose we use averages of three points, namely the observation at
which we are calculating trend-cycle and the points on either side.
This is called a moving average of order 3 or 3 MA smoother. For MA smoother

example, the trend-cycle for February of year 1 is estimated to be the
average of the sales for January, February, and March of that year,
namely

T2 =
1
3
(Y1 + Y2 + Y3) = (266.0 + 145.9 + 183.1)/3 = 198.3.

Generally, a moving average of order 3 centered at time t is

Tt =
1
3
(Yt−1 + Yt + Yt+1).

Table 3-2 shows how the 3 MA can be applied to each month of the
first year of the shampoo data. Note that there is no estimate of
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Time Observed values Three-month Five-month
Month period (liters) moving average moving average

3 MA 5 MA
Jan 1 266.0 — —
Feb 2 145.9 198.3 —
Mar 3 183.1 149.4 178.9
Apr 4 119.3 160.9 159.4
May 5 180.3 156.0 176.6
Jun 6 168.5 193.5 184.9
Jul 7 231.8 208.3 199.6
Aug 8 224.5 216.4 188.1
Sep 9 192.8 180.1 221.7
Oct 10 122.9 217.4 212.5
Nov 11 336.5 215.1 206.5
Dec 12 185.9 238.9 197.8

Jan 13 194.3
...

...
Feb 14 149.5
...

...
...

Table 3-2: Calculation of 3 MA and 5 MA smoothers for the shampoo data.

trend-cycle at time 1 since the observation before time period 1 is
unavailable. The procedure can be applied to the entire three years
of data to obtain the trend-cycle estimate shown in the upper panel
of Figure 3-4.

The term “moving average” is used to describe this procedure
because each average is computed by dropping the oldest observation
and including the next observation. The averaging moves through the
time series until the trend-cycle is computed at each observation for
which all elements of the average are available. Note that the number
of data points in each average remains constant and is centered on
the observation for which the trend-cycle estimate is computed.

The number of points included in a moving average affects the
smoothness of the resulting estimate. Figure 3-4 shows a moving
average of order 5 or 5 MA applied to the same data and the resulting
trend-cycle estimate is smoother than the 3 MA smoother. The 5
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Figure 3-4: 3 MA and 5 MA smoothers for the shampoo data. The 3 MA smoother
leaves too much randomness in the trend-cycle estimate. The 5 MA smoother is
better, but the true trend-cycle is probably smoother still.
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MA smoother is simply the average of each observation with the two
points on either side:

Tt =
1
5
(Yt−2 + Yt−1 + Yt + Yt+1 + Yt+2).

We define the half-width of a moving average as the number ofhalf-width

points on either side which are included in the average, and we denote
the half-width by m. So for a 3 MA, the half-width is m = 1 and for
a 5 MA, the half-width is m = 2.

Simple moving averages can be defined for any odd order. A mov-
ing average of order k (or k MA) where k is an odd integer is defined
as the average consisting of an observation and the m = (k − 1)/2
points on either side so that

Tt =
1
k

m∑

j=−m

Yt+j . (3.2)

From Figure 3-4 it can be seen that the more observations included
in the moving average (i.e., the larger the value of k), the smoother
the resulting trend-cycle. However, even with a 5 MA, the fitted
trend-cycle is still too rough. A much smoother curve, without the
little bumps and wiggles, would be a more reasonable estimate; that
would require a moving average of higher order.

Determining the appropriate length of a moving average is an im-
portant task in decomposition methods. As a rule, a larger number of
terms in the moving average increases the likelihood that randomness
will be eliminated. That argues for using as long a length as possible.
However, the longer the length of the moving average, the more terms
(and information) are lost in the process of averaging, since k data
values are required for a k-term average. Also, longer-term moving
average smoothers tend to smooth out the genuine bumps or cycles
that are of interest.

In applying a k-term moving average, m = (k − 1)/2 neighboring
points are needed on either side of the observation. Therefore, it is
not possible to estimate the trend-cycle close to the beginning and
end of the series. The m terms lost in the beginning of the data are
usually of little consequence, but those m lost in the end are critical,
since they are the starting point for forecasting the cycle. Not only



3/2 Moving averages 95

must the cyclical values for periods t+1, t+2, and so on, be estimated,
but the values for periods t, t− 1, t− 2, . . . , t−m + 1 must also be
estimated.

To overcome the problem of missing values at the end of the data
series, a shorter length moving average can be used. One approach is end point adjustment

to take an average of the points that are available. For example, a 3
MA computed at time 1 would give T1 = (Y1 +Y2)/2 since only these
two observations are available. Thus we use a shorter length moving
average at the ends of the data series and we adjust these averages
to be centered around the point for which the trend-cycle is being
estimated.

3/2/2 Centered moving averages

The simple moving average required an odd number of observations
to be included in each average. This was to ensure that the average
was centered at the middle of the data values being averaged.

But suppose we wish to calculate a moving average with an even
number of observations. For example, to calculate a 4-term moving
average or 4 MA for the shampoo data, the trend-cycle at time 3
could be calculated as

(266.0 + 145.9 + 183.1 + 119.3)/4 = 178.6
or (145.9 + 183.1 + 119.3 + 180.3)/4 = 157.2.

That is, should we include two terms on the left and one on the right
of the observation, or one term on the left and two terms on the right?
The center of the first moving average is at 2.5 (half a period early)
while the center of the second moving average is at 3.5 (half a period
late).

However, the average of the two moving averages is centered at 3,
just where it should be. Therefore, this problem can be overcome by
taking an additional 2-period moving average of the 4-period moving
average. This centered moving average is denoted as 2× 4 MA. The centered moving

averageresults of following this centering procedure are shown in Table 3-3,
where column (5) is simply the average of two successive values of
the 4 MA of column 4.

A centered moving average like the one described above can be
expressed as a single but weighted moving average, where the weights
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(1) (2) (3) (4) (5)
Month Period Data 4 MA 2×4 MA

Jan 1 266.0 — —
Feb 2 145.9 178.6 —
Mar 3 183.1 157.2 167.9
Apr 4 119.3 162.8 160.0
May 5 180.3 175.0 168.9
Jun 6 168.5 201.3 188.1
Jul 7 231.8 204.4 202.8
Aug 8 224.5 193.0 198.7
Sep 9 192.8 219.2 206.1
Oct 10 122.9 209.5 214.4
Nov 11 336.5 209.9 209.7
Dec 12 185.9 216.6 213.2

Jan 13 194.3
...

...
Feb 14 149.5
...

...
...

Table 3-3: Centered moving averages: The 2× 4 MA is obtained by averaging two
successive values of the 4 MA of column 3.

for each period are unequal. The following notation is useful in
discussing weighted and centered moving averages:

T2.5 = (Y1 + Y2 + Y3 + Y4)/4 (3.3)
T3.5 = (Y2 + Y3 + Y4 + Y5)/4. (3.4)

Averaging these two 4 MA smoothers gives

T ′′3 =
T2.5 + T3.5

2

=
1
2

(
Y1 + Y2 + Y3 + Y4

4
+

Y2 + Y3 + Y4 + Y5

4

)

= (Y1 + 2Y2 + 2Y3 + 2Y4 + Y5)/8.

So the first and last terms in this average have weights of 1/8 =0.125
and all other terms have weights of double that value, 1/4=0.25.
Therefore, a 2× 4 MA smoother is equivalent to a weighted moving
average of order 5.
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So if this centered 4 MA was used with quarterly data, each quarter
would be given equal weight. The ends of the moving average will
apply to the same quarter in consecutive years. So each quarter
receives the same weight with the weight for the quarter at the ends
of the moving average split between the two years. It is this property
that makes 2 × 4 MA very useful for estimating a trend-cycle in
the presence of quarterly seasonality. The seasonal variation will
be averaged out exactly when the moving average is computed. A
slightly longer or a slightly shorter moving average will still retain
some seasonal variation. An alternative to a 2× 4 MA for quarterly
data is a 2 × 8 or 2 × 12 which will also give equal weights to all
quarters and produce a smoother fit than the 2× 4 MA.

Generally, a 2×k MA smoother is equivalent to a weighted MA of
order k + 1 with weights 1/k for all observations except for the first
and last observations in the average, which have weights 1/2k. For
example, a 2× 12 MA has weights

1
12

[0.5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.5].

So this centered 12 MA could be used with monthly data, and each
month would be given equal weight. Similarly, a 2 × 24 or 2 × 36
would give equal weights to all months and produce a smoother fit
than the 2× 12 MA.

The centered 4 MA and the centered 12 MA are frequently used
for estimating a trend-cycle in quarterly and monthly seasonal data.
Other moving averages tend to be contaminated by the seasonal
variation. Figure 3-5 shows the new housing data with a 7 MA and
a 2× 12 MA. Notice how the 7 MA is tracking the seasonal variation
whereas the 2× 12 MA tracks the cycle without being contaminated
by the seasonal variation.

Here, the trends near the ends of the series have been calculated
by using shorter moving averages on the data that were available.
A consequence of this is that the trend-cycle near the ends may be
slightly contaminated by the seasonal variation. However, the effect
does not seem to be particularly serious (in practice there are ways
of avoiding such contamination).
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Figure 3-5: Moving averages applied to the housing sales data. The 7 MA tracks the
seasonal variation whereas the 2×12 MA tracks the cycle without being contaminated
by the seasonal variation.
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3/2/3 Double moving averages

The centered moving averages are an example of how a moving
average can itself be smoothed by another moving average. Together,
the smoother is known as a double moving average. In fact, any double moving

averagescombination of moving averages can be used together to form a double
moving average. For example, a 3 × 3 moving average is a 3 MA of
a 3 MA. It is equivalent to a 5-period weighted moving average as
shown by equations (3.5) through (3.10).

T2 = (Y1 + Y2 + Y3)/3 [a 3-months moving average of
months 1, 2, and 3 (centered
at period 2)]

(3.5)

T3 = (Y2 + Y3 + Y4)/3
[like T2 but for months 2, 3, &
4]

(3.6)

T4 = (Y3 + Y4 + Y5)/3 (3.7)
T5 = (Y4 + Y5 + Y6)/3 (3.8)
etc.

T ′′3 = (T2 + T3 + T4)/3 [a 3-months moving average of
the moving averages (centered
at period 3)]

(3.9)

Substituting (3.5), (3.6), and (3.7) into (3.9) gives

T ′′3 =
(

Y1 + Y2 + Y3

3
+

Y2 + Y3 + Y4

3
+

Y3 + Y4 + Y5

3

) /
3

= (Y1 + 2Y2 + 3Y3 + 2Y4 + Y5)/9 (3.10)

Equation (3.10) is a 5-month weighted MA with weights of .1111,
.2222, .3333, .2222, .1111 for the first, second, third, fourth, and fifth
terms, respectively.

3/2/4 Weighted moving averages

In general, a weighted k-point moving average can be written as weighted moving

average

Tt =
m∑

j=−m

ajYt+j (3.11)

where m = (k − 1)/2 is the half-width and the weights are denoted
by aj . The simple k-point moving average given by (3.2) is a special
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Name a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11

3 MA .333 .333
5 MA .200 .200 .200
2× 12 MA .083 .083 .083 .083 .083 .083 .042
3× 3 MA .333 .222 .111
3× 5 MA .200 .200 .133 .067
S15 MA .231 .209 .144 .066 .009 -.016 -.019 -.009
S21 MA .171 .163 .134 .037 .051 .017 -.006 -.014 -.014 -.009 -.003
H5 MA .558 .294 -.073
H9 MA .330 .267 .119 -.010 -.041
H13 MA .240 .214 .147 .066 .000 -.028 -.019
H23 MA .148 .138 .122 .097 .068 .039 .013 -.005 -.015 -.016 -.011 -.004

S = Spencer’s weighted moving average
H = Henderson’s weighted moving average

Table 3-4: Weight functions aj for some common weighted moving averages.

case of (3.11) where the weights are all set to 1/k. For the weighted
moving average to work properly, it is important that the total of the
weights is one and that they are symmetric, that is aj = a−j .

The advantage of weighted averages is that the resulting smoothed
trend-cycle is much smoother! Instead of observations entering and
leaving the average abruptly, they can be slowly downweighted.
There are many schemes for selecting appropriate weights. Kendall,
Stuart, and Ord (1983, chapter 46) give details.

Some sets of weights are widely used and have been named after
their proposers. For example, Spencer (1904) proposed a 5×4×4 MA
followed by a weighted 5-term moving average with weights a0 = 1,
a1 = a−1 = 3/4, and a2 = a−2 = −3/4. These values are not chosen
arbitrarily, but because the resulting combination of moving averages
can be shown to work well. Using similar calculations to those above,
it can be shown that Spencer’s MA is equivalent to the 15-point
weighted moving average whose weights are −.009, −.019, −.016,
.009, .066, .144, .209, .231, .209, .144, .066, .009, −.016, −.019, and
−.009. Another Spencer’s MA that is commonly used is the 21-point
weighted moving average.
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Figure 3-6: A weighted 19-point MA applied to the shampoo data. The weights were
calculated from the weight function shown at upper left. At the ends of the data a
smaller number of observations were used in calculating the weighted average. For
example, the weight function for calculating the smoothed trend-cycle at month 36
is shown at lower right.

Henderson’s weighted moving averages are also widely used. For
example, Census Bureau methods (see Section 3/5) use Henderson’s
5-, 7-, 9-, 13-, and 23-point weighted moving averages. The selection
of a specific moving average is based upon the randomness present
in the series—the greater the randomness, the larger the number of
terms needed in the average.

The set of weights is known as the weight function. Table 3-4 weight function

shows some common weight functions. These are all symmetric, so
a−j = aj .

Figure 3-6 shows a weighted 19-point moving average applied to the
shampoo data, and the weight function used to compute the weights.
The weights were calculated using the quartic function

Q(j,m) =

{
(1− (j/m)2)2 for −m < j < m;
0 otherwise.

(3.12)
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Then aj is set to Q(j, m) and scaled so the weights sum to one. Apart
from the weights at the ends of the series, this means

aj =
Q(j,m)

m∑

i=−m

Q(i,m)
. (3.13)

For a 19-point moving average, m = 9. Using (3.12) and (3.13) we
calculate the weights

aj = (1− j2/81)2/9.60 (3.14)

for j = −9,−8, . . . , 9. At the ends of the data, a smaller number of
observations are used in computing the fit. For example, at month
36 (the last in the series), only 10 observations are available (months
27, 28, . . . , 36) and these are given the weights

aj = (1− j2/81)2/5.30

for j = −9,−8, . . . , 0. A different divisor is used to ensure the
weights sum to one. This weight function is shown at the lower
right of the plot. So at month 36, the trend-cycle is estimated
by a weighted average of only the last 10 observations. Because
there is an increasing trend at this end of the data, the trend-cycle
is underestimated by the weighted average. The estimated smooth
trend-cycle curve “flattens” near the end, whereas the data suggest it
should continue to climb. This bias is a feature of any moving average
near the end of a data series which has trend, or where a data series
has strong cyclic behavior. In the next section, we discuss a solution
to this problem.

3/3 Local regression smoothing

We wish to extend the idea of moving averages to “moving lines.”
That is, instead of taking the average of the points, we may fit a
straight line through these points and estimate the trend-cycle that
way.

In Chapter 2, the least squares method of fitting a straight line
was discussed. Recall that a straight trend line is represented by
the equation Tt = a + bt. The two parameters, a and b, represent
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the intercept and slope respectively. The values of a and b can be
found by minimizing the sum of squared errors where the errors are
the differences between the data values of the time series and the
corresponding trend line values. That is, a and b are the values that
minimize the sum of squares

n∑

t=1

(Yt − a− bt)2.

A straight-line trend is sometimes appropriate, but there are many
time series where some curved trend is better. For example, the
shampoo data plotted in Figure 3-3 do not follow a straight line.

Local regression is a way of fitting a much more flexible trend-cycle local regression

curve to the data. Instead of fitting a straight line to the entire data
set, we fit a series of straight lines to sections of the data.

The estimated trend-cycle at time t is Tt = a + bt where a and b
are chosen to minimize the weighted sum of squares weighted sum of

squares
m∑

j=−m

aj(Yt+j − a− b(t + j))2. (3.15)

Note that there is a different value of a and b for every value of t. In
effect, a different straight line is fitted at each observation.

The calculation for trend-cycle at month 22 is shown in Figure 3-7.
The steps involved are as follows.

Step 1 The number of points to be used in the weighted regression
was chosen to be 19. The shaded area, centered on month 22,
shows the 19 points to be used, nine on either side of month 22.

Step 2 The observations are assigned weights using the weight func-
tion shown in the upper right panel. This is exactly the same
weight function as (3.14) which was used in Figure 3-6. The
function has a maximum at month 22; the months closest
to month 22 receive the largest weights and months further
away receive smaller weights. The weights become zero at the
boundaries of the shaded region. Months outside the shaded
region receive zero weights, so they are excluded from the
calculation.
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Figure 3-7: The steps involved in calculating a local linear regression at month 22.
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Step 3 A line is fitted to the data using weighted least squares with
the values of a and b chosen to minimize (3.15). The fit is shown
in the lower left panel. The weights determine the influence
each observation has on the fitting of the line. The estimate of
trend-cycle for month 22 is shown by the filled circle.

The same calculations are carried out for each observation. The
resulting trend-cycle estimates are joined together to form the line
shown in the lower right panel. At the ends of the data, fewer
observations are used in computing the fit.

Because a straight line is fitted to the data to estimate the trend-
cycle, we do not have the same problem of bias at the end of the series
which occurred with the moving average smoothers. This is the chief
advantage of using local linear regression: it has smaller bias at the
ends and in areas where there is strong cyclic behavior. bias reduction

One parameter must be selected before fitting a local regression,
the “smoothing parameter” k. The smoothing parameter is analogous smoothing

parametersto the order of a moving average—the larger the parameter, the
smoother the resulting curve. This is illustrated in Figure 3-8 which
shows three local regressions fitted to the shampoo sales data. In the
top panel, k was set to 49 (or m = 24). Note that this is greater than
the number of observations in the series. In this case, the calculation
of weights is the same as for the ends of the series. The weights
corresponding to available data are simply set to Q(j, m) and scaled
so the sum is one. The fitted trend-cycle is too straight because
k is too large. The second panel shows the trend-cycle calculated
with k = 19 as in Figure 3-7. In the bottom panel, k was set to 7
(or m = 3). Here the estimated trend-cycle is too rough; the local
wiggles follow the randomness in the data rather than the underlying
trend-cycle. The goal in choosing k is to produce a trend-cycle which
is as smooth as possible without distorting the underlying pattern in
the data. In this example, k = 19 is a good choice that follows the
trend-cycle without undue wiggles.

3/3/1 Loess

“Loess” is an implementation of local linear smoothing, developed
by Bill Cleveland and coworkers at AT&T Bell Laboratories. It is
described in Cleveland and Devlin (1988) and Cleveland, Devlin, and
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Figure 3-8: Three local regression curves with different values of the smoothing
parameter. From the top panel, the values of k are 49, 19, and 7.

Grosse (1988). It is widely used and is available in several software
packages.

The heart of Loess is local linear smoothing but with some pro-
tection against extreme observations or outliers. An initial local
regression is calculated as described in Figure 3-7. Then the irregular
component is calculated using

Êt = Yt − T̂t.

These are simply the differences between each observation Yt and the
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fitted curve T̂t. Then the local regression is calculated again, but this
time the weights (aj) are adjusted so that observations with large
errors receive smaller weights than they did for the first estimate of
the trend-cycle curve. A new irregular component is then found by
subtracting the new estimate of Tt from the data. This procedure
continues through further iterations, repeatedly smoothing the data,
and at each iteration downweighting points where there is a large
error value. The trend-cycle estimate T̂t soon stabilizes, at which
point there is no need for further iterations.

For many data sets, the resulting curve is almost identical to
that obtained using the standard local linear regression. However,
the two procedures may differ when there are one or more outliers.
In this case, the Loess curve will be more robust to these unusual
observations.

3/4 Classical decomposition

Decomposition methods can assume an additive or multiplicative
model and can be of varying forms. For example, the decomposition
method of simple averages assumes the additive model

Yt = St + Tt + Et (3.16)

whereas the ratio-to-trend method uses a multiplicative model

Yt = St × Tt × Et. (3.17)

The decomposition methods of simple averages and ratio-to-trend
were used in the past mainly because of their computational simplic-
ity. With the widespread introduction of computers, they have been
improved and modified, but still form the building blocks of most
decomposition algorithms.

Developed in the 1920s, the classical decomposition method was classical

decompositionfor many years the most commonly used decomposition procedure.
This approach forms the basis for most of the modern decomposition
methods which are examined later.

Section 3/4/1 describes the procedure for additive decomposition
while Section 3/4/2 describes the procedure for multiplicative decom-
position.
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3/4/1 Additive decomposition

We will assume in this section that the time series is additive as
described in equation (3.16), with seasonal period 12. The procedure
for quarterly data is almost identical. Each step of the process is
outlined below and applied to the new housing sales data described
in Section 3/1.

A classical decomposition can be carried out using the following
four steps.

Step 1 The trend-cycle is computed using a centered 12 MA. For the
housing sales data, this is shown in the lower panel of Figure
3-5.

Step 2 The de-trended series is computed by subtracting the trend-de-trended series

cycle component from the data, leaving the seasonal and irreg-
ular terms. That is,

Yt − Tt = St + Et.

For the housing sales data, the de-trended series is plotted in
the top panel of Figure 3-9.

Step 3 Once the trend-cycle component has been removed, the
seasonal component is relatively easy to estimate. In classical
decomposition, we assume the seasonal component is constant
from year to year. So we only need to calculate one value for
each month. The set of 12 values which are repeated to make
up the seasonal component are known as the seasonal indices.seasonal indices

We gather all the de-trended values for a given month and
take the average. So the seasonal index for January is the
average of all the de-trended values for January, and so on.
The seasonal indices for the housing sales data are plotted
in the lower panel of Figure 3-9. The seasonal component is
constructed by stringing together the seasonal indices for each
year of data.

Step 4 Finally, the irregular series Et is computed by simply sub-
tracting the estimated seasonality, trend, and cycle from the
original data series.



3/4 Classical decomposition 109

De-trended housing sales

D
e-

tr
en

de
d 

da
ta

1975 1980 1985 1990 1995

-2
0

-1
0

0
10

20
30

Seasonal indices

-1
0

-5
0

5
10

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Figure 3-9: Top: the de-trended housing sales data obtained by subtracting from the
original data the trend-cycle component (2×12 MA) plotted in Figure 3-4. Bottom:
the seasonal indices for the housing sales data.
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A time series decomposition is best visualized using a decompo-
sition plot. The decomposition described above gives a very similar
display to that in Figure 3-1, so we have omitted it.

3/4/2 Multiplicative decomposition

The multiplicative procedure is similar to the additive procedure
except ratios are taken instead of differences. This method is often
called the “ratio-to-moving averages”method.ratio-to-moving

averages To illustrate the application of classical multiplicative decompo-
sition, eight years of monthly data representing international airline
passenger travel (in thousands) from 1949 through 1956 will be used.
This is a classic data set in the time series literature, dating back to
Brown (1963). The actual values for this data series are shown in
Table 3-5 and plotted in Figure 3-10. Because the seasonal variation
increases as the level of the series increases, we will decompose the
series into its components using a multiplicative decomposition. (An
additive decomposition of the logged data could also be used.)

Step 1 The trend-cycle Tt is computed using a centered 12 MA.
The calculations necessary to obtain a 12-month centered MA
are shown in columns 2 and 3 of Table 3-6. There are six
values missing at the beginning and six values missing at the
end because of the averaging procedure used.

Year Jan Feb Mar Apr May June July Aug Sep Oct Nov Dec
1949 112 118 132 129 121 135 148 148 136 119 104 118
1950 115 126 141 135 125 149 170 170 158 133 114 140
1951 145 150 178 163 172 178 199 199 184 162 146 166
1952 171 180 193 181 183 218 230 242 209 191 172 194
1953 196 196 236 235 229 243 264 272 237 211 180 201
1954 204 188 235 227 234 264 302 293 259 229 203 229
1955 242 233 267 269 270 315 364 347 312 274 237 278
1956 284 277 317 313 318 374 413 405 355 306 271 306

Table 3-5: Actual data for international airline passenger travel. Total passengers
(in thousands).
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(1) (2) (3) (4)
12-month 12-month 100 × (1)/(3)

Original uncentered centered centered
data MA MA 12-month ratios

1949 Jan 112 — — —
Feb 118 — — —
Mar 132 — — —
Apr 129 — — —
May 121 — — —
Jun 135 — — —
Jul 148 126.667 126.792 116.727
Aug 148 126.917 127.250 116.306
Sep 136 127.583 127.958 106.285
Oct 119 128.333 128.583 92.547
Nov 104 128.833 129.000 80.620
Dec 118 129.167 129.750 90.944

1950 Jan 115 130.333 131.250 87.619
Feb 126 132.167 133.083 94.678
Mar 141 134.000 134.917 104.509
Apr 135 135.833 136.417 98.962
May 125 137.000 137.417 90.964

...
...

...
...

...

Centered 12-month seasonal ratios (original/moving average)
Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1949 — — — — — — 116.7 116.3 106.3 92.5 80.6 90.9
1950 87.6 94.7 104.5 99.0 91.0 107.4 120.6 118.7 108.4 89.6 75.2 90.5
1951 92.3 94.0 110.0 99.3 103.2 105.3 116.2 114.6 104.9 91.6 82.0 92.1
1952 93.4 96.7 102.1 94.6 94.5 111.3 116.1 121.2 103.4 92.6 81.7 90.9
1953 90.8 89.7 106.8 105.4 102.2 108.1 117.2 120.7 105.4 94.0 80.2 89.1
1954 89.5 81.6 101.2 97.0 99.3 111.0 125.6 120.1 104.8 91.5 80.1 89.1
1955 92.4 87.4 98.5 97.7 96.9 111.7 127.4 119.9 106.4 92.2 78.7 91.0
1956 91.6 88.1 99.5 97.3 98.0 114.3 — — — — — —
Avg 91.1 90.3 103.2 98.6 97.9 109.9 120.0 118.8 105.6 92.0 79.8 90.5

Table 3-6: Centered 12-month MA and ratios for the airline data.



112 Chapter 3. Time Series Decomposition

Year

pa
ss

en
ge

rs
 (

th
ou

sa
nd

s)

1950 1952 1954 1956

10
0

15
0

20
0

25
0

30
0

35
0

40
0

Figure 3-10: Time plot of monthly international airline passenger traffic (in
thousands) from 1949–1956.

Step 2 The ratio of the data to these MA values are calculated as
in column 4 of Table 3-6. Mathematically, these computations
accomplish the following:

Rt =
Yt

Tt
=

StTtEt

Tt
= StEt. (3.18)

This is the ratio of actual-to-moving averages (thus the name
of the method) and isolates the additional two components of
the time series.

The de-trended values (Rt) are those shown in the lower part of
Table 3-6. These are multiplied by 100 so they can be expressed
as percentages.

Step 3 As with additive decomposition, the seasonal indices are
estimated by taking averages of all the de-trended values for
each month. These are given at the bottom of Table 3-6. The
seasonal component St consists of eight copies of the seasonal
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indices (one for each year) strung together. (That is, we assume
the seasonal component is constant from year to year.)

Step 4 The irregular series Et is computed as the ratio of the data
to the trend and seasonal components:

Et =
Yt

StTt
.

3/4/3 Variations on classical decomposition

The preceding procedures represent the simplest application of clas-
sical decomposition. In practice, there have been many variations to
these algorithms developed and used over the years. These are briefly
summarized here.

• In Step 3 (the calculation of seasonal indices), the simple aver-
aging of values is often replaced by a medial average. This is medial average

the average calculated after the largest and smallest values have
been excluded. Another alternative is to use a median. The
advantage of medial averages or medians is that they protect
against extreme months. They make the seasonal indices more
robust .

• In many time series, the seasonal component is not stable
but changes over time. A good example of this is electricity
production data. Electricity demands have changed over time
with such things as the spread of air-conditioning, the drop in
oil-based heating, and the increase in high-powered electrical
equipment in industry, contributing to the changing demand
profile. Therefore, it is inappropriate to estimate seasonal
indices that are constant throughout the entire series. Instead,
the seasonal component needs to adapt to the changes. This
problem obviously becomes more important when decomposing
long time series since there is greater scope for changes in the
seasonal variation.

Instead of taking a simple average (or medial average) of the de-
trended values for each month, a moving average will allow such
changes over time. That is, a moving average of the de-trended
January values will give the January seasonal component, a
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moving average of the de-trended February values will give the
February seasonal component, and so on. Alternatively, the
moving average can be replaced by a local linear regression
computed for each of the 12 sets of de-trended monthly values.

3/5 Census Bureau methods

The Census II method has been developed by the U.S. Bureau ofCensus II

the Census. Julius Shiskin is considered the main contributor in the
development of the early stages of the method. Census II has been
used widely by the Bureau, other government agencies in the United
States and elsewhere, and by an ever increasing number of businesses.

Census II has gone through several variations and refinements since
1955 when the first version was developed. The most widely used
variants have been X-11 (Shiskin, Young, and Musgrave, 1967) andX-11

X-11-ARIMA developed by Statistics Canada (Dagum, 1988). TheX-11-ARIMA

most recent variant is X-12-ARIMA (Findley et al., 1997) which isX-12-ARIMA

an extension of the X-11-ARIMA methodology. The underlying time
series decomposition methodology has remained the same throughout
this development, although the refinements allow a larger range of
economic time series to be adequately seasonally adjusted. In this
section, we describe the X-12-ARIMA variant of Census II.

Many of the steps in Census II decomposition involve the appli-
cation of weighted moving averages to the data. Therefore, there is
inevitable loss of data at the beginning and end of the series because of
the averaging. Usually, the X-12-ARIMA method would use shorter
weighted moving averages (called end-filters) to provide estimates
for the observations at the beginning and end of the series. But
X-12-ARIMA also provides the facility to extend the original series
with forecasts to ensure that more of the observations are adjusted
using the full weighted moving averages. (The initial values can also
be forecast backward in time.) These forecasts are obtained using an
ARIMA time series model (Section 7/8/4) or a regression model with
ARIMA errors (Section 8/1).

Census II decomposition is usually multiplicative because most
economic time series have seasonal variation which increases with
the level of the series.



3/5 Census Bureau methods 115

3/5/1 First iteration

As with all decomposition methods, Census II is aimed at making a
separation of the seasonality from the trend-cycle and then isolating
the randomness. The algorithm begins in a similar way to classical
decomposition, and then proceeds through several iterations in which
the estimated components are refined. The steps in each iteration are
outlined below. We use the monthly airline passenger data of Table
3-5 to show the results of the first iteration.

Step 1 A 12-month centered moving average is applied to the orig-
inal data giving a rough estimate of the trend-cycle. This is
exactly the same as Step 1 of classical decomposition shown
in Table 3-6. There are six values missing at the beginning
because of the averaging procedure used. However, there are
not six values missing at the end because the unobserved data
for these months were forecast using an ARIMA model.

Step 2 The ratios of the original data to these MA values are
calculated as in Step 2 of classical multiplicative decomposition.

Step 3 The ratios in the lower part of Table 3-6 include such random
or unusual events as strikes and wars. The next task in Census
II is to exclude such extreme values before finding estimates of extreme values

the seasonal component.

A separate 3× 3 MA is applied to each month of the centered
ratios of Table 3-6. The resulting values form a new series
which is a rough estimate of the seasonal component. Now
the centered ratios of Table 3-6 contain both the seasonal
and irregular component. So dividing these by the estimated
seasonal component, we obtain an estimate of the irregular
component. Mathematically,

StEt

St
= Et.

Large values of Et indicate an extreme value in the original data.
These extreme values are identified and the centered ratios of
Table 3-6 are adjusted accordingly. This effectively eliminates
any extreme values that do not fit the pattern of the rest of the
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data. The missing values at the beginning of the series are also
replaced by estimates at this stage.

Step 4 The next step is to eliminate randomness by taking a 3× 3
MA of each month of the year individually. This moving average
is analogous to the one in Step 3 except that the modified data
(with replaced extreme values and estimates for missing values)
are used. Then the results are further adjusted to ensure they
add up to approximately 1200 over any 12-month period. This
calculation gives the values shown in Table 3-7.

Table 3-6 gives values equivalent to equation (3.18) and these
include seasonality and randomness. Since randomness has
been eliminated by replacing extreme values and smoothing
through a 3 × 3 moving average, what remains in Table 3-7
is an estimate of the seasonal component.

Step 5 The original data are then divided by this preliminary sea-
sonal component to obtain the preliminary seasonally adjusted
series. These values contain only the trend-cycle and the
irregular component. They can be written mathematically as:

Yt

St
=

StTtEt

St
= TtEt. (3.19)

Step 6 The trend-cycle is then estimated by applying a weighted
moving average to the preliminary seasonally adjusted values.
In X-12-ARIMA, a Henderson’s weighted average is used with
the number of terms determined by the randomness in the se-
ries. (The greater the randomness, the longer the length of the
moving average used.) For monthly series, either a 9-, 13-, or
23-term Henderson moving average is being selected depending
upon the extent of the randomness in the series. For quarterly
series, either a 5- or a 7-term Henderson moving average is
being selected. (In this example, a 13-term Henderson moving
average was selected.)

The rationale for applying this average is that the data given
by equation (3.19) include trend-cycle and randomness. This
moving average eliminates the randomness, providing a smooth
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Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1949 91.9 94.3 103.7 99.1 98.1 107.1 118.4 117.1 107.0 91.3 81.2 91.1
1950 92.0 94.0 103.5 99.0 98.1 107.4 118.1 117.5 106.6 91.4 81.5 91.2
1951 92.2 93.3 103.3 99.0 98.2 107.9 117.6 118.2 105.9 92.1 81.7 91.3
1952 92.1 92.1 102.7 98.5 98.4 109.0 118.2 119.6 105.3 92.6 81.6 90.9
1953 91.7 90.6 101.9 98.1 98.5 109.8 120.1 120.3 105.2 93.1 80.9 90.4
1954 91.3 89.3 100.8 97.6 98.4 111.0 123.1 120.7 105.5 92.5 80.2 90.0
1955 91.4 88.5 99.8 97.5 98.0 111.8 125.2 120.6 105.8 91.9 79.6 90.0
1956 91.5 88.1 99.2 97.3 97.8 112.7 126.1 120.7 105.9 91.4 79.4 90.0

Table 3-7: Preliminary seasonal component.

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1949 124.8 125.5 126.0 126.3 126.2 126.1 126.2 126.6 127.1 127.7 128.5 129.4
1950 130.3 131.3 132.4 134.0 136.2 138.6 140.9 142.9 144.5 146.2 148.4 151.9
1951 156.7 161.8 166.0 168.4 169.2 169.3 169.6 170.5 172.5 175.8 179.6 183.2
1952 185.7 187.3 188.4 189.6 191.0 193.1 196.1 199.5 202.8 205.4 208.4 212.6
1953 218.0 223.2 227.3 229.3 229.4 228.0 226.0 224.5 223.8 223.4 222.6 221.7
1954 221.7 223.4 226.8 231.3 235.8 239.5 242.2 244.1 246.3 249.1 252.5 256.5
1955 260.6 264.9 269.2 273.5 277.9 282.3 286.4 290.2 293.9 297.7 301.8 306.0
1956 310.5 314.8 318.8 322.5 325.8 328.6 331.1 333.3 335.2 337.0 339.0 341.2

Table 3-8: Preliminary trend-cycle.

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1949 90.4 93.7 105.5 99.5 96.8 106.7 118.1 118.0 106.9 92.2 81.2 91.3
1950 90.5 93.2 105.3 99.4 96.9 106.7 118.2 118.4 106.7 92.5 81.3 91.3
1951 90.7 92.3 104.9 99.0 97.3 107.0 118.8 119.0 106.3 92.6 81.4 91.1
1952 91.1 91.1 104.2 98.5 97.7 107.5 119.7 119.4 106.0 92.8 81.3 90.9
1953 91.5 89.9 103.2 98.1 97.9 108.6 120.8 120.1 105.7 92.7 81.2 90.7
1954 91.7 88.9 101.9 98.0 98.1 109.8 122.0 120.4 105.6 92.6 80.9 90.4
1955 91.7 88.4 100.9 97.9 98.1 111.1 123.1 120.5 105.6 92.1 80.6 90.1
1956 91.7 88.2 100.2 97.8 98.2 112.0 123.8 120.3 105.7 91.7 80.4 89.9

Table 3-9: Seasonal component.
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curve that highlights the existence of a trend-cycle in the data.
The resulting preliminary trend-cycle is given in Table 3-8.

Step 7 Now we have a new estimate of the trend-cycle, and we can
repeat Step 2. New ratios are obtained by dividing the original
data by the estimated trend-cycle leaving only the seasonal
and irregular components remaining. These are called the final
seasonal-irregular ratios and are given mathematically by

Yt

Tt
=

TtStEt

Tt
= StEt (3.20)

where Tt is the preliminary trend cycle estimated in Step 5.
Applying a weighted moving average would normally cause the
loss of several values at the beginning of the series and several
at the end. To avoid this loss, each of the missing values is
replaced by an estimated value.

Step 8 This is a repeat of Step 3 but using the new ratios computed
in Step 7 and applying a 3× 5 MA instead of a 3× 3 MA.

Step 9 This is a repeat of Step 4 but using a 3× 5 MA instead of a
3× 3 MA. The resulting seasonal component is shown in Table
3-9.

Step 10 The same as Step 5 but using the seasonal component
obtained in Step 9.

Step 11 The irregular component is obtained by dividing the sea-
sonally adjusted data from Step 10 by the trend-cycle obtained
in Step 6. Mathematically, the seasonally adjusted data are
given by TtEt. So dividing by the trend-cycle Tt gives Et, the
irregular component.

Step 12 Extreme values of the irregular component are replaced
as in Step 3. Then a series of modified data is obtained by
multiplying the trend-cycle, seasonal component, and adjusted
irregular component together. These modified data are exactly
the same as the original data, but without the extreme values.
For the airline data, 10 of the 96 values were adjusted.
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Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Seasonal component

1949 90.7 93.9 105.9 99.3 97.0 106.6 118.1 117.7 106.4 91.8 81.4 91.3
1950 90.8 93.4 105.8 99.1 97.2 106.7 118.1 118.2 106.2 92.0 81.4 91.3
1951 91.0 92.6 105.5 98.6 97.7 107.0 118.5 118.8 106.0 92.3 81.4 91.1
1952 91.3 91.3 104.8 98.2 98.2 107.7 119.2 119.4 105.8 92.5 81.3 90.8
1953 91.6 90.1 103.6 97.8 98.4 108.8 120.3 120.1 105.6 92.6 81.1 90.5
1954 91.7 89.1 102.3 97.7 98.5 110.0 121.4 120.4 105.6 92.6 80.9 90.3
1955 91.6 88.5 101.1 97.7 98.3 111.2 122.6 120.6 105.7 92.2 80.7 90.0
1956 91.6 88.2 100.2 97.7 98.2 112.0 123.4 120.5 105.9 91.9 80.5 89.9

Trend component
1949 124.9 125.4 125.8 126.1 126.2 126.2 126.4 126.7 127.1 127.6 128.3 129.1
1950 130.3 131.8 133.7 136.0 138.3 140.5 142.4 144.1 145.9 148.0 150.9 154.5
1951 158.4 162.2 164.9 166.4 167.0 167.4 168.2 169.9 172.6 176.0 179.3 182.0
1952 183.7 184.5 185.1 186.1 187.9 190.6 194.2 198.2 202.1 205.7 209.2 212.9
1953 217.0 221.0 224.3 226.3 227.2 227.1 226.3 225.3 224.4 223.8 223.4 223.4
1954 224.0 226.0 229.2 233.1 237.0 240.2 242.6 244.4 246.3 248.6 251.6 255.3
1955 259.5 263.9 268.2 272.5 276.8 281.1 285.3 289.5 293.6 297.9 302.2 306.1
1956 309.9 313.6 317.6 322.0 326.3 330.2 333.0 334.6 335.5 336.2 337.5 339.4

Irregular component
1949 98.9 100.2 99.1 103.1 98.9 100.3 99.2 99.2 100.5 101.6 99.6 100.1
1950 97.2 102.3 99.7 100.2 92.9 99.4 101.1 99.8 102.0 97.6 92.8 99.3
1951 100.6 99.9 102.4 99.3 105.4 99.3 99.8 98.6 100.6 99.7 100.0 100.2
1952 102.0 106.8 99.5 99.0 99.2 106.3 99.4 102.3 97.8 100.3 101.1 100.3
1953 98.6 98.4 101.5 106.1 102.4 98.4 97.0 100.6 100.0 101.8 99.3 99.4
1954 99.3 93.4 100.2 99.7 100.3 99.9 102.5 99.5 99.6 99.5 99.8 99.3
1955 101.8 99.8 98.5 101.1 99.2 100.8 104.1 99.4 100.5 99.7 97.2 100.8
1956 100.1 100.1 99.6 99.5 99.3 101.1 100.5 100.4 99.9 99.0 99.7 100.3

Table 3-10: Final components for the airline series.

3/5/2 Later iterations

These 12 steps are repeated two more times, but beginning with the
modified data from Step 12 rather than the original data. On the
final iteration, the 3× 5 MA of Steps 8 and 9 is replaced by either a
3× 3, 3× 5, or 3× 9 moving average, depending on the variability in
the data. For the airline data, a 3 × 5 MA was chosen for the final
iteration also.

The components obtained after the final iteration are given in Ta-
ble 3-10. Note that the seasonal component and irregular component
are usually given as percentages. Multiplying the three components
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together gives the original series. A decomposition plot showing each
of these components is given in Figure 3-11 while Figure 3-12 shows
the seasonal sub-series.

The final seasonally adjusted series is found by dividing the final
seasonal component of Table 3-10 into the original data. This is
equivalent to the product of the trend-cycle and irregular compo-
nents.

After the basic components of the time series have been estimated,
a series of diagnostic tests is used to determine whether or not thediagnostic tests

decomposition has been successful. These tests are not statistical in
the rigorous mathematical sense, but are based on intuitive consider-
ations. See Shiskin, Young, and Musgrave (1967), Lothian and Morry
(1978), and Findley et al. (1990) for details.

An important characteristic of Census II is that the task of isolating
randomness and seasonal factors is not done simultaneously as it is
in most decomposition methods. The division of this task enlarges
the computational requirements, but it also generally improves the
accuracy.

It may well seem that the Census II method is very complicated
because of the number of steps involved up to this point. However,
the basic idea is really quite straightforward—to isolate the seasonal,
trend-cycle, and irregular components one by one. The various steps
and iterations are designed to refine and improve the estimate of each
component.

3/5/3 Extensions to X-12-ARIMA

The X-12-ARIMA method has many additional features that are not
described above. Two important additional features of X-12-ARIMA
are (i) the ability to remove the effect of explanatory variables prior
to decomposition and (ii) the large range of diagnostic tests available
after decomposition.

Explanatory variables are particularly important since many
sources of variation in the series can be removed in this manner.
Some examples are listed below.

• Trading day adjustments can be made where there is a differenttrading day

adjustments
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Figure 3-11: The X-12-ARIMA multiplicative decomposition of the airline passenger data.
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Figure 3-12: A seasonal sub-series plot for the decomposition shown in Figure
3-11. The seasonal component for June, July, and August became larger over the
period of the data, with corresponding falls in February and March.
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effect for each day of the week. In the airline data, trading
days are not an important factor because their effects on airline
schedules are largely random, owing to the fact that holidays
vary from country to country.

• Outliers arise because of unusual circumstances such as major
strikes. These effects can also be removed prior to decomposi-
tion.

• Other changes in the level of the series such as level shifts and
temporary ramp effects can also be modeled.

Some examples of how these explanatory variables can be included
in the decomposition are given in Findley and Monsell (1989).

Some other additional features are:

• missing values in the series can be estimated and replaced;missing values

• the seasonal component can be forced to be constant over time
(i.e., the same seasonal component for each year);

• holiday factors (such as Easter, Labor Day, and Thanksgiving)holiday effects

can be estimated.

• automatic ARIMA model selection is available.

A more extensive discussion of X-12-ARIMA can be found in Findley
et al. (1997).

3/6 STL decomposition

The STL decomposition method was proposed by Cleveland et al. inSTL decomposition

1990 as an alternative to Census II. The name “STL” is an acronym
for “A Seasonal-Trend decomposition procedure based on Loess.”

STL consists of a sequence of applications of the Loess smoother
(Section 3/3/1) to give a decomposition that is highly resistant to
extreme observations. One advantage of STL over other seasonal
decomposition methods is that it is capable of handling seasonal
time series where the length of seasonality is other than quarterly or
monthly. In fact, any seasonal period greater than one is allowable.
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Also, STL can be applied when the time series contains missing
values, something other decomposition methods cannot handle easily.

Currently, only an additive version of the STL procedure is avail-
able. Multiplicative decomposition can be carried out by first trans-
forming the data using logarithms.

Like Census II, STL is an iterative algorithm in which the estimates
of the trend-cycle and seasonal components are progressively refined
and improved. STL consists of two recursive procedures, one nested
within the other. In each iteration of the inner loop, the seasonal and
trend-cycle components are updated once. An iteration of the outer
loop consists of one or two iterations of the inner loop followed by an
identification of extreme values. Future iterations of the inner loop
downweight the extreme values that were identified in the previous
iteration of the outer loop. About 10 or 20 iterations of the outer
loop are carried out in total.

3/6/1 Inner loop

We now describe the steps involved in a single iteration of the inner
loop. Each iteration consists of a seasonal smoothing that updates
the seasonal component followed by a trend-cycle smoothing which
updates the trend-cycle component. The whole procedure must start
with some initial estimate of the trend-cycle. This is set to be zero.
That is, the procedure begins by assuming no trend at all. This poor
estimate is quickly updated to something more reasonable after one
iteration. As with the other decomposition methods, we will describe
the procedure assuming we have monthly data.

Step 1 A de-trended series is computed by subtracting the trend
estimate from the original data. That is,

Yt − Tt = St + Et.

Step 2 The de-trended values for each month are collected to form
monthly sub-series. These twelve separate sub-series are each
smoothed by a Loess smoother. The smoothed sub-series are
glued back together to form a preliminary seasonal component.
The Loess smoothers are extrapolated to estimate the seasonal
component for a few months before and after the observed data.



124 Chapter 3. Time Series Decomposition

Step 3 A 3 × 12 × 12 moving average is applied to the preliminary
seasonal component estimated in Step 2. The result is in
turn smoothed by a Loess smoother of length 13 (one more
than the seasonal period). The loss of values at the beginning
and end of the series due to the weighted moving average was
anticipated and overcome by the extrapolation of the seasonal
component in Step 2. The purpose of this step is to identify
any trend-cycle that may have contaminated the preliminary
seasonal component in Step 2. If there is little trend-cycle in the
preliminary seasonal component, the result of this smoothing
will be a series with all values close to zero.

Step 4 The seasonal component is estimated as the difference be-
tween the preliminary seasonal component of Step 2 and the
smoothed seasonal component of Step 3.

Step 5 A seasonally adjusted series is computed by subtracting the
result of Step 4 from the original data. That is, Yt−St = Tt+Et.

Step 6 The seasonally adjusted series is smoothed by Loess to give
the trend component, Tt.

3/6/2 Outer loop

The outer loop begins with one or two iterations of the inner loop.
The resulting estimates of trend-cycle and seasonal components are
then used to calculate the irregular component:

Et = Yt − Tt − St.

Large values of Et indicate an extreme observation. These are
identified and a weight calculated. That concludes the outer loop.

Future iterations of the inner loop use the weights in Steps 2 and
6 to downweight the effect of extreme values. Also, future iterations
of the inner loop begin with the trend component from the previous
iteration rather than starting with zero as in the very first iteration
of the inner loop.
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3/6/3 Choosing the STL parameters

Figure 3-1 shows the results of an STL decomposition applied to the
housing data.

There are two smoothing parameters to select when using STL: the
parameters for the Loess smoothers in Steps 2 and 6. The first is the
seasonal smoothing parameter which determines how much change
there will be in the seasonal indices from year to year. A small
seasonal smoothing parameter will allow the seasonal component
to change substantially from year to year, while a large seasonal
smoothing parameter forces the seasonal component to change slowly
from year to year. It is also possible to force the seasonal component
to be identical across years.

The second smoothing parameter affects the smoothness of the
trend calculated in Step 6. Again, a small parameter allows the trend
to react to the variation in the data more than a large parameter will.
It is important not to make the trend smoothing parameter too small
or the seasonal variation might contaminate the trend component.

It is possible to have two or more trend-cycle components in an
STL decomposition. This is useful when the user wishes to separate
the trend-cycle into the long-term trend and a shorter-term cyclical
component. There are also various other refinements in the compu-
tation of an STL decomposition which are discussed in Cleveland et
al. (1990).

3/6/4 Comparing STL with X-12-ARIMA

X-12-ARIMA and STL are the two most sophisticated decomposition
methods currently available. Their strengths and weaknesses and
listed below.

• STL is less developed than X-12-ARIMA. For example, there
are no publicly available versions of STL which handle trading
day variation or calendar variation and there is no multiplicative
option for STL.

• There are no seasonal adjustment diagnostics available with
STL whereas there is a very large suite of well-developed diag-
nostics with X-12-ARIMA.
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• STL is much more flexible than X-12-ARIMA in being able
to handle trends of varying smoothness, missing values, and
seasonality of period other than 4 or 12. But this flexibility
also means the user has more decisions to make in specifying
the two smoothing parameters.

• The calculations involved in STL are simpler than those for
X-12-ARIMA, making it easier to extend the method to new
situations.

• The estimate of trend for STL is unstable near the ends of
the series (see the comments by Gray and Thomson in the
discussion of Cleveland et al., 1990).

The computer source code for both X-12-ARIMA and STL is
publicly available for other researchers to use and adapt.1 Executable
versions of X-12-ARIMA are available from the same Internet site.
STL is also available as an option in the package S-plus.

3/7 Forecasting and decomposition

There have been many attempts to develop forecasts based directly
on a decomposition. The individual components are projected into
the future and recombined to form a forecast of the underlying series.
Although this may appear a reasonable approach, in practice it rarely
works well. The chief difficulty is in obtaining adequate forecasts of
the components.

The trend-cycle is the most difficult component to forecast. It is
sometimes proposed that it be modeled by a simple function such
as a straight line or some other parametric trend model. But such
models are rarely adequate. In the airline passenger example plotted
in Figure 3-11, the trend-cycle does not follow any parametric trend
model. But it does help identify “flat spots” and other features in
the data which are not apparent from the time plot.

The other components are somewhat easier to forecast. The
seasonal component for future years can be based on the seasonal

1STL code can be obtained from http://netlib.bell-labs.com/netlib/a/.
X-12-ARIMA code can be obtained from ftp://ftp.census.gov/pub/ts/x12a/.
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component from the last full period of data. But if the seasonal
pattern is changing over time, this will be unlikely to be entirely
adequate.

The irregular component may be forecast as zero (for additive
decomposition) or one (for multiplicative decomposition). But this
assumes that the irregular component is serially uncorrelated, which
is often not the case. The decomposition of new one-family house
sales (Figure 3-1) shows the irregular component with runs of positive
or negative values. Clearly, if the irregular component at the end of
the series is negative, it is more likely to be negative than zero for
the first few forecasts, and so the forecasts will be too high.

One approach that has been found to work reasonably well is to
forecast the seasonally adjusted data using Holt’s method (Chapter
4), then adjust the forecasts using the seasonal component from
the end of the data. Makridakis et al. (1982) found that forecasts
obtained in this manner performed quite well compared with several
other methods.

However, we prefer to use decomposition as a tool for under-
standing a time series rather than as a forecasting method in its
own right. Time series decomposition provides graphical insight into
the behavior of a time series. This can suggest possible causes of
variation and help in identifying the structure of a series, thus leading
to improved understanding of the problem and facilitating improved
forecast accuracy. Decomposition is a useful tool in the forecaster’s
toolbox, to be applied as a preliminary step before selecting and
applying a forecasting method.
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Exercises

3.1 The following values represent a cubic trend pattern mixed
with some randomness. Apply a single 3-period moving
average, a single 5-period moving average, a single 7-period
moving average, a double 3× 3 moving average, and a double
5 × 5 moving average. Which type of moving average seems
most appropriate to you in identifying the cubic pattern of
the data?

Period Shipments Period Shipments
1 42 9 180
2 69 10 204
3 100 11 228
4 115 12 247
5 132 13 291
6 141 14 337
7 154 15 391
8 171

3.2 Show that a 3 × 5 MA is equivalent to a 7-term weighted
moving average with weights of 0.067, 0.133, 0.200, 0.200,
0.200, 0.133, and 0.067.

3.3 For quarterly data, an early step in seasonal adjustment often
involves applying a moving average smoother of length 4
followed by a moving average of length 2.

(a) Explain the choice of the smoother lengths in about two
sentences.

(b) Write the whole smoothing operation as a single weighted
moving average by finding the appropriate weights.

3.4 Consider the quarterly electricity production for years 1–4:

Year 1 2 3 4
Q1 99 120 139 160
Q2 88 108 127 148
Q3 93 111 131 150
Q4 111 130 152 170

(a) Estimate the trend using a centered moving average.
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(b) Using an classical additive decomposition, calculate the
seasonal component.

(c) Explain how you handled the end points.

3.5 The data in Table 3-11 represent the monthly sales of product
A for a plastics manufacturer for years 1 through 5.

1 2 3 4 5
Jan 742 741 896 951 1030
Feb 697 700 793 861 1032
Mar 776 774 885 938 1126
Apr 898 932 1055 1109 1285
May 1030 1099 1204 1274 1468
Jun 1107 1223 1326 1422 1637
Jul 1165 1290 1303 1486 1611
Aug 1216 1349 1436 1555 1608
Sep 1208 1341 1473 1604 1528
Oct 1131 1296 1453 1600 1420
Nov 971 1066 1170 1403 1119
Dec 783 901 1023 1209 1013

Table 3-11: Monthly sales of product A for a plastics manufacturer (in 1,000s).

(a) Plot the time series of sales of product A. Can you
identify seasonal fluctuations and/or a trend?

(b) Use a classical multiplicative decomposition to calculate
the trend-cycle and monthly seasonal indices.

(c) Do the results support the graphical interpretation from
part (a)?
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3.6 The following are the seasonal indices for Exercise 3.5 calcu-
lated by the classical multiplicative decomposition method.

Seasonal Seasonal
Indices Indices

Jan 76.96 Jul 116.76
Feb 71.27 Aug 122.94
Mar 77.91 Sep 123.55
Apr 91.34 Oct 119.28
May 104.83 Nov 99.53
Jun 116.09 Dec 83.59

Assuming the trend in the data is Tt = 894.11 + 8.85t, where
t = 1 is January of year 1 and t = 60 is December of year 5,
prepare forecasts for the 12 months of year 6.

3.7 The sales data in Table 3-12 are for quarterly exports of a
French company.

Sales Sales
(thousands (thousands

Year Quarter Period of francs) Year Quarter Period of francs)
1 1 1 362 4 1 13 544

2 2 385 2 14 582
3 3 432 3 15 681
4 4 341 4 16 557

2 1 5 382 5 1 17 628
2 6 409 2 18 707
3 7 498 3 19 773
4 8 387 4 20 592

3 1 9 473 6 1 21 627
2 10 513 2 22 725
3 11 582 3 23 854
4 12 474 4 24 661

Table 3-12: Quarterly exports of a French company.

(a) Make a time plot of the data. Note the pronounced
seasonality.
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(b) Use a classical multiplicative decomposition to estimate
the seasonal indices and the trend.

(c) Comment on these results and their implications for
forecasting.

3.8 Figure 3-13 shows the result of applying STL to the number
of persons in the civilian labor force in Australia each month
from February 1978 to August 1995.

(a) Say which quantities are plotted in each graph.

(b) Write about 3–5 sentences describing the results of the
seasonal adjustment. Pay particular attention to the
scales of the graphs in making your interpretation.

(c) Is the recession of 1991/1992 visible in the estimated
components?

3.9 A company’s six-monthly sales figures for a five-year period
are given below (in millions of dollars).

1992 1993 1994 1995 1996
Jan–June 1.09 1.10 1.08 1.04 1.03
July–Dec 1.07 1.06 1.03 1.01 0.96

(a) Obtain a trend estimate using a centered 2 MA smoother
and compute the de-trended figures assuming an additive
decomposition.

(b) Assuming the seasonality is not changing over time, cal-
culate seasonally adjusted figures for 1996.

(c) Suppose several more years of data were available. Ex-
plain in about two sentences how the classical decom-
position method could be modified to allow for seasonal
effects changing over time.
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In Chapter 2 the mean was discussed as an estimator that mini-
mizes the mean squared error (MSE). If the mean is used as a forecast-
ing tool, then, as with all forecasting methods, optimal use requires
a knowledge of the conditions that determine its appropriateness.
For the mean, the condition is that the data must be stationary,stationary

meaning that the process generating the data is in equilibrium around
a constant value (the underlying mean) and that the variance around
the mean remains constant over time.

Thus, if a time series is generated by a constant process subject to
random error (or noise), then the mean is a useful statistic and can be
used as a forecast for the next period(s). However, if the time series
involves a trend (in an upward or downward direction), or a seasonal
effect (strong sales of heating oil in winter months, for example), or
both a trend and a seasonal effect, then the simple average is no
longer able to capture the data pattern. In this chapter we consider
a variety of smoothing methods that seek to improve upon the mean
as the forecast for the next period(s).

Before discussing any particular methods, we introduce in Section
4/1 a general forecasting scenario and strategy for evaluating forecast-
ing methods. This is used throughout the chapter when appraising
and comparing methods.

The classification of the forecasting methods discussed in this
chapter is done in Table 4-1 where two distinct groupings are evident.
The group called “averaging methods” conform to the conventionalaveraging methods

understanding of what an average is—namely, equally weighted ob-
servations. Two examples from this class of methods are examined
in Section 4/2.

The second group of methods applies an unequal set of weights to
past data, and because the weights typically decay in an exponential
manner from the most recent to the most distant data point, the
methods are known as exponential smoothing methods. This is some-exponential

smoothing methods thing of a misnomer since the methods are not smoothing the data
in the sense of estimating a trend-cycle; they are taking a weighted
average of past observations using weights that decay smoothly.

All methods in this second group require that certain parameters
be defined, and these parameter values lie between 0 and 1. (These
parameters will determine the unequal weights to be applied to past
data.) The simplest exponential smoothing method is the single
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Averaging methods

Simple average (4/2/1)

Moving averages (4/2/2)

Exponential smoothing methods

Single exponential smoothing
one parameter (4/3/1)
adaptive parameter (4/3/2)

Holt’s linear method (4/3/3)
(suitable for trends)

Holt-Winters’ method (4/3/4)
(suitable for trends and seasonality)

Pegels’ classification (4/3/5)

Table 4-1: A classification of smoothing methods.

exponential smoothing (SES) method, for which just one parameter
needs to be estimated. Another possibility is to allow the value of the
parameter in SES to change over time in response to changes in the
data pattern. This is known as adaptive SES and one variety to be
discussed is known as Adaptive Response Rate Single Exponential
Smoothing (ARRSES). Holt’s method makes use of two different
parameters and allows forecasting for series with trend. Holt-Winters’
method involves three smoothing parameters to smooth the data, the
trend, and the seasonal index. The exponential smoothing methods
are discussed in Section 4/3.

Other exponential smoothing methods are possible and are dis-
cussed in Section 4/3/5. These methods are based on Pegels’ (1969)
classification of trend and seasonality patterns depending on whether Pegels’ classification

they are additive or multiplicative. Patterns based on this classifi-
cation are shown in Figure 4-1. For the practitioner of forecasting,
the usage of an appropriate model is of vital importance. Clearly,
an inappropriate forecasting model, even when optimized, will be
inferior to a more appropriate model.

In Section 4/4 we apply all of the methods discussed in this chapter
to a data set with both trend and seasonality, and compare the
results. Finally, in Section 4/5 we look at some general issues in the
practical implementation and use of exponential smoothing methods.
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Old Figure 3-4b about here

Figure 4-1: Patterns based on Pegels’ (1969) classification.

4/1 The forecasting scenario

To set the stage, consider Figure 4-2, which presents the forecasting
scenario. On the time scale we are standing at a certain point—called
the point of reference—and we look backward over past observations
and forward into the future. Once a forecasting model has been
selected, we fit the model to the known data (by judicious choice of
parameters and initializing procedures) and obtain the fitted values.
For the known observations this allows calculation of fitted errors—a
measure of goodness-of-fit of the model—and as new observations
become available we can examine forecasting errors. The smooth-
ing methods to be discussed in this chapter are mostly recursive
in nature—moving through the known data period by period, as
opposed to using all the past data in one “fitting” exercise.

Figure 4-3 describes a strategy for evaluating any forecasting
methodology.

Stage 1 The time series of interest is divided into two parts (an
“initialization set” and a “test set”) so that an evaluation of a
forecasting method can be conducted.

Stage 2 A forecasting method is chosen from a list of possible
methods.
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Time

a. Point of reference
you are here now

b. Past data available

n periods of data
Yt−n+1 . . . Yt−2 Yt−1 Yt

c. Future forecasts requireda ︷ ︸︸ ︷
Ft+1 Ft+2 . . . Ft+m

m periods ahead

e. Fitting errors

(Yt−n+1 − Ft−n+1), . . . , (Yt−1 − Ft−1), (Yt − Ft)

(Yt+1 − Ft+1), (Yt+2 − Ft+2), . . .

f. Forecasting Errors (when Yt+1, Yt+2, etc., become available)

d. Fitted values using a modelb

Ft−n+1 . . . Ft−2 Ft−1 Ft

t

a Ft+1, Ft+2, etc., refer to forecasted values of Yt+1, Yt+2, etc.
b A fitted value, such as Ft−1, could be represented as Ŷt−1 (estimated value
of Yt−1), and can arise in two distinctly different ways. (1) In regresssion
procedures (see Chapters 5 and 6) all values of F and Ft−n+1 through Ft

are estimated at one time using one regression equation. (2) In exponential
smoothing methods, the “fitted values” are actually “forecast values,” and are
estimated sequentially.

Figure 4-2: The forecasting scenario.
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Stage 1: Choose a time-series (data set) to
analyze. Divide this into an
“initialization” set and a “test” set.

Stage 2: Choose a smoothing method
(see Table 4-1).

Stage 3: Initialize the method. Use the
initialization data set.

Stage 4: Use the smoothing method to forecast
over the “test” set.
Test measures: MAPE, MSE, etc.
Optimize the values of parameters.

Stage 5: Appraisal decision.
Pros and cons.
Applications potential.

?

?

?

?

Figure 4-3: A strategy for appraising any of the smoothing methods of forecasting.

Stage 3 The initialization data set is used to get the forecasting
method started. Estimates of any trend components, seasonal
components, and parameter values are made at this stage.

Stage 4 The method is applied to the test set to see how well it
does on data that were not used in estimating the components
of the model. After each forecast, the forecasting error is
determined, and over the complete test set certain accuracy
measures are determined, as described in Chapter 2. This is
really an iterative phase. Since there is no guarantee that
the initial parameter values are optimal, this stage requires
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modification of the initialization process and/or searching for
the optimum values of parameters in the model.

Stage 5 Finally, the forecasting method is appraised as to its suit-
ability for various kinds of data patterns (e.g., those shown
in Figure 4-1) and the application potential is thereby made
clearer.

4/2 Averaging methods

The “past history” data can be smoothed in many ways. In this
section we consider two straightforward averaging methods, namely
the mean (4/2/1) and simple moving averages (4/2/2). In both cases
the objective is to make use of past data to develop a forecasting
system for future periods.

4/2/1 The mean

The method of simple averages is simply to take the average of all
observed data as the forecast. So

mean forecastFt+1 =
1
t

t∑

i=1

Yi. (4.1)

When a new observation, Yt+1, becomes available, the forecast for
time t + 2 is the new mean including the previously observed data
plus this new observation:

Ft+2 =
1

t + 1

t+1∑

i=1

Yi. (4.2)

When is this very simple method appropriate? Referring to the
nine cells in Pegels’ classification (Figure 4-1b), it is clear that only
if the process underlying the observed Y values (i) has no noticeable
trend, and (ii) has no noticeable seasonality will this simple averaging
process produce good results. As the calculation of the mean is based
on a larger and larger past history data set, it becomes more stable
(from elementary statistical theory), assuming the underlying process
is stationary.
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What about data storage? It might seem that all the past data
need to be stored for this procedure; but, in fact, only two items need
be stored as time moves on. We can rewrite (4.2) in a recursive form:recursive calculation

Ft+2 =
tFt+1 + Yt+1

t + 1
.

So in carrying out the computations, only the most recent forecast
and the most recent observations need to be stored. When fore-
casting a large number of series simultaneously (e.g., in inventory
management), this saving becomes important.

The major impediment in using this simple method is the unlikely
assumption that business time series are really based on an underlying
“constant” process (cell A-1 in Pegels’ table).

4/2/2 Moving averages

One way to modify the influence of past data on the mean-as-a-
forecast is to specify at the outset just how many past observations
will be included in a mean. The term “moving average” is used to
describe this procedure because as each new observation becomes
available, a new average can be computed by dropping the oldest
observation and including the newest one. This moving average will
then be the forecast for the next period. Note that the number of
data points in each average remains constant and includes the most
recent observations.

A moving average forecast of order k, or MA(k), is given by

moving average

forecast
Ft+1 =

1
k

t∑

i=t−k+1

Yi.

This use of moving averages is slightly different from the use of
moving averages in smoothing as described in the previous chapter.
There we estimated the trend-cycle in a data series by taking an
average of nearby points. Here we are forecasting the next observation
by taking an average of the most recent observations. To avoid
confusion, we use MA(k) to denote a moving average forecast of order
k and k MA to denote a moving average smoother of order k.
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Compared with the simple mean (of all past data) the moving
average of order k has the following characteristics:

• it deals only with the latest k periods of known data,
• the number of data points in each average does not change as

time goes on.
But it also has the following disadvantages:

• it requires more storage because all of the k latest observations
must be stored, not just the average,

• it cannot handle trend or seasonality very well, although it can
do better than the total mean.

Table 4-2 and Figure 4-4 illustrate the application of the technique
of moving averages to the series of values for electric can opener
shipments using both a three- and five-month moving average.

In Table 4-2 the MA(3) values in column 4 are based on the values
for the previous three months. For example, the forecast for April
(the fourth month) is taken to be the average of January, February,
and March shipments.

April’s forecast = (200 + 135 + 195)/3 = 176.7.

The last figure in column 4 is December’s MA(3) forecast of 244.2
and is the average for September, October, and November.

Similarly, in column 5, the MA(5) averages are shown as forecasts
for the next month ahead. The June forecast of 207.5 is the average
of shipments made from January through May, and the December
forecast of 203.5 is the average of months 7, 8, 9, 10, and 11. Clearly,
as new values for shipments become known, the moving average can
be easily recomputed.

From Figure 4-4 it can be seen that the more observations included
in the moving average, the greater the smoothing effect. A forecaster
must choose the number of periods (k) in a moving average. The two
extreme cases are k = 1 and k = n.

MA(1) That is, a moving average of order 1—the last known data
point (Yt) is taken as the forecast for the next period (Ft+1 =
Yt). An example of this is “the forecast of tomorrow’s closing
price of IBM stock is today’s closing price.” This was called
the näıve forecast (NF1) in Chapter 2.
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(1) (2) (3) (4) (5)
Time Observed values Three-month Five-month

Month period (shipments) moving average moving average
Jan 1 200.0 — —
Feb 2 135.0 — —
Mar 3 195.0 — —
Apr 4 197.5 176.7 —
May 5 310.0 175.8 —
Jun 6 175.0 234.2 207.5
Jul 7 155.0 227.5 202.5
Aug 8 130.0 213.3 206.5
Sep 9 220.0 153.3 193.5
Oct 10 277.5 168.3 198.0
Nov 11 235.0 209.2 191.4
Dec 12 — 244.2 203.5

Analysis of errors
Test periods: 4–11 6–11
Mean Error (ME) 17.71 −1.17
Mean Absolute Error (MAE) 71.46 51.00
Mean Absolute Percentage Error (MAPE) 34.89 27.88
Mean Square Error (MSE) 6395.66 3013.25
Theil’s U -statistic 1.15 0.81

Table 4-2: Forecasting electric can opener shipments using moving averages.

MA(n) In this case, the mean of all observations is used as a forecast.
So this is equivalent to the mean forecast method.

Note that use of a small value for k will allow the moving average
to follow the pattern, but these MA forecasts will nevertheless trail
the pattern, lagging behind by one or more periods. In general, the
larger the order of the moving average—that is, the number of data
points used for each average, the greater the smoothing effect.

Algebraically, the moving average can be written as follows:

Ft+1 =
Yt + Yt−1 + · · ·+ Yt−k+1

k
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Figure 4-4: Shipments of electric can openers: observed data and moving average forecasts.

Ft+2 =
Yt+1 + Yt + · · ·+ Yt−k+2

k
.

Comparing Ft+1 and Ft+2, it can be seen that Ft+2 requires dropping
the value Yt−k+1 and adding the value Yt+1 as it becomes available,
so that another way to write Ft+2 is

Ft+2 = Ft+1 +
1
k
(Yt+1 − Yt−k+1) (4.3)

It can be seen from (4.3) that each new forecast (Ft+2) is simply
an adjustment of the immediately preceding forecast (Ft+1). This
adjustment is (1/k)th of the difference between Yt+1 and Yt−k+1.
Clearly if k is a big number, this adjustment is small, so that moving
averages of high order provide forecasts that do not change very much.

In summary, an MA(k) forecasting system will require k data
points to be stored at any one time. If k is small (say 4), then the
storage requirements are not severe although for many thousands of
time series (say for inventories involving thousands of stockkeeping
units) this can be a problem. In practice, however, the technique of
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Observed data

MA(5) forecast

Mean forecast

Figure 4-5: Forecasts of data containing a level shift. Note that the mean of all
past data does not catch up with the level shift, whereas the MA(5) forecast does
correct for the shift after a few time periods.

moving averages as a forecasting procedure is not used often because
the methods of exponential smoothing (examined in Section 4/3) are
generally superior.

It is useful to consider how the forecasting method breaks down
when the assumption of an underlying constant process is not met.breakdown of

assumptions As Figure 4-5 shows, when the underlying process is a step function
(which is another way of saying the data undergo a sudden change at
some point), then the mean used as a forecast for the next period is
unable to catch up. However, the MA(5) method corrects its forecasts
for the level shift after five periods. Similar tests of the behavior of
the forecasts when the assumptions are not met can be carried out.
As will be shown in Section 4/4, when the data series exhibits trend
and seasonality, neither the mean as a forecast nor an MA forecast is
appropriate.
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4/3 Exponential smoothing methods

An obvious extension to the moving average method is forecasting
by weighted moving average. With simple moving average forecasts, weighted MA

the mean of the past k observations was used as a forecast. This
implies equal weights (equal to 1/k) for all k data points. However,
with forecasting, the most recent observations will usually provide
the best guide as to the future, so we want a weighting scheme that
has decreasing weights as the observations get older.

In this section we describe a class of methods that imply exponen-
tially decreasing weights as the observations get older. Thus they are exponentially

decreasing weightscalled exponential smoothing procedures. There is a variety of expo-
nential smoothing methods. They all have in common the property
that recent values are given relatively more weight in forecasting than
the older observations.

In the case of moving averages, the weights assigned to observa-
tions are a by-product of the particular MA system adopted. In
exponential smoothing, however, there are one or more smoothing
parameters to be determined explicitly, and these choices determine
the weights assigned to observations, as will be indicated below.

4/3/1 Single exponential smoothing

Suppose we wish to forecast the next value of our time series Yt

which is yet to be observed. Our forecast is denoted by Ft. When
the observation Yt becomes available, the forecast error is found to
be Yt − Ft. The method of single exponential forecasting takes the
forecast for the previous period and adjusts it using the forecast error.
That is, the forecast for the next period is

single exponential

forecastFt+1 = Ft + α(Yt − Ft) (4.4)

where α is a constant between 0 and 1.

It can be seen that the new forecast is simply the old forecast plus
an adjustment for the error that occurred in the last forecast. When
α has a value close to 1, the new forecast will include a substantial
adjustment for the error in the previous forecast. Conversely, when
α is close to 0, the new forecast will include very little adjustment.
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Thus, the effect of a large or small α is completely analogous (in an
opposite direction) to the effect of including a small or a large number
of observations when computing a moving average.

It should also be observed that these forecasts will always trail any
trend in the actual data, since the most the method can do is adjust
the next forecast for some percentage of the most recent error.

Equation (4.4) involves a basic principle of negative feedback, since
it works much like the control process employed by automatic devices
such as thermostats, automatic pilots, and so on. The past forecast
error is used to correct the next forecast in a direction opposite to
that of the error. There will be an adjustment until the error is
corrected. It is the same principle that directs an automatic pilot
device to an equilibrium course once a deviation (error) has taken
place. This principle, simple as it may appear, plays an extremely
important role in forecasting. If properly applied, it can be used
to develop a self-adjusting process that corrects for forecasting error
automatically.

Another way of writing (4.4) is

Ft+1 = αYt + (1− α)Ft. (4.5)

The forecast (Ft+1) is based on weighting the most recent observation
(Yt) with a weight value (α) and weighting the most recent forecast
(Ft) with a weight of 1− α.

Equation (4.5) is the general form used in exponential smoothing
methods. It substantially reduces any storage problem, because it is
no longer necessary to store all of the historical data or a subset of
them (as in the case of the moving average). Rather, only the most
recent observation, the most recent forecast, and a value for α must
be stored.

The implications of exponential smoothing can be better seen if
equation (4.5) is expanded by replacing Ft with its components as
follows:

Ft+1 = αYt + (1− α)[αYt−1 + (1− α)Ft−1]
= αYt + α(1− α)Yt−1 + (1− α)2Ft−1.

If this substitution process is repeated by replacing Ft−1 by its
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components, Ft−2 by its components, and so on, the result is

Ft+1 = αYt + α(1− α)Yt−1 + α(1− α)2Yt−2 + α(1− α)3Yt−3

+ α(1− α)4Yt−4 + α(1− α)5Yt−5 + · · ·+ α(1− α)t−1Y1

+ (1− α)tF1. (4.6)

So Ft+1 represents a weighted moving average of all past observations.
Suppose α = 0.2, 0.4, 0.6, or 0.8. Then the weights assigned to past
observations would be as follows:

Weight
assigned to: α = 0.2 α = 0.4 α = 0.6 α = 0.8
Yt 0.2 0.4 0.6 0.8
Yt−1 0.16 0.24 0.24 0.16
Yt−2 0.128 0.144 0.096 0.032
Yt−3 0.1024 0.0864 0.0384 0.0064
Yt−4 (0.2)(0.8)4 (0.4)(0.6)4 (0.6)(0.4)4 (0.8)(0.2)4

Notice that in each case, the weights for all past data sum approxi-
mately to one. If these weights are plotted as in Figure 4-6 it can be
seen that they decrease exponentially, hence the name exponential
smoothing.

The application of single exponential smoothing can be illustrated
by using the electric can opener example given in Section 4/2/2.
Table 4-3 and Figure 4-7 show the exponential smoothing results
from electric can opener shipments using α values of 0.1, 0.5, and
0.9.

One can forecast with single exponential smoothing by using either
equation (4.4) or (4.5). For example, in Table 4-3 the forecast for
period 12 (December) when α = 0.1 is computed as follows:

F12 = αY11 + (1− α)F11 = (0.1)(235.0) + (0.9)(202.3) = 205.6.

Similarly, when α = 0.9,

F12 = (0.9)(235.0) + (0.1)(270.9) = 238.6.

Note that the choice of α has considerable impact on the December
forecast and the MAPE values for periods 2 through 11 range from
24.6% (for α = 0.1) to 30.8% (for α = 0.9). Single exponential
smoothing requires little storage and few computations. It is therefore
attractive when a large number of items require forecasting.
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Figure 4-6: Weights given to past data when a forecast is made at time t for the
next period, using various forecasting procedures.

One point of concern relates to the initializing phase of SES.initialization

For example, to get the SES forecasting system started we need F1

because
F2 = αY1 + (1− α)F1.

Since the value for F1 is not known, we can use the first observed
value (Y1) as the first forecast (F1 = Y1) and then proceed using
equation (4.5). This is one method of initialization and is used in
Table 4-3. Another possibility would be to average the first four or
five values in the data set and use this as the initial forecast.

Note from equation (4.6) that the the last term is (1− α)tF1. So
the initial forecast F1 plays a role in all subsequent forecasts. But the
weight attached to F1 is (1−α)t which is usually small. For example,
if t = 12, then to four decimal places the weight is equal to

0.2824 if α = .1
0.0002 if α = .5
0.0000 if α = .9
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Exponentially Smoothed Values
Time Observed Values

Month Period (shipments) α = 0.1 α = 0.5 α = 0.9
Jan 1 200.0 — — —
Feb 2 135.0 200.0 200.0 200.0
Mar 3 195.0 193.5 167.5 141.5
Apr 4 197.5 193.7 181.3 189.7
May 5 310.0 194.0 189.4 196.7
Jun 6 175.0 205.6 249.7 298.7
Jul 7 155.0 202.6 212.3 187.4
Aug 8 130.0 197.8 183.7 158.2
Sep 9 220.0 191.0 156.8 132.8
Oct 10 277.5 193.9 188.4 211.3
Nov 11 235.0 202.3 233.0 270.9
Dec 12 — 205.6 234.0 238.6

Analysis of Errors
Test period: 2–11
Mean Error 5.56 6.80 4.29
Mean Absolute Error 47.76 56.94 61.32
Mean Absolute Percentage Error (MAPE) 24.58 29.20 30.81
Mean Square Error (MSE) 3438.33 4347.24 5039.37
Theil’s U -statistic 0.81 0.92 0.98

Table 4-3: Forecasting electric can opener shipments using exponential smoothing.

Clearly, when a small value of α is chosen, the initial forecast plays
a more prominent role than when a larger α is used. Also, when
more data are available t is larger and so the weight attached to Ft is
smaller. This type of initialization problem exists in all exponential
smoothing methods. If the smoothing parameter α is not close to
zero, the influence of the initialization process rapidly becomes of
less significance as time goes by. However, if α is close to zero, the
initialization process can play a significant role for many time periods
ahead.

The smoothing effect of α can be seen in Figure 4-7. A large
value of α (0.9) gives very little smoothing in the forecast, whereas
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Figure 4-7: Shipments of electric can openers: Actual and exponential smoothing forecasts.

a small value of α (0.1) gives considerable smoothing. When α = 1,
(4.4) shows that exponential smoothing is equivalent to using the last
observation as a forecast. That is, it is the same as NF1, the näıve
forecast method 1.

Simple as exponential smoothing is, it does have its problems. One
of these arises in trying to find an optimal value for α. Should weoptimization

optimize to minimize MSE, MAPE, or some other measure? Suppose
we try to minimize MSE. Unlike the mean, where this minimization
occurs any time the average of a set of numbers is calculated, for ex-
ponential smoothing the minimum MSE must be determined through
trial and error. A value for α is chosen, the MSE is computed over
a test set, and then another α value is tried. The MSEs are then
compared to find the α value that gives the minimum MSE. In the
example of Table 4-3, using periods 2 through 11 as the test set,

MSE = 3438 when α = 0.1
MSE = 4347 when α = 0.5
MSE = 5039 when α = 0.9.
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This wide range of MSE values indicates the important role of α in
determining the resulting errors. Finding an α value that is close to
the best possible generally requires only a few trials, since its value
can be approximated by simply comparing a few MSE and α values.
For the series in Table 4-3 it can be seen that the MSE decreases as
α approaches 0. In fact,

α = 0.05 gives MSE = 3301 and
α = 0.01 gives MSE = 3184.

The reason for this is that the data are almost random, so the smaller
the value of α, the smaller the MSE.

One way to choose α is to calculate the MSE for a grid of values
(e.g., α = 0.1, 0.2, . . . , 0.9), and choose the value that yields the
smallest MSE value. Alternatively, this search for the optimal α can
be carried out using a non-linear optimization algorithm.

It is customary to optimize the MSE because it is a smooth function
of α and it is relatively easy to find the value of α which minimizes
MSE. However, it is possible to optimize other measures of forecast
error. For example, the optimum α could be different if the objective
had been to minimize the MAPE.

It was also assumed that the forecast horizon was just one period
ahead. For longer range forecasts, it is assumed that the forecast
function is “flat.” That is, flat forecast function

Ft+h = Ft+1, h = 2, 3, . . . .

A flat forecast function is used because single exponential smoothing
works best for data which have no trend, no seasonality, or other
underlying pattern. Interested readers should check Dalrymple and
King (1981) for more on the issues relating to forecast horizon.

If there is a trend in the series, the forecasts lag behind the
trend, farther behind for smaller α. Table 4-4 shows exponential
smoothing forecasts (with α chosen to minimize MSE) applied to a
series of inventory demand which has an increasing trend. Figure
4-8 shows the data with the forecasts. Notice that the forecasts
tend to underestimate the data values. This is reflected in the large
positive mean error of 10.24. Holt’s smoothing (see Section 4/3/3 for
a description) involves smaller errors and a correct extrapolation of
the trend in the data.
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Observed SES
Period data forecasts

t Yt Ft

1 143 143.00
2 152 143.00
3 161 148.89
4 139 156.81
5 137 145.16
6 174 139.82
7 142 162.18
8 141 148.98
9 162 143.76
10 180 155.69
11 164 171.59
12 171 166.63

Test 13 206 169.49
14 193 193.37
15 207 193.13

Set 16 218 202.20
17 229 212.54
18 225 223.31
19 204 224.41
20 227 211.06
21 223 221.49
22 242 222.48
23 239 235.25
24 266 237.70
25 256.22
26 256.22
27 256.22
28 256.22
29 256.22
30 256.22

Analysis of errors from period 10 to period 24
10.24 = Mean Error 6.57 = Mean Absolute Percentage Error
14.03 = Mean Absolute Error 1.01 = Theil’s U -statistic

305.72 = Mean Square Error

Table 4-4: Application of exponential smoothing to inventory demand for product
E15 with α = 0.654 chosen by minimizing the MSE.
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Figure 4-8: Inventory demand for product E15: actual observations, forecasts from
single exponential smoothing, and forecasts from Holt’s linear method.

In this example, we have used the first nine observations as the
initialization set. Then period 10 to period 24 serve as the test set.
The error measures are calculated on these periods. In Section 4/3/3
we will apply Holt’s method which is more suitable for data with
trend and compare the results over the same test period.

4/3/2 Single exponential smoothing: an adaptive approach

The SES forecasting method requires the specification of an α value
and it has been shown that the MAPE and MSE measures depend
on this choice. Adaptive-response-rate single exponential smoothing
(ARRSES) may have an advantage over SES in that it allows the adaptive smoothing

value of α to be modified, in a controlled manner, as changes in
the pattern of data occur. This characteristic seems attractive when
hundreds or even thousands of items require forecasting.

The basic equation for forecasting with the method of ARRSES is
similar to equation (4.5) except that α is replaced by αt:
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Ft+1 = αtYt + (1− αt)Ft (4.7)

where αt+1 =
∣∣∣∣
At

Mt

∣∣∣∣ (4.8)

At = βEt + (1− β)At−1 (4.9)
Mt = β|Et|+ (1− β)Mt−1 (4.10)
Et = Yt − Ft (4.11)

β is a parameter between 0 and 1 and | | denotes absolute values.

In equation (4.9) At denotes a smoothed estimate of forecast error,
and is calculated as a weighted average of At−1 and the last fore-
casting error Et. Similarly, Mt denotes a smoothed estimate of the
absolute forecast error, being calculated as a weighted average of
Mt−1 and the last absolute forecasting error |Et|. Note that equations
(4.9) and (4.10) both give SES estimates themselves. Equation (4.8)
indicates that the value of αt to be used for forecasting period (t+2)
is defined as an absolute value of the ratio of At and Mt. Instead
of αt+1 we could have used αt in equation (4.8). We prefer αt+1

because ARRSES is often too responsive to changes, thus using αt+1

we introduce a small lag of one period, which allows the system to
“settle” a little and forecast in a more conservative manner.

Initialization of an ARRSES process is a little more complicatedinitialization

than for SES. For example, for the electric can opener shipments, we
can initialize as follows:

F2 = Y1,

α2 = α3 = α4 = β = 0.2,

A1 = M1 = 0.

Then forecasts using the ARRSES method are as shown in Table 4-5.

The forecast for period 11, for example, is

F11 = α10Y10 + (1− α10)F10

= 0.228(277.5) + 0.772(201.6) = 218.9.

Once the actual value for period 11 becomes known, αt can be
updated and used for the next period’s calculations. This entails
computing E11, A11, and M11 as follows:
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Observed Absolute
value Smoothed smoothed

(shipments) Forecast Error error error
Period Yt Ft Et At Mt αt

1 200.0
2 135.0 200.0 −65.0 −13.0 13.0 0.200
3 195.0 187.0 8.0 −8.8 12.0 0.200
4 197.5 188.6 8.9 −5.3 11.4 0.200
5 310.0 190.4 119.6 19.7 33.0 0.462
6 175.0 245.7 −70.7 1.6 40.6 0.597
7 155.0 203.5 −48.5 −8.4 42.1 0.040
8 130.0 201.5 −71.5 −21.0 48.0 0.199
9 220.0 187.3 32.7 −10.3 45.0 0.438
10 277.5 201.6 75.9 7.0 51.1 0.228
11 235.0 218.9 16.1 8.8 44.1 0.136
12 — 221.1 — — — 0.199

Table 4-5: Forecasting electric can opener shipments using adaptive-response-rate
single exponential smoothing.

E11 = 235.0− 218.9 = 16.1, [using (4.11)]
A11 = 0.2(16.1) + 0.8(7.0) = 8.8, [using (4.9)]
M11 = 0.2|16.1|+ 0.8(51.1) = 44.1, [using (4.10)]

and α12 =
∣∣∣ 8.8
44.1

∣∣∣ = 0.199. [using (4.8)]

The forecast for period 12 can be computed using equation (4.7):

F12 = 0.136(235) + 0.864(218.9) = 221.1.

Note that the αt values fluctuate quite significantly and, if a
different initializing procedure had been adopted, a different series
of αt values would have been generated. Care should be taken in
evaluating the fluctuations in αt—and maybe curbing the extent of
these changes. One way to control the changes in αt is by controlling
the value of β (the smaller the value of β the less will be the changes
in αt). Another way to do this is to put an upper bound on how
much αt is allowed to change from one period to the next.

Summing up, the ARRSES method is an SES method where the
α value is systematically, and automatically, changed from period to
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period to allow for changes in the pattern of the data. Although
it may take one or two periods for αt to catch up with changes
in the data pattern, it will eventually do so. Thus, even if the
forecasts from this method are somewhat inferior to those of single
exponential smoothing with an optimal α, it may be preferable
because it reduces the risk of serious errors and provides a system
with minimal administrative worries. The fact that ARRSES is
completely automatic, in addition to having the other advantagesautomatic forecasting

of single exponential smoothing, makes it a useful method in practice
when a large number of items are involved, and when the data are
non-seasonal and show no trend. (Consult Gardner and Dannenbring
(1980) for less favorable results using ARRSES.)

4/3/3 Holt’s linear method

Holt (1957) extended single exponential smoothing to linear expo-
nential smoothing to allow forecasting of data with trends. The
forecast for Holt’s linear exponential smoothing is found using two
smoothing constants, α and β (with values between 0 and 1), and
three equations:

Holt’s linear forecasts
Lt = αYt + (1− α)(Lt−1 + bt−1), (4.12)
bt = β(Lt − Lt−1) + (1− β)bt−1, (4.13)

Ft+m = Lt + btm. (4.14)

Here Lt denotes an estimate of the level of the series at time t and
bt denotes an estimate of the slope of the series at time t. Equation
(4.12) adjusts Lt directly for the trend of the previous period, bt−1, by
adding it to the last smoothed value, Lt−1. This helps to eliminate the
lag and brings Lt to the approximate level of the current data value.
Equation (4.13) then updates the trend, which is expressed as the
difference between the last two smoothed values. This is appropriate
because if there is a trend in the data, new values should be higher or
lower than the previous ones. Since there may be some randomness
remaining, the trend is modified by smoothing with β the trend in
the last period (Lt−Lt−1), and adding that to the previous estimate
of the trend multiplied by (1−β). Thus, (4.13) is similar to the basic
form of single smoothing given by equation (4.5) but applies to the
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updating of the trend. Finally, equation (4.14) is used to forecast
ahead. The trend, bt, is multiplied by the number of periods ahead
to be forecast, m, and added to the base value, Lt.

Using the inventory demand data from Table 4-4, Table 4-6 shows
the application of Holt’s linear smoothing to a series with trend. The
smoothing parameters α and β were chosen by minimizing the MSE
over observations 1–24. The resulting forecasts are given in Figure
4-8.

The calculations involved can be illustrated by looking at the
forecast for period 23, using α = 0.501 and β = 0.072:

F23 = L22 + b22(1), [using (4.14)]
where L22 = 0.501Y22 + .499(L21 + b21) [using (4.12)]

= 0.501(242) + .499(227.33 + 5.31)
= 237.33,

b22 = 0.072(L22 − L21) + .928b21 [using (4.13)]
= 0.072(237.33− 227.33) + .928(5.31)
= 5.64.

Thus, F23 = 237.33 + 5.64(1) = 242.97.
Similarly the forecast for period 24 is

F24 = 240.98 + 5.50(1) = 246.48,

since L23 = 0.501(239) + 0.499(237.33 + 5.64) = 240.98
and b23 = 0.072(240.98− 237.33) + 0.928(5.64) = 5.50.

Finally, the forecasts for periods 25 through 30 can be computed as

F25 = 256.26 + 6.21(1) = 262.47,
F26 = 256.26 + 6.210(2) = 268.68,
. . .

F30 = 256.26 + 6.21(6) = 293.51.

The initialization process for Holt’s linear exponential smoothing initialization

requires two estimates—one to get the first smoothed value for L1

and the other to get the trend b1. One alternative is to set L1 = Y1

and

b1 = Y2 − Y1

or b1 = (Y4 − Y1)/3.
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Period Observed Smoothing Smoothing Forecast
data of data of trend when m = 1

(t) (Yt) (Lt) (bt) (Ft)
1 143 143.00 9.00 —
2 152 152.00 9.00 152.00
3 161 161.00 9.00 161.00
4 139 154.47 7.88 170.00
5 137 149.64 6.96 162.34
6 174 165.32 7.59 156.60
7 142 157.42 6.47 172.91
8 141 152.42 5.64 163.89
9 162 160.03 5.78 158.06
10 180 172.92 6.30 165.82
11 164 171.59 5.75 179.22
12 171 174.16 5.52 177.34

Test 13 206 192.87 6.47 179.68
14 193 196.16 6.24 199.34
15 207 204.71 6.41 202.40

Set 16 218 214.56 6.66 211.11
17 229 225.12 6.94 221.22
18 225 228.52 6.68 232.06
19 204 219.57 5.55 235.20
20 227 226.06 5.62 225.12
21 223 227.33 5.31 231.68
22 242 237.33 5.64 232.64
23 239 240.98 5.50 242.97
24 266 256.26 6.21 246.48
25 262.47 (m = 1)
26 268.68 (m = 2)
27 274.89 (m = 3)
28 281.09 (m = 4)
29 287.30 (m = 5)
30 293.51 (m = 6)

Analysis of errors from period 10 to period 24
0.78 = Mean Error 5.45 = Mean Absolute Percentage Error

11.29 = Mean Absolute Error 0.78 = Theil’s U -statistic
194.78 = Mean Square Error

Table 4-6: Application of Holt’s two-parameter linear exponential smoothing to
inventory demand data (α = 0.501 and β = 0.072 chosen by minimizing the MSE).
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Another alternative is to use least squares regression on the first few
values of the series for finding L1 and b1 (see Chapter 5).

The first alternative has been used in Table 4-6. When the data
are well behaved it will not matter much, but the inventory data in
Table 4-6 shows a dramatic drop from period 3 to 4. If this change
(Y4 − Y3) is involved in an initial slope estimate, it could take the
forecasting system a long time to overcome the influence of such a
large downward shift when the overall trend is upward.

As with single exponential smoothing, the weights α and β can
be chosen by minimizing the value of MSE or some other criterion. optimization

We could evaluate the MSE over a grid of values of α and β (e.g.,
each combination of α = 0.1, 0.2, . . . , 0.9 and β = 0.1, 0.2, . . . , 0.9)
and then select the combination of α and β which correspond to the
lowest MSE. Alternatively, we could use a non-linear optimization
algorithm. In the example of 4-6, such an algorithm identified the
optimal values as α = 0.501 and β = 0.072.

When the results are compared with those obtained using single
exponential smoothing (Table 4-4), Holt’s method outperforms SES
on every measurement. This is not surprising since Holt’s method
is designed to handle trends whereas SES assumes the data have no
underlying trend. Comparing the measures of forecast accuracy for
Holt’s method with those obtained using SES can give an idea of
whether the additional complexity of Holt’s method is justified.

Holt’s method is sometimes called “double exponential smooth-
ing.” In the special case where α = β, the method is equivalent to
“Brown’s double exponential smoothing.”

4/3/4 Holt-Winters’ trend and seasonality method

The set of moving average and exponential smoothing methods ex-
amined thus far in this chapter can deal with almost any type of data
as long as such data are non-seasonal. When seasonality does exist,
however, these methods are not appropriate on their own.

As an illustration, consider applying single exponential smoothing
and Holt’s method to the seasonal data in Table 4-7. These data are
for quarterly exports of a French company over a six year period, and
they are plotted in Figure 4-9.
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Sales Sales
(thous. (thous.

Year Quarter Period of francs) Year Quarter Period of francs)

1 1 1 362 4 1 13 544
2 2 385 2 14 582
3 3 432 3 15 681
4 4 341 4 16 557

2 1 5 382 5 1 17 628
2 6 409 2 18 707
3 7 498 3 19 773
4 8 387 4 20 592

3 1 9 473 6 1 21 627
2 10 513 2 22 725
3 11 582 3 23 854
4 12 474 4 24 661

Table 4-7: Quarterly sales data.

Figure 4-10 shows the forecasts while Table 4-8 shows both the
forecasts and and the errors (actual minus forecast) that result. It
is easy to see in Table 4-8 that a systematic error pattern exists.
The SES errors are all positive, except for negative values that occur
every fourth period. (There is an exception at period 21, due to
randomness.) The errors from Holt’s method also show systematic
seasonal patterns. Clearly such a data series requires the use of
a seasonal method if the systematic pattern in the errors is to be
eliminated. Holt-Winters’ trend and seasonal smoothing is such a
method.

The example in Table 4-8 raises the important concern of selecting
the best smoothing method for a given data series. Using single
exponential smoothing with an optimal parameter value of α = 0.464
(chosen by minimizing the MSE), the MAPE and MSE measures
are 13.19% and 8849, respectively, for the test set 10–24. If Holt’s
one-parameter linear exponential smoothing is used with optimal
parameter values α = .065 and β = 0.334, the MAPE and MSE
values are 9.16% and 5090, respectively. There is some advantage
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SES Holt’s method
Period Actual Forecast Error Forecast Error

1 362 — — — —
2 385 362.00 23.00 385.00 0.00
3 432 372.68 59.32 408.00 24.00
4 341 400.22 −59.22 433.07 −92.07
5 382 372.73 9.27 448.66 −66.66
6 409 377.03 31.97 464.45 −55.45
7 498 391.87 106.13 479.77 18.23
8 387 441.14 −54.14 500.24 −113.24
9 473 416.01 56.99 509.78 −36.78
10 513 442.47 70.53 523.47 −10.47
11 582 475.21 106.79 538.63 43.37
12 474 524.79 −50.79 558.20 −84.20

Test 13 544 501.21 42.79 567.72 −23.72
14 582 521.07 60.93 580.64 1.36
15 681 549.36 131.64 595.20 85.80

Set 16 557 610.47 −53.47 617.06 −60.06
17 628 585.65 42.35 628.21 −0.21
18 707 605.31 101.69 643.22 63.78
19 773 652.52 120.48 663.74 109.26
20 592 708.45 −116.45 689.55 −97.55
21 627 654.39 −27.39 699.90 −72.90
22 725 641.67 83.33 710.27 14.73
23 854 680.36 173.64 726.62 127.38
24 661 760.97 −99.97 752.99 −91.99
25 714.56 763.21
26 714.56 779.37
...

...
...

Analysis of errors from period 10 to period 24
Mean Error 39.07 0.30
Mean Absolute Error 85.48 59.12
Mean Absolute Percentage Error (MAPE) 13.19 9.16
Mean Square Error (MSE) 8849.35 5090.26
Theil’s U -statistic 0.96 0.69

Table 4-8: Application of single exponential smoothing and Holt’s method to
quarterly sales data. Smoothing parameters were chosen by minimizing the MSE
(SES: α = 0.464; Holt’s: α = 0.065, β = 0.334).
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Figure 4-9: Time plot of quarterly sales data.

to using a method such as Holt’s, which explicitly takes trend into
account, but there is clearly room for improvement.

If the data have no trend or seasonal patterns, then moving aver-
ages or single exponential smoothing methods are appropriate. If the
data exhibit a linear trend, Holt’s linear method is appropriate. But
if the data are seasonal, these methods, on their own, cannot handle
the problem well. (Of course, the data could be deseasonalized first
by some other procedure. See Chapter 3 for details.)

Holt’s method was extended by Winters (1960) to capture season-
ality directly. The Holt-Winters’ method is based on three smoothingHolt-Winters’ method

equations—one for the level, one for trend, and one for seasonality.
It is similar to Holt’s method, with one additional equation to deal
with seasonality. In fact there are two different Holt-Winters’ meth-
ods, depending on whether seasonality is modeled in an additive or
multiplicative way.
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Figure 4-10: Forecasts from single exponential smoothing and Holt’s method for
quarterly sales data. Neither method is appropriate for these data.

Multiplicative seasonality

The basic equations for Holt-Winters’ multiplicative method are as
follows:

Level: Lt = α
Yt

St−s
+ (1− α)(Lt−1 + bt−1) (4.15)

Trend: bt = β(Lt − Lt−1) + (1− β)bt−1 (4.16)

Seasonal: St = γ
Yt

Lt
+ (1− γ)St−s (4.17)

Forecast: Ft+m = (Lt + btm)St−s+m (4.18)

where s is the length of seasonality (e.g., number of months or
quarters in a year), Lt represents the level of the series, bt denotes
the trend, St is the seasonal component, and Ft+m is the forecast for
m periods ahead.

Equation (4.17) is comparable to a seasonal index that is found as
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a ratio of the current values of the series, Yt, divided by the current
single smoothed value for the series, Lt. If Yt is larger than Lt,
the ratio will be greater than 1, while if it is smaller than Lt, the
ratio will be less than 1. Important to understanding this method is
realizing that Lt is a smoothed (average) value of the series that does
not include seasonality (this is the equivalent of saying that the data
have been seasonally adjusted). The data values Yt, on the other
hand, do contain seasonality. It must also be remembered that Yt

includes randomness. In order to smooth this randomness, equation
(4.17) weights the newly computed seasonal factor with γ and the
most recent seasonal number corresponding to the same season with
(1 − γ). (This prior seasonal factor was computed in period t − s,
since s is the length of seasonality.)

Equation (4.16) is exactly the same as Holt’s equation (4.13) for
smoothing the trend. Equation (4.15) differs slightly from Holt’s
equation (4.12) in that the first term is divided by the seasonal
number St−s. This is done to deseasonalize (eliminate seasonal
fluctuations from) Yt. This adjustment can be illustrated by con-
sidering the case when St−s is greater than 1, which occurs when
the value in period t − s is greater than average in its seasonality.
Dividing Yt by this number greater than 1 gives a value that is smaller
than the original value by a percentage just equal to the amount
that the seasonality of period t − s was higher than average. The
opposite adjustment occurs when the seasonality number is less than
1. The value St−s is used in these calculations because St cannot be
calculated until Lt is known from (4.15).

The data of Table 4-7 can be used to illustrate the application of
Holt-Winters’ method. With parameter values of α = 0.822, β =
0.055, and γ = 0.000 chosen by minimizing the MSE, forecasts and
related smoothed values are as shown in Table 4-9.

The computations involved in this method can be illustrated for
period 24 as follows:

F24 = [L23 + b23(1)]S20 [using (4.18)]
= (746.22 + 16.07).897
= 684.05
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Period Actual Level Trend Seasonal Forecast
t Yt Lt bt St Ft

1 362 — — 0.953 —
2 385 — — 1.013 —
3 432 — — 1.137 —
4 341 380.00 9.75 0.897 —
5 382 398.99 10.26 0.953 371.29
6 409 404.68 10.01 1.013 414.64
7 498 433.90 11.07 1.137 471.43
8 387 433.70 10.45 0.897 399.30
9 473 487.20 12.83 0.953 423.11
10 513 505.21 13.11 1.013 506.60
11 582 513.08 12.82 1.137 589.26
12 474 527.80 12.93 0.897 471.93

Test 13 544 565.65 14.31 0.953 515.12
14 582 575.42 14.06 1.013 587.59
15 681 597.33 14.49 1.137 670.14

Set 16 557 619.12 14.89 0.897 549.03
17 628 654.74 16.04 0.953 603.98
18 707 693.01 17.27 1.013 679.60
19 773 685.35 15.89 1.137 807.47
20 592 667.10 14.00 0.897 629.27
21 627 662.26 12.96 0.953 648.84
22 725 708.40 14.80 1.013 684.10
23 854 746.22 16.07 1.137 822.16
24 661 741.17 14.90 0.897 684.05
25 0.953 720.26 (m = 1)
26 1.013 781.12 (m = 2)
27 893.41 (m = 3)
28 718.59 (m = 4)
29 777.04 (m = 5)
30 841.50 (m = 6)

Analysis of errors from period 10 to period 24
3.39 = Mean Error 3.13 = Mean Absolute Percentage Error

20.65 = Mean Absolute Error 0.25 = Theil’s U -statistic
582.94 = Mean Square Error

Table 4-9: Application of Holt-Winters’ linear and multiplicative seasonal expo-
nential smoothing to quarterly sales data in Table 3-10. Smoothing parameters were
chosen by minimizing the MSE (α = 0.822, β = 0.055 and γ = 0.00).
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L24 = 0.822Y24
S20

+ 0.178(L23 + b23) [using (4.15)]
= 0.822 661

0.897 + 0.178(746.22 + 16.07)
= 741.17

b24 = 0.055(L24 − L23) + 0.945b23 [using (4.16)]
= 0.055(741.17− 746.22) + 0.945(16.07)
= 14.90

S24 = 0.000 Y24
L24

+ 1.00S20 [using (4.17)]
= 0.897.

Forecasts for periods 25, 26, 27, and 28, would then be:

F25 = [741.17 + 14.90(1)](0.953) = 720.26,

F26 = [741.17 + 14.90(2)](1.013) = 781.12,

F27 = [741.17 + 14.90(3)](1.137) = 893.41,

F28 = [741.17 + 14.90(4)](0.897) = 718.59.

As with all exponential smoothing methods, we need initial valuesinitialization

of the components to start the algorithm. To initialize the Holt-
Winters’ forecasting method, we need initial values of the level Lt, the
trend bt, and the seasonal indices St. To determine initial estimates
of the seasonal indices we need to use at least one complete season’s
data (i.e., s periods). Therefore we initialize trend and level at period
s. The level is initialized by taking the average of the first season:

Ls =
1
s
(Y1 + Y2 + · · ·+ Ys).

Note that this is a moving average of order s and so will eliminate
the seasonality in the data. To initialize trend, it is convenient to use
two complete seasons (i.e., 2s periods) as follows:

bs =
1
s

[
Ys+1 − Y1

s
+

Ys+2 − Y2

s
+ · · ·+ Ys+s − Ys

s

]
. (4.19)

(Each of these terms is an estimate of the trend over one complete
season, and the initial estimate of bs is taken as the average of s such
terms.) Finally, the seasonal indices are initialized using the ratio of
the first few data values to the mean of the first year so that

S1 =
Y1

Ls
, S2 =

Y2

Ls
, . . . Ss =

Ys

Ls
.

Several other methods for initializing are also available.
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The parameters α, β, and γ can be chosen to minimize MSE optimization

or MAPE. An approach for determining these values is to use a
non-linear optimization algorithm to find optimal parameter values.
This is how the parameters were chosen in this example. With the
increasing speed of computing, this method is now more feasible than
it once was. However, if there are many data sets to handle, the
computing time can still be considerable. Another approach is to use
a grid search method to find optimal parameter values.

Additive seasonality

The seasonal component in Holt-Winters’ method may also be treated
additively, although this is less common. The basic equations for
Holt-Winters’ additive method are as follows:

Level: Lt = α(Yt − St−s) + (1− α)(Lt−1 + bt−1) (4.20)
Trend: bt = β(Lt − Lt−1) + (1− β)bt−1 (4.21)

Seasonal: St = γ(Yt − Lt) + (1− γ)St−s (4.22)
Forecast: Ft+m = Lt + btm + St−s+m. (4.23)

The second of these equations is identical to (4.16). The only
differences in the other equations are that the seasonal indices are
now added and subtracted instead of taking products and ratios.

The initial values for Ls and bs are identical to those for the
multiplicative method. To initialize the seasonal indices we use initialization

S1 = Y1 − Ls, S2 = Y2 − Ls, . . . Ss = Ys − Ls.

4/3/5 Exponential smoothing: Pegels’ classification

An important consideration in dealing with exponential smoothing
methods having separate trend and seasonal aspects is whether or not
the model should be additive (linear) or multiplicative (non-linear).
Pegels (1969) has provided a simple but useful framework for dis-
cussing these matters (as already indicated in Figure 4-1) and his
two-way classification is as follows:
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Seasonal Component
Trend 1 2 3

Component (none) (additive) (multiplicative)

A A-1 A-2 A-3
(none)

B B-1 B-2 B-3
(additive)

C C-1 C-2 C-3
(multiplicative)

Converting Pegels’ notation to that of this chapter, all nine expo-
nential smoothing models can be summarized by the formulas:

Lt = αPt + (1− α)Qt (4.24)
bt = βRt + (1− β)bt−1 (4.25)
St = γTt + (1− γ)St−s (4.26)

where P , Q, R, and T vary according to which of the cells the method
belongs. Table 4-10 shows the appropriate values of P , Q, R, and T
and the forecast formula for forecasting m periods ahead.

Note that cell A-1 describes the SES method and cell B-1 describes
Holt’s method. The additive Holt-Winters’ method is given by cell
B-2 and the multiplicative Holt-Winters’ method is given by cell B-3.

To work through an example of one of the other cells, consider cell
C-3, which refers to an exponential smoothing model that allows for
multiplicative trend and multiplicative seasonality. From Table 4-10
and equations (4.24)–(4.26), we obtain the following formulas:

Lt = αYt/St−s + (1− α)Lt−1bt−1

bt = βLt/Lt−1 + (1− β)bt−1

St = γYt/Lt + (1− γ)St−s

and if we wish to forecast m periods ahead, Table 4-10 shows that
the forecast is:

Ft+m = Ltb
m
t St+m−s .
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Seasonal Component
1 2 3

Trend (none) (additive) (multiplicative)
Pt = Yt Pt = Yt − St−s Pt = Yt/St−s

A Qt = Lt−1 Qt = Lt−1 Qt = Lt−1

(none) Tt = Yt − Lt Tt = Yt/Lt

Ft+m = Lt Ft+m = Lt + St+m−s Ft+m = LtSt+m−s

Pt = Yt Pt = Yt − St−s Pt = Yt/St−s

B Qt = Lt−1 + bt−1 Qt = Lt−1 + bt−1 Qt = Lt−1 + bt−1

(additive) Rt = Lt − Lt−1 Rt = Lt − Lt−1 Rt = Lt − Lt−1

Tt = Yt − Lt Tt = Yt/Lt

Ft+m = Lt + mbt Ft+m = Lt + mbt Ft+m = (Lt + mbt)St+m−s

+St+m−s

Pt = Yt Pt = Yt − St−s Pt = Yt/St−s

C Qt = Lt−1bt−1 Qt = Lt−1bt−1 Qt = Lt−1bt−1

(multiplicative) Rt = Lt/Lt−1 Rt = Lt/Lt−1 Rt = Lt/Lt−1

Tt = Yt − Lt Tt = Yt/Lt

Ft+m = Ltb
m
t Ft+m = Ltb

m
t + St+m−s Ft+m = Ltb

m
t St+m−s

Table 4-10: Formula for calculations and forecasting using the Pegels’ classification
scheme.

4/4 A comparison of methods

A variety of methods has been presented in this chapter. In addi-
tion to these smoothing methods, many others have been proposed.
Some of these involve extensive computations and are mathematically
complicated, so they have not been adopted as practical methods.

A pragmatic question remains: How can a forecaster choose the
“right” model for a data set? Human judgment has to be involved,
but there are also some useful suggestions to make. A main objective
is to decide on the nature of trend (if any) and seasonality (if any)
and the strength of the random component. If the data are quarterly,
for example, a time plot of the raw data might show the extent of
trend, seasonality, and randomness (as in Figure 4-9).

Another approach for determining the patterns in the data is to
study autocorrelations, a procedure that will be studied in detail in
Chapter 8.

To round out the discussion of the major smoothing methods,
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auto-

corr. Theil’s

ME MAE MSE MAPE r1 U

1. Mean of all past data 157.31 157.31 30546 23.78 0.82 1.81

2. Moving average 47.08 72.25 7365 10.92 0.23 0.90

MA(4)

3. Pegels A-1 39.07 85.48 8849.35 13.19 −0.22 0.96

(SES)

(α = 0.464)

4. Pegels A-2 26.17 36.34 1897.27 5.52 0.12 0.45

(α = 0.621, γ = 1.000)

5. Pegels A-3 16.27 23.34 800.27 3.59 0.09 0.31

(α = 1.000, γ = 1.000)

6. Pegels B-1 0.30 59.12 5090.26 9.16 −0.19 0.69

(Holt’s)

(α = 0.065, β = 0.334)

7. Pegels B-2 6.54 24.45 1137.77 3.77 0.33 0.35

(additive Holt-Winters’)

(α = 0.353, β = 0.114, γ = 1.000)

8. Pegels B-3 3.39 20.65 582.94 3.13 0.15 0.25

(multiplicative Holt-Winters’)

(α = 0.822, β = 0.055, γ = 0.000)

9. Pegels C-1 −3.95 60.67 5398.80 9.47 −0.18 0.71

(α = 0.074, β = 0.591)

10. Pegels C-2 −7.19 29.77 1497.38 4.68 0.30 0.39

(α = 0.449, β = 0.348, γ = 1.000)

11. Pegels C-3 −9.46 24.00 824.75 3.75 0.17 0.29

(α = 0.917, β = 0.234, γ = 0.000)

Table 4-11: A comparison of various smoothing methods applied to the data in Table 4-7.

consider Table 4-11, which presents the results of 11 different analyses
of the same data set (see Table 4-7). In fitting each model, parameters
have been chosen by minimizing the MSE calculated using errors from
periods 2 through 24 (5 through 24 for seasonal models).

The column headings indicate particular measures of “fit” (as
described in Chapter 2). All these error measures refer to a “test
set” defined as periods 10 through 24. The following points should
be noted.

• The ME (mean error) is not a very useful measure since positiveME

and negative errors can cancel one another, as in Holt’s method,
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which has the lowest ME but is clearly not a very good model
for the data.

• The MAE (mean absolute error) or MSE are more useful mea- MAE
MSEsures than ME.

• The MAPE (mean absolute percentage error) is another use- MAPE

ful indicator but gives relative information as opposed to the
absolute information in MAE or MSE.

• The minimum MSE (mean square error) is obtained for Pegels’ optimal model

cell B-3 method (row 8) when optimum values for the three
parameters are determined. The same model also gives the
minimum MAE and minimum MAPE values. This is not always
the case and sometimes an alternative method might be chosen
on the basis of MAPE, for example.

• The lag 1 autocorrelation (r1) is a pattern indicator—it refers lag 1 ACF

to the pattern of the errors. If the pattern is random, r1 will
be around 0. If there are runs of positive errors alternating
with runs of negative errors, then r1 is much greater than 0
(approaching an upper limit of 1). If there are rapid oscillations
in errors (from positive to negative), then r1 is much less than
0 (approaching a lower limit of −1). Note that a value near
0 is not necessarily “best.” For example, row 4 has r1 smaller
than the minimum MSE model in row 8. But the row 4 model
(Pegels’ A-2) does not include a trend component and is not a
good model for these data.

• Theil’s U -statistic (a compromise between absolute and relative Theil’s U

measures) is very useful. In row 1, U = 1.81, indicating a poor
fit, far worse than the “näıve model,” which would simply use
last period’s observation as the forecast for the next period. In
row 3 the SES model is seen to be about as good as the näıve
model. Row 8 shows Pegels’ cell B-3 model to be far superior
(U = 0.25).

In the final analysis, the choice of an appropriate forecasting method
is of great importance and will be studied in more detail in Chapter
11.
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4/5 General aspects of smoothing methods

Smoothing methods were first developed in the late 1950s by op-
erations researchers. It is unclear whether Holt (1957) or Brown
(1956) was the first to introduce exponential smoothing (see Cox,
1961, p. 414), or if perhaps it was Magee (1958) (see Muth, 1960,
p. 299). Most of the important development work on exponential
smoothing was completed in the late 1950s and published by the
early 1960s. This work included that done by Brown (1956) and Holt
(1957) and subsequent work by Magee (1958), Brown (1959), Holt
et al. (1960), Winters (1960), Brown and Meyer (1961), and Brown
(1963). Since that time, the concept of exponential smoothing has
grown and become a practical method with wide application, mainly
in the forecasting of inventories.

The major advantages of widely used smoothing methods are their
simplicity and low cost. It is possible that better accuracy can bestorage and cost

obtained using the more sophisticated methods of autoregressive/forecast accuracy

moving average schemes examined in Chapter 7 or the intuitively
appealing decomposition methods discussed in Chapter 3. In fact,
many exponential smoothing methods are special cases of the general
class of autoregressive/moving average methods (see Section 7/8/5).
However, when forecasts are needed for thousands of items, as is the
case in many inventory systems, smoothing methods are often the
only methods fast enough for acceptable implementation.

In instances of large forecasting requirements, even small things
count. The computer time needed to make the necessary calculations
must be kept at a reasonable level, and the method must run with a
minimum of outside interference.

In implementing smoothing methods, there are three practical
issues which need to be addressed: initialization, optimization, and
prediction intervals.

4/5/1 Initialization

The reason initial values for the exponential smoothing methods are
needed is that the methods are recursive equations, and so they need
to start somewhere. This can be seen by examining the equation of



4/5 General aspects of smoothing methods 175

single exponential smoothing

Ft+1 = αYt + (1− α)Ft

where Yt is the most recent actual value, Ft is the latest forecast, Ft+1

is the forecast for the next period, and α is the smoothing constant.
When t = 1, we get

F2 = αY1 + (1− α)F1.

In order to get a value for F2, F1 must be known. The value of F1

should have been:
F1 = αY0 + (1− α)F0.

Since Y0 does not exist and F0 cannot be found, this equation
cannot be applied. Therefore, some alternative approach is needed
to estimate the initial value of F1.

In an analogous way, initial values are needed for any type of
exponential smoothing; the number and type of values depend upon
the particular exponential smoothing approach being used.

To some extent, the problem of an initial forecast value is academic.
In practice, it arises only once for any series—when exponential
smoothing is used for the very first time. But even the very first
time that an exponential smoothing method is used the problem is
more theoretical than real. When such a method is first applied, most
managers will not think to use its forecasts immediately. Rather, the
method will be used in parallel operation with whatever system, or
manual approach, existed before. During this time, no matter what
the initial values, there generally will be enough history built up for
the method that self-adjustment will take place and good values will
result independent of the starting value used.

The initialization methods discussed earlier in this chapter are
simple and effective methods to start the recursive equations. But
there are many other methods that have been proposed, most of
which are summarized by Gardner (1985). Some of these are outlined
below.

1. Backcasting: This is a method used in the Box-Jenkins method- backcasting

ology (see Box, Jenkins, and Reinsell, 1994, p. 218). It can
also be applied to exponential smoothing methods. What it
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involves is to reverse the data series and start the estimation
procedure from the latest (most recent) value and finish with
the first (oldest) value. Doing so will provide forecasts and/or
parameter estimates for the beginning of the data, which can
be used as initial values when the data are forecast in the usual
sequence (i.e., from the beginning to the end). Ledolter and
Abraham (1984) discuss this approach in detail.

2. Least squares estimates: Initial values can also be calculatedleast squares

estimates using ordinary least squares. For instance in single exponential
smoothing, Ft can be found by averaging, say, 10 past values.
In methods assuming a trend, a straight line can be fitted to
the first few values and the values of the slope and intercept
used for initial values.

3. Decomposition: The decomposition methods of Chapter 3 maydecomposition

be applied to obtain initial estimates of the components.

A useful procedure is to specify high values for the smoothing
parameters for the first part of the data. This will result in a fast
adjustment in the various parameters and forecasts, and therefore the
effect of not having optimal initial values will be minimal.

4/5/2 Optimization

All the exponential smoothing methods require specification of some
smoothing parameters. These control how quickly the forecasts will
react to changes in the data. Not long ago, the computer time needed
to optimize these parameters was sufficiently great that methods
involving more than one or two parameters were not widely used
and values of the parameters were restricted to a small number of
possibilities (e.g., 0.1, 0.3, 0.5, 0.7, and 0.9).

With the advent of much faster computing, it is relatively easy
to choose optimal values of the parameters using a non-linear opti-
mization algorithm. All good forecasting packages will give optimal
parameter values automatically by minimizing the MSE. It is possible
to optimize some other measurement of forecast error (such as MAE
or MAPE) but the MSE tends to be easier to work with.

An alternative to worrying about optimal values is to find good
initial estimates for the components Lt, bt, and St, then specify
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small values for the parameters (around 0.1 to 0.2). The forecasting
system will then react slowly but steadily to changes in the data. The
disadvantage of this strategy is that it gives a low response system.
However, this price is often worth paying to achieve long-term sta-
bility and to provide a general, low-cost method for forecasting all
types of data.

4/5/3 Prediction intervals

The forecasts considered so far have been point forecasts; that is, point forecasts

single numbers that represent what we think the value of the series
will be in the future. Sometimes, that is all that is required. But it is
often desirable to have a measure of the uncertainty associated with
that forecast.

The values of the measures of forecast accuracy such as MSE and
MAPE give some guide to the uncertainty in forecasts, but they can
be difficult to explain to others. A more intuitive method is to give
a prediction interval which is a range in which the forecaster can be prediction interval

fairly sure that the true value lies.

Unfortunately, exponential smoothing methods do not allow the
easy calculation of prediction intervals. One widely-used approach is
to find a statistical model for which a particular exponential smooth-
ing method is optimal. Then prediction intervals can be obtained
from the statistical model. The equivalence between exponential
smoothing methods and statistical models is discussed in Section
7/8/5.

However, there are a number of difficulties with this approach.

1. Exponential smoothing methods can be used even when the
data do not satisfy the statistical model for which the method
is optimal. In fact, exponential smoothing methods were devel-
oped as a widely applicable approach to forecasting a variety of
time series. They were never intended to be optimal forecasts
in the sense of an underlying statistical model.

2. The statistical models assume that the forecasting errors are
uncorrelated and this is crucial in calculating prediction in-
tervals, particularly intervals for forecasts more than one step
ahead. Often, an exponential smoothing method will be applied
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and give forecasting errors which are correlated. Then the
prediction intervals are no longer valid.

3. For some exponential smoothing algorithms, the equivalent
statistical model is not known.

For these reasons, care must be taken when using the prediction
intervals computed by many computer packages. The forecast errors
should be checked to ensure they satisfy the required assumptions
(see Section 7/1).
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Exercises

4.1 The Canadian unemployment rate as a percentage of the
civilian labor force (seasonally adjusted) between 1974 and
the third quarter of 1975 is shown below.

Quarter Unemployment
Rate

1974 1 5.4
2 5.3
3 5.3
4 5.6

1975 1 6.9
2 7.2
3 7.2

(a) Estimate unemployment in the fourth quarter of 1975
using a single moving average with k = 3.

(b) Repeat using single exponential smoothing with α = 0.7.
(c) Compare your two estimates using the accuracy statis-

tics.

4.2 The following data reflect the sales of electric knives for the
period January 1991 through April 1992:

1991 1992
Jan 19 Jan 82
Feb 15 Feb 17
Mar 39 Mar 26
Apr 102 Apr 29
May 90
Jun 29
Jul 90
Aug 46
Sep 30
Oct 66
Nov 80
Dec 89

Management wants to use both moving averages and expo-
nential smoothing as methods for forecasting sales. Answer
the following questions:
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(a) What will the forecasts be for May 1992 using a 3-, 5-,
7-, 9-, and 11- month moving average?

(b) What will the forecasts be for May 1992 for exponential
smoothing with α values of 0.1, 0.3, 0.5, 0.7, and 0.9?

(c) Assuming that the past pattern will continue into the
future, what k and α values should management select
in order to minimize the errors?

4.3 Using the single randomless series 2, 4, 6, 8, 10, 12, 14, 16,
18, and 20, compute a forecast for period 11 using:

(i) the method of single exponential smoothing,

(ii) Holt’s method of linear exponential smoothing.

Find the optimal parameters in both cases.

(a) Which of the two methods is more appropriate? Why?

(b) What value of α did you use in (i) above? How can you
explain it in light of equation (4.4)?

(c) What values of α and β did you use in (ii) above? Why?

4.4 The Paris Chamber of Commerce and Industry has been asked
by several of its members to prepare a forecast of the French
index of industrial production for its monthly newsletter.
Using the monthly data given below:

(a) Compute a forecast using the method of moving averages
with 12 observations in each average.

(b) Compute the error in each forecast. How accurate would
you say these forecasts are?

(c) Now compute a new series of moving average forecasts
using six observations in each average. Compute the
errors as well.

(d) How do these two moving average forecasts compare?
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French index of French index of
Period industrial prod. Period industrial prod.

1 108 15 98
2 108 16 97
3 110 17 101
4 106 18 104
5 108 19 101
6 108 20 99
7 105 21 95
8 100 22 95
9 97 23 96
10 95 24 96
11 95 25 97
12 92 26 98
13 95 27 94
14 95 28 92

4.5 The data in the following table show the daily sales of pa-
perback books and hardcover books at the same store. The
task is to forecast the next four days’ sales for paperbacks and
hardcover books.

(a) Use single exponential smoothing and compute the mea-
sures of forecasting accuracy over the test periods 11–30.

(b) Repeat using the method of linear exponential smoothing
(Holt’s method).

(c) Compare the error statistics and discuss the merits of the
two forecasting methods for these data sets.

(d) Compare the forecasts for the two methods and discuss
their relative merits.

(e) Study the autocorrelation functions for the forecast er-
rors resulting from the two methods applied to the two
data series. Is there any noticeable pattern left in the
data?
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Day Paperbacks Hardcovers Day Paperbacks Hardcovers
1 199 139 16 243 240
2 172 128 17 225 189
3 111 172 18 167 222
4 209 139 19 237 158
5 161 191 20 202 178
6 119 168 21 186 217
7 195 170 22 176 261
8 195 145 23 232 238
9 131 184 24 195 240
10 183 135 25 190 214
11 143 218 26 182 200
12 141 198 27 222 201
13 168 230 28 217 283
14 201 222 29 188 220
15 155 206 30 247 259

4.6 Using the data in Table 4-5, examine the influence of different
starting values for α and different values for β on the final
value for α in period 12. Try using α = 0.1 and α = 0.3 in
combination with β values of 0.1, 0.3, and 0.5. What role does
β play in ARRSES?

4.7 Forecast the airline passenger series given in Table 3-5 two
years in advance using whichever of the following methods
seems most appropriate: single exponential forecasting, Holt’s
method, additive Holt-Winters method, and multiplicative
Holt-Winters method.

4.8 Using the data in Table 4-7, use Pegels’ cell C-3 to model the
data. First, examine the equations that go along with this
method (see Table 4-10), then pick specific values for the three
parameters, and compute the one-ahead forecasts. Check the
error statistics for the test period 10–24 and compare with
the optimal results shown in Table 4-11. If you have access
to a computer program to develop optimal values for the
parameters, see if you can confirm the results in Table 4-11,
for the appropriate method.
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5/1 Regression methods

In Chapters 3 and 4, two major classes of time series methods
were examined: exponential smoothing and decomposition. Various
methods within each class were presented—methods appropriate for
different patterns of data and different conditions. The exponential
smoothing methods were suggested to be appropriate for immediate
or short-term forecasting when large numbers of forecasts are needed,
such as at the operating level of a company. On the other hand, the
decomposition methods were found to require more computations. In
addition, they require the personal attention of the user, who must
predict the cycle with only indirect help from information provided by
the method. Thus the decomposition approach to forecasting requires
more time and is therefore restricted to forecasting fewer items than
the simpler smoothing models.

In this and the following chapter, another approach available to
forecasters—that of explanatory methods—will be examined. It is
one thing to forecast a single time series, it is quite another to come
up with other variables that relate to the data series of interest and
to develop a model that expresses the functional relationship among
the variables.

Thus Chapter 5 introduces a new concept in the attempt to
forecast: a forecast will be expressed as a function of a certain
number of factors that influence its outcome. Such forecasts will not
necessarily be time dependent. In addition, an explanatory model
that relates output to inputs facilitates a better understanding of the
situation and allows experimentation with different combinations of
inputs to study their effect on the forecasts (the output). In this way,
explanatory models can be geared toward intervention, influencing
the future through decisions made today. More accurate forecasts
also result as the influence of explanatory variables on the output
can be estimated.

Sometimes the forecaster will wish to predict one variable Y (e.g.,
sales) and have available one explanatory variable X (e.g., advertising
expenditure). The objective is to develop an explanatory model relat-
ing Y and X. This is known as simple regression and will be discussedsimple regression

in this chapter. In other situations, there will be one variable to
forecast (Y ) and several explanatory variables (X1, X2, . . . , Xk) and
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the objective will be to find a function that relates Y to all of the
explanatory variables. This is multiple regression of Y on X1 through multiple regression

Xk and will be handled in Chapter 6. Finally, in many situations
there will be more than one variable to forecast and more than one
explanatory variable, and indeed, sometimes the forecaster will even
want to forecast some of the explanatory variables. Regression models
that handle such situations often call for a set of equations (rather
than a single equation) which are solved simultaneously, and this is
known as econometric modeling. Section 6/6 deals briefly with this econometric

modelingtopic.

The forecaster, then, must decide on how many variables to deal
with, which one(s) will be forecast and which will be explanatory,
and which functional form will be chosen. If the data are measured
over time, then it will be called time series regression. If the data time series and

cross-sectional

regression

measurements are all taken at the same time, it will be referred to
as cross-sectional regression. Even though cross-sectional regression
does not deal with time explicitly, many important decisions affecting
the future are made on the basis of such studies. In that sense it is
proper to consider cross-sectional regression in a book on forecasting.

5/2 Simple regression

In this section the term “simple regression” will refer to any regression
of a single Y variable (the forecast or dependent variable) on a single forecast and

explanatory variablesX variable (the explanatory or independent variable). The general
situation will involve a set of n paired observations to be denoted:

(Xi, Yi) for i = 1, 2, 3 . . . , n.

The automobile data discussed in Chapter 2 were of this type where
the price of the vehicle can be represented by Y and the mileage of
the vehicle can be represented by X.

Another example is given in Table 5-1 and Figure 5-1. Here the
forecast variable Y represents sales and the explanatory variable X
is time. So this is an example of time series regression, whereas the
automobile data involved cross-sectional regression.

In a scatterplot (see Section 2/1/3), each pair is plotted as a point scatterplot

and, by convention, Y values are plotted against the vertical axis and
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Period Xi 1 2 3 4 5 6 7 8 9 10
Sales Yi 30 20 45 35 30 60 40 50 45 65

Table 5-1: Sales data over 10 time periods.

Time

S
al

es

2 4 6 8 10

20
30

40
50

60

Figure 5-1: A scatterplot of sales versus time (using data in Table 5-1).

X values against the horizontal axis as shown in Figure 5-1. (Notice
that when X is time, as in this example, a scatterplot is almost the
same as a time plot except the points are not connected.)

We will consider a linear relationship between Y and X given by

Y = a + bX + e

where a is the intercept, b is the slope of the line, and e denotes the
error (the deviation of the observation from the linear relationship).

5/2/1 Least squares estimation

The objective is to find values of a and b so the line Ŷ = a + bX
presents the “best fit” to the data.

As a way of introducing least squares estimation in this context,
consider fitting two different straight lines through the points, as in
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B

Figure 5-2: Fitting straight lines through the sales data.

Figure 5-2. Line A does not seem to do as well as line B in “fitting”
the observed data. How can different lines be appraised in terms of
goodness of fit?

Figure 5-3 indicates the standard way of evaluating goodness of fit. goodness of fit

For each point (observation) in the plot, the error of fit can be defined
as the vertical deviation between the observation and the fitted line,
shown by the dotted lines in Figure 5-3.

These vertical deviations (or “errors”) are denoted by

ei = Yi − Ŷi where Ŷi = a + bXi.

The notation Ŷi (pronounced “Y-hat”) refers to the estimated value
of Yi if we only knew Xi.

What we are saying is that the observed values of Y are modeled
in terms of a pattern and an error:

Yi = pattern + error,

Yi = a + bXi + ei,

Yi = Ŷi + ei.





(5.1)

The pattern is denoted by Ŷi and the error by ei.
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Figure 5-3: How to measure the “fit” of a line using vertical “errors.”

To obtain an overall measure of “goodness of fit,” we calculate the
sum of the squared errors:sum of squares

SSE = e2
1 + e2

2 + · · ·+ e2
n =

n∑

i=1

e2
i . (5.2)

The line of best fit is chosen to be the one which yields the smallest
value for this sum of the squared errors. This is known as ordinaryordinary least squares

least squares (OLS) estimation or just LS for short. Although there
are other measures of “goodness of fit,” the idea of minimizing the
sum of squared errors is by far the most widely used in statistical
estimation.

We can rewrite (5.2) to show that it is a function of a and b:
n∑

i=1

e2
i =

n∑

i=1

(Yi − Ŷi)2 =
n∑

i=1

(Yi − a− bXi)2.

Then we can use calculus to find the values of a and b which make
this expression yield a minimum (see Appendix 5-A). The formula
for determining the slope b is

LS estimate of slope b =
∑n

i=1(Xi − X̄)(Yi − Ȳ )∑n
i=1(Xi − X̄)2

(5.3)
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Figure 5-4: The least squares (LS) line relating Sales (Y ) to Time (X). The line
has the equation Y = 23.33 + 3.39X.

and the formula for determining the intercept a is

LS estimate of

intercepta = Ȳ − bX̄. (5.4)

In the case of the data in Table 5-1, the LS solution shown in
Figure 5-4 is

Y = 23.33 + 3.39X.

Such computations are seldom done by hand anymore. Many hand
calculators can perform simple regression analysis and all statistics
packages and most spreadsheets can perform a simple regression
analysis.

Example: Pulp shipments

Generally, the relationship between price and sales is negative, indi-
cating that as price increases, sales decrease and vice versa. Figure
5-5 shows this relationship between world pulp price and shipments.
The line fitted by least squares is shown on the scatterplot. Its
equation is

S = 71.7− 0.075P.
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Pulp shipments World pulp price
(millions metric tons) (dollars per ton)

Si Pi

10.44 792.32
11.40 868.00
11.08 801.09
11.70 715.87
12.74 723.36
14.01 748.32
15.11 765.37
15.26 755.32
15.55 749.41
16.81 713.54
18.21 685.18
19.42 677.31
20.18 644.59
21.40 619.71
23.63 645.83
24.96 641.95
26.58 611.97
27.57 587.82
30.38 518.01
33.07 513.24
33.81 577.41
33.19 569.17
35.15 516.75
27.45 612.18
13.96 831.04

Table 5-2: World pulp prices and shipments.

The negative relationship is seen in the downward slope of −0.075.
That is, when the price increases by one dollar, sales decrease, on
average, by about 75 thousand metric tons. This is a time series
regression, even though the X variable (P ) is not time, since eachtime series regression

observation is from a different period of time. That is, each of the
variables forms a time series. In fitting the linear regression, we have
ignored the time ordering of the data.



5/2 Simple regression 193

World pulp price

P
ul

p 
sh

ip
m

en
ts

500 600 700 800

10
15

20
25

30
35

Figure 5-5: A scatterplot of the data in Table 5-2. The relationship between world
pulp price and pulp shipments is negative. As the price increases, the quantity
shipped decreases. The fitted LS regression line has the equation S = 71.7− 0.075P
where S denotes shipments and P denotes price.

5/2/2 The correlation coefficient

It often occurs that two variables are related to each other, even
though it might be incorrect to say that the value of one of the
variables depends upon, or is influenced by, changes in the value
of the other variable. In any event, a relationship can be stated by
computing the correlation between the two variables. The coefficient
of correlation, r, was introduced in Section 2/2/2 and is a relative correlation

measure of the linear association between two numerical variables.
It can vary from 0 (which indicates no correlation) to ±1 (which
indicates perfect correlation). When the correlation coefficient is
greater than 0, the two variables are said to be positively correlated
(when one is large, the other is large), and when it is less than 0, they
are said to be negatively correlated (when one is large, the other is
small).

The correlation coefficient plays an important role in multivariate
data analysis (i.e., whenever there are two or more variables involved)
and has particularly strong ties with regression analysis. The reader
is urged to develop an intuitive understanding of this coefficient.
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The correlation between two variables X and Y is designated rXY

and for n paired observations the following formulas are relevant
(these were discussed in Section 2/2/2):

mean of X

mean of Y

covariance between
X and Y

variance of X

variance of Y

correlation between

X and Y

X̄ =
1
n

n∑

i=1

Xi (5.5)

Ȳ =
1
n

n∑

i=1

Yi (5.6)

CovXY =
1

n− 1

n∑

i=1

(Xi − X̄)(Yi − Ȳ ) (5.7)

S2
X = CovXX =

1
n− 1

n∑

i=1

(Xi − X̄)2 (5.8)

S2
Y = CovY Y =

1
n− 1

n∑

i=1

(Yi − Ȳ )2 (5.9)

rXY =
CovXY

SXSY

(5.10)

where SX =
√

S2
X and SY =

√
S2

Y are the standard deviations of X
and Y , respectively. Note that the formula for rXY is unchanged if
X and Y are interchanged. So rY X = rXY .

The correlation coefficient can range from an extreme value of −1
(perfect negative correlation) through zero to an extreme value of +1
(perfect positive correlation). Figure 5-6 plots some artificial data
that show various correlations. Each plot shows 100 observations.

Intuitively, the correlation tells us two things.

1. The sign of the correlation coefficient (+ or −) indicates the
direction of the relationship between the two variables. If it is
positive, they tend to increase and decrease together; if it is
negative, one increases while the other decreases; if it is close
to zero, they move their separate ways.

2. The magnitude of the correlation coefficient is a measure of the
strength of the association—meaning that as the absolute value
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Figure 5-6: Scatterplots corresponding to various correlation coefficients. Each
plot shows 100 observations.
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of the correlation moves away from zero, the two variables are
more strongly associated. Note, however, that there are some
cautions that need to be observed, as described in the next
section.

Examples

The sales and time data yield a correlation of rXY = 0.735, indicating
a moderately strong positive relationship between Sales and Time. As
Time increased, Sales also increased—not perfectly so, but there was
a strong tendency for this to happen.

The pulp price and shipments data have a correlation of rPS =
−0.931, indicating a very strong negative relationship between pulp
price and pulp shipped. If the pulp price increases, the quantity of
pulp shipped tends on average to decrease and vice versa.

5/2/3 Cautions in using correlation

The correlation coefficient is widely used in statistics and can be a
very useful measure. However, certain cautions need to be observed.
First, the correlation is a measure of linear association between two
variables. If two variables are related in a nonlinear manner, thenonlinear relationship

correlation coefficient will not be able to do justice to the strength
of the relationship. For example, in Figure 5-7, two variables X
and Y are plotted to show that they have a very strong nonlinear
relationship, but their correlation coefficient is essentially zero.

Second, when the sample size is small—meaning there are only a
few pairs of data to use in computing the correlation—the sample
r value is notoriously unstable. For example, if we consider the
population of all adults in the world and have in mind that the
correlation between height and weight is significantly positive, say
rHW = 0.60, then we can be surprised if we take a sample of n = 10
people and compute the correlation between height and weight for
them. The sample r value can vary widely over the interval from
−1 to +1. The message for the forecaster is that correlations based
on small samples should be recognized as having a large standard
error (i.e., they are unstable) and only when the sample size exceeds
n = 30 do they become reasonably stable.
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x

y

Figure 5-7: The correlation coefficient does not help define a nonlinear relationship.
Here the correlation is 0.05 based on 100 observations.

A third point about the correlation coefficient concerns the pres-
ence of extreme values. The value of r can be seriously affected by
the presence of just one observation which lies away from the bulk
of the data. We illustrate this important caution by referring to the
“King Kong” effect in Figure 5-8. King Kong effect on

correlationSuppose we are examining the relationship between height and
weight for gorillas and we take a sample of size n = 20. Figure 5-8a
shows a scatterplot for the height-weight pairings and the correlation
turns out to be 0.527. Now if one gorilla, King Kong, is added to
the sample, there is one large height and one large weight to add to
the scatterplot, and the correlation increases to 0.940. Technically,
what has happened here is that the height variable and the weight
variable have become very skewed distributions, and skewness has a effect of skewness on

correlationprofound effect on the correlation coefficient. Sometimes, an extreme
observation will make only one distribution skew, and then an r value
of 0.5 might shift to an r value of 0.05.

In the context of forecasting, the correlation coefficient is used very
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Figure 5-8: The King Kong effect on r. The plot on the left has 20 points with
correlation 0.527. The plot on the right has only one additional point, but has
correlation 0.940.

frequently. For example, in Chapter 7 the notion of autocorrelation
forms the very basis for the time series methods discussed there.
It is well to bear in mind that r values (whether they be regular
correlations, autocorrelations, or cross-correlations) are unstable in
small samples, are measures of linear association, and are seriously
influenced by extreme values.

5/2/4 Simple regression and the correlation coefficient

Because there is a negative correlation between price and shipments of
pulp (i.e., rPS is negative), we know that if we raise the price we will
tend to lower the quantity of pulp shipped, and vice versa. When
we regress shipments on price, then we are able to estimate what
the consumption will be for a given price. Clearly, the better the
regression fit, the better will be the estimate obtained, and the linear
regression fit will be better if there is a strong linear relationship (high
correlation) between price and shipments. So we see that correlation
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and regression are intimately connected.

This relationship between correlation and regression can be estab-
lished by examining the formulas used to determine the slope of a
simple linear regression (5.3) and the formula used for computing
the correlation coefficient (5.10). They are repeated here for ease of
reference.

b =
∑n

i=1(Xi − X̄)(Yi − Ȳ )∑n
i=1(Xi − X̄)2

=
CovXY

S2
X

rXY =
CovXY

SXSY

It is a simple matter to write an equation linking the slope and the
correlation coefficient, as follows:

b =
CovXY

S2
X

= rXY

SY

SX

. (5.11)

Thus, the slope of the simple regression of Y on X is the correlation
between X and Y multiplied by the ratio SY /SX . (In passing, note
that if we had been regressing X on Y , the slope of this regression
line would be rXY multiplied by the ratio SX/SY .)

There is another important correlation to consider in regression.
Once the regression model has been estimated—that is, the least
squares estimates of the regression coefficients have been obtained—
then all the known Y values can be compared with all the estimated
Y values, using the regression line. The estimated Y values are
designated Ŷ and we have the identity

Yi = (a + bXi) + ei = Ŷi + ei.

There are now n pairs of values (Yi, Ŷi) and it is of great interest to
know how these two values relate to each other. In regression, the
correlation between Y and Ŷ is usually designated R. Furthermore, it
is customary to present this correlation in squared form, R2, and this
statistic is known as the coefficient of determination. R2 is thus the coefficient of

determinationsquared correlation between the forecast variable Y and its estimated
value, Ŷ . In general, R2 can be defined as

R2 = r2
Y Ŷ =

∑
(Ŷi − Ȳ )2∑
(Yi − Ȳ )2

. (5.12)
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For simple linear regression, the correlation between Y and Ŷ is
exactly the same as the correlation between Y and X. Therefore
R2 = r2

Y Ŷ
= r2

XY .

The reason for presenting this correlation in squared form is that
R2 can be interpreted as a proportion of the variation in Y which
is explained by X. The forecast variable Y has a certain amount of
variability, defined by its variance, and the estimated Ŷ values also
have a certain amount of variance. The ratio of these two variances
is R2:

R2 =
variance in the Ŷ values
variance in the Y values

.

Since the Ŷ values are defined with reference to the estimated regres-
sion equation, this is often expressed as follows:

R2 =
explained variance of Y

total variance of Y
.

Figure 5-9 helps to make this clearer. For any Yi value there is a
total deviation (Yi − Ȳ ) showing how far Yi is from the mean of the
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Total deviation

or error = Yi − Ȳ

Unexplained deviation
or error = Yi − Ŷi

Explained deviation
or error = Ŷi − Ȳ

X

Y

Figure 5-9: Explanation of the partition of total deviation into explained and
unexplained deviations (in the case of simple regression).
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Y values. This total deviation can be partitioned into two pieces, (i)
an unexplained deviation ei = (Yi − Ŷi), showing how far Yi is from
the regression line value, Ŷi, and (ii) an explained deviation (Ŷi− Ȳ ),
showing how far the regression value Ŷi is from the mean of the Ȳ
values. In symbols, this partition is as follows:

(Yi − Ȳ ) = (Yi − Ŷi) + (Ŷi − Ȳ ).
↑ ↑ ↑

total unexplained explained
deviation deviation deviation

Then the squared deviations are given by

(Yi − Ȳ )2 =
[
(Yi − Ŷi) + (Ŷi − Ȳ )

]2

= (Yi − Ŷi)2 + (Ŷi − Ȳ )2 + 2(Yi − Ŷi)(Ŷi − Ȳ ).

Summing these over all data points gives sums of squares

∑
(Yi − Ȳ )2 =

∑
(Yi − Ŷi)2 +

∑
(Ŷi − Ȳ )2 + 2

∑
(Yi − Ŷi)(Ŷi − Ȳ ).

The cross product term (the last term on the right) turns out to be
exactly zero. Thus we have

∑
(Yi − Ȳ )2 =

∑
(Yi − Ŷi)2 +

∑
(Ŷi − Ȳ )2

↑ ↑ ↑
total SS unexplained SS explained SS
(SST) (SSE) (SSR)

Note that unexplained deviations are actually the vertical errors,
denoted by ei. So the unexplained SS is the same as the sum of
squared errors (SSE) given in equation (5.2). The label SSR for the
explained SS stands for the “sum of squares from the regression.”

So, the total sum of squares (SST) is equal to the sum of the
unexplained sum of squares (SSE) and the explained sum of squares
(SSR). If the explained SS is very nearly equal to the total SS, then
the relationship between Y and X must be very nearly perfectly
linear.

The coefficient of determination (R2) can be expressed as the ratio
of the explained SS to the total SS:

R2 =
SSR
SST

.
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Period Sales Estimated Total Unexplained Explained
sales deviation deviation deviation

Xi Yi Ŷi Yi − Ȳ Yi − Ŷi Ŷi − Ȳ

1 30 26.73 −12 3.27 −15.27
2 20 30.12 −22 −10.12 −11.89
3 45 33.52 3 11.48 −8.48
4 35 36.91 −7 −1.91 −5.09
5 30 40.30 −12 −10.30 −1.70
6 60 43.70 18 16.30 1.70
7 40 47.09 −2 −7.09 5.09
8 50 50.48 8 −0.48 8.48
9 45 53.88 3 −8.88 11.88
10 65 57.27 23 7.73 15.27

Sums of squares 1760 809.70 950.30
SST SSE SSR

R2 = 950.3/1760.0 = 0.540.

Table 5-3: Calculation of R2 for the Sales data.

Examples

In the case of the Sales and Time data, the explained SS is 950.3 and
the total SS is 1760.0 as shown in Table 5-3. Hence

R2 =
950.3
1760

= 54.0%.

Note that we could have also calculated R2 as the square of rXY : R2 =
r2

XY = (0.735)2 = 0.540. So 54% of the variation in the Sales data
can be “explained” by the straight line model with the Time variable.
The remaining 46% of the variation is due to random fluctuation.

For the pulp data, the explained SS is 1357.2 and the total SS is
1566.2. Hence

R2 =
1357.2
1566.2

= 86.7%.

(Again, note that R2 = r2
PS = (−0.931)2 = 0.867.) In this case, 86.7%

of the variation in the quantity of pulp shipped is explained by the
linear relationship between pulp shipped and the changes in the world
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Figure 5-10: Residual plot from the Sales/Time regression. The residuals ei are
plotted against the explanatory variable Xi. A good regression model will have
residuals which are randomly scattered about 0, as seen here.

pulp price. This is a stonger linear relation than that between Sales
and Time.

5/2/5 Residuals, outliers, and influential observations

The errors (ei) are also called the residuals. These are what we residuals

cannot explain with the regression line. After fitting a straight line
through the data, it is helpful to examine the residuals to check that
the fitted model is adequate and appropriate.

A useful plot for studying residuals is the scatterplot of residuals ei

against the explanatory variable Xi. This is known as a residual plot. residual plot

Figure 5-10 shows the residuals from the regression of Sales on Time
plotted against Time (the X variable). If the straight line regression is
appropriate, the residuals should not be related to Xi. Therefore, the
residual plot should show scatter in a horizontal band with no values
too far from the band and no patterns such as curvature or increasing
spread. The residual plot in Figure 5-10 shows no such patterns, and
so the straight line regression can be considered appropriate.

Figure 5-11 shows the residual plot for the Pulp regression. In this
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Figure 5-11: Residual plot from the Pulp regression. Here the residuals show a
V-shaped pattern. This indicates the straight line relationship was not appropriate
for these data.

case, the residuals do not form a horizontal band centered at zero.
Instead, they tend to be positive at the edges of the plot (for small
and large values of the X variable), but negative in the middle of
the plot (for moderate values of the X variable). This may indicate
that a straight line relationship was not the most appropriate model
for these data. (It may also occur if an important variable has been
omitted from the model.) It is easier to see this from the residual
plot than from the original scatterplot in Figure 5-5. We will consider
alternative (nonlinear) relationships for these data in Section 5/4.

Outliers are observations with large residuals. Identifying outliersoutliers

helps us to find observations which are different from the bulk of the
observations, or which do not fit the linear pattern in some way.
There are no outliers in the two examples considered here.

Influential observations are observations which have a greatinfluential

observations influence on the fitted equation. If these observations were omitted,
the position of the regression line would markedly change. An
influential observation is usually an extreme observation in the X
variable, lying away from the bulk of the X data. (See Figure 5-8
to visualize the influence of an extreme observation.) There are no
influential observations in the two examples above.
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An example of an influential observation in the Pulp example would
be an observation with price X = 1, 000 and shipments of Y = 20.
This observation would not follow the pattern seen in the rest of the
data (see Figure 5-5 on page 193). The fitted line would have a smaller
slope and smaller intercept if such an observation were added to our
data. Influential observations often have relatively small residuals,
and so are usually not outliers.

Very often, interesting and useful information is gained by consid-
ering outliers and influential observations. But often they are omitted
or ignored in statistical analysis. For example, the Antarctic ozone
hole could have been detected much earlier if outliers had not been
omitted. Satellites have been collecting atmospheric data for many
years, but the software used to process the information rejected the
extremely low values recorded near the South Pole as an aberration.
It was not until ground-based instruments recorded ozone depletion
in 1985 that the satellite data was reanalyzed. Then it was found
that recorded ozone levels had begun falling in 1979. If the outliers
had been investigated in the first analysis, this problem could have
been detected much earlier.

Example: GDP and PCV sales

As a third example, consider the data listed in Table 5-4 and plotted
in Figure 5-12. The regression line is

Y = −4.21 + 1.60X

where Y denotes the PCV sales and X denotes GDP. Hence, the
PCV sales increase, on average, by 1.6% as GDP in Western Europe
increases by 1%. A major consequence of such a relationship is the
cyclical character of sales as they are related to GDP. In addition to
the long-term trend of GDP (which contributes to increasing sales
over time), it is also influenced by recessions and booms of various
durations and strengths which increase or decrease the sales of PCV
temporarily by an amount which on average is 1.6% greater or smaller
than the corresponding percentage changes in GDP. The correlation
of GDP and PCV sales is 0.949, so that R2 = (0.949)2 = 0.901. That
is, that 90.1% of the variation in PCV sales is explained by the linear
relationship with GDP.
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GDP Western Europe PCV Industry Sales
(X) (Y )
7.90 8.45
7.92 8.52
7.91 8.25
7.96 8.58
7.98 8.58
8.01 8.63
8.05 8.74
8.06 8.70
8.06 8.61
8.07 8.59
8.09 8.77
8.11 8.80
8.14 8.79
8.17 8.83
8.19 8.91
8.23 8.97
8.27 8.97
8.29 9.04
8.30 9.05

Table 5-4: Gross Domestic Product (GDP) and PCV industry sales for Western
Europe for 19 consecutive years. Data have been transformed using logarithms.

Figure 5-13 shows a residual plot for this regression. Here the
residuals show no pattern indicating that the linear relationship was
appropriate for these data. However, there is at least one outlier,
and possibly three outliers. These highlight observations where the
PCV sales were substantially less than that predicted by the linear
relationship with GDP. These outliers are associated with the en-
ergy crisis (1973–1974) when gasoline prices increased substantially,
forcing a steep price increase in PCV.
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Figure 5-12: Scatterplot and least squares regression line for the data in Table 5-3.
The least squares line is Y = −4.21 + 1.60X where Y denotes the PCV sales and
X denotes GDP.
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Figure 5-13: Residual plot from the PCV/GDP regression. The lack of pattern
in the residuals shows the straight line relationship was appropriate for these data.
However, there is at least one outlier and possibly three outliers. These highlight
unusual years where sales were substantially less than predicted by the linear rela-
tionship with GDP.
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5/2/6 Correlation and causation

It is important to distinguish between correlation and causation. Twocausation

variables X and Y may be highly correlated, but an increase in X
does not necessarily cause an increase in Y .

For example, suppose Y denotes the weekly total cans of cola sold
nationally and X is the weekly number of deaths by drowning. Then
X and Y are positively correlated, but no one would suggest that the
number of drownings causes the sales of cola. Both X and Y increase
together according to the weather. In summer, both drownings and
cola sales increase, and in winter, they are both lower. In this case
the temperature is a lurking variable.lurking variable

In general a lurking variable is an explanatory variable which was
not included in the regression but has an important effect on the
forecast variable. It is correlated with both X and Y . In the exercises,
there are several examples of a pair of variables which are correlated
because they are both caused by a third lurking variable.

Even if X does have a direct causal effect on Y , there may be
another variable Z which is correlated with X which also has a direct
causal effect on Y . In this case Z is called a confounding variable.confounding variable

For example, new car sales may depend both on advertising ex-
penditure and on price. But if advertising expenditure goes up when
the price is discounted, there is no way of telling which of the two
variables is causing the subsequent increase in sales. Here advertising
and price are confounded.

5/3 Inference and forecasting with
simple regression

When we make a scatterplot of Y (forecast variable) against X
(explanatory variable) and decide to define an equation relating Y
to X, we are assuming that there is an underlying statistical model
which we are estimating. Certain statistical tests can be conducted
to test the significance of the overall regression equation, to test
the individual coefficients in the equation, and to develop prediction
intervals for any forecasts that might be made using the regression
model.
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In this section there will be only a brief introduction to regression
as a statistical model (Section 5/3/1), then the F -test for overall
significance of the regression model will be defined (Section 5/3/2),
confidence intervals and t-tests for the individual slope and intercept
coefficients will be defined (Sections 5/3/3 and 5/3/4), and finally,
the regression equation will be used to forecast (Section 5/3/5).

The PCV data will be used to illustrate ideas throughout this
section.

5/3/1 Regression as statistical modeling

In a nutshell, the simple linear regression model may be defined
precisely as follows.

Regression model in theory

Yi = α + βXi + εi, (5.13)

where Yi and Xi represent the ith observations of the variables Y
and X respectively, α and β are fixed (but unknown) parameters
and εi is a random variable that is normally distributed with mean
zero and having a variance σ2

ε .

Note the formalities in a model of this type. The expression α+βXi

is the regression relationship—in this case a straight line—and α and
β are called parameters (which are unknown, but if they were known
they would be fixed numbers). There are several assumptions made
about Xi and εi which are important: assumptions

1. The explanatory variable Xi takes values which are assumed
to be either fixed numbers (measured without error), or they
are random but uncorrelated with the error terms εi. In either
case, the values of Xi must not be all the same.

2. The error terms εi are uncorrelated with one another.

3. The error terms εi all have mean zero and variance σ2
ε , and have

a normal distribution.

In contrast to the theoretical regression model, consider the re-
gression model in practice. All the unknown parameters in the
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theoretical model have to be estimated. In place of α and β (unknown
parameters) we have to find a and b (estimated statistics), and in
place of σ2

ε (variance parameter for the theoretical error term) we have
to determine s2

e (estimated variance of empirically defined errors).

Regression model in practice

Yi = a + bXi + ei, (5.14)

for i = 1, 2, . . . , n, where a and b are estimates of α and β, and are
both random variables and ei is the estimated error (or residual)
for the ith observation and is a random variable. The estimated
variance of the errors is denoted by s2

e.

The values of a and b are obtained using the LS equations (5.4)
and (5.3) respectively. The value of s2

e is given by1estimate of error

variance

s2
e =

1
n− 2

n∑

i=1

e2
i =

1
n− 2

n∑

i=1

(Yi − Ŷi)2 . (5.15)

For the PCV data, the simplest theoretical model to be entertained
is

Y = α + βX + ε

where ε
d= N(0, σ2

ε). The practical model developed for this case was

Yi = −4.21 + 1.60Xi + ei

and the estimated variance of the errors is

s2
e =

1
19− 2

(0.08081) = 0.00475.

If we measured GDP and PCV sales over a different time period, we
would not expect to get exactly the same estimated regression line.
The values of a and b will change with different sets of data. That is,
a and b are random variables and this one line (where a = −4.21 and
b = 1.60) is just one member of the family of lines that could have
been obtained for this problem.

1Note that this equation is not quite the same as the sample variance of the
residuals. The sample variance would have divisor n − 1 whereas here we have
used n− 2. The sum of squared errors is divided by the degrees of freedom which
can be defined as the number of data points minus the number of parameters
estimated. In this case, we have estimated two parameters (α and β), so the
degrees of freedom is two less than the total number of observations.
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5/3/2 The F -test for overall significance

The simple regression model, Y = α + βX + ε, has slope coefficient
β. If this slope was zero, the regression line would be Y = α + ε. In
other words, knowing the X values would be of no consequence at all
and there would be no relationship between Y and X. But we could
still fit a straight line through the data and find a value for b which
would not in general be exactly zero.

So, having fitted a regression line and obtained values for a and b,
it is natural to ask if there is a real relationship between Y and X.
The F -test allows us to test the significance of the overall regression significance of the

regressionmodel—to be able to answer the statistical question: Is there a
significant relationship between Y and X?

From Figure 5-14(a) it is clear that a linear relationship exists
between Sales and Time. From Figure 5-14(b) there is a slight rising
trend in consumption over time, but the variation around this trend is
substantial. Thus, it is not obvious if the consumption really increases
over time or if it an artifact of these data. From Figure 5-14(c) it
seems that variable unit cost does not depend on how many units are
produced. It would be helpful to have a statistical test that would
aid the forecaster in deciding on the significance of the relationship
between Y and X. The F -test is such a test.

The F statistic is defined as follows: F statistic

F =
explained MS

unexplained MS

=
explained SS/explained df

unexplained SS/unexplained df

=
∑

(Ŷi − Ȳ )2/(m− 1)
∑

(Yi − Ŷi)2/(n−m)
(5.16)

where MS = mean square, SS = sum of squares, df = degrees
of freedom, and m = number of parameters (coefficients) in the
regression equation.

Thus the F statistic is the ratio of two mean squares. The
numerator refers to the variance that is explained by the regression,
and the denominator refers to the variance of what is not explained
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Figure 5-14: (a) Significant regression equation. (b) Significance of regression
equation uncertain. (c) Regression equation not significant.
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by the regression, namely the errors.

In fact, the F statistic in (5.16) is intimately connected to the
definition of the coefficient of determination in (5.12). Thus it is easy
to develop another computational formula for F , as follows:

F =
R2/(m− 1)

(1−R2)/(n−m)
.

For the PCV data, using the computed R2 = .901, we get:

F =
.901/(2− 1)

(1− .901)/(19− 2)
=

.901
.00582

= 154.7.

If the slope is significantly different from zero, then the regression
will explain a substantial proportion of the variance, and so the F
statistic will be large.

Most computer packages will also report the P -value along with P-value

the F statistic. The P -value gives the probability of obtaining an F
statistic as large as the one calculated for your data, if in fact the
true slope is zero. So, if the P -value is small, then the regression
is significant. It is customary to conclude that the regression is
significant if the P -value is smaller than 0.05, although this threshold
is arbitrary.

Computer packages often present the calculation in the form of an
analysis of variance (ANOVA) table in Table 5.5. ANOVA table

Source df SS MS F P

Regression dfR = m− 1 SSR MSR = SSR/dfR MSR/MSE P -value

Error dfE = n−m SSE MSE = SSE/dfE

Total dfT = dfR+dfE SST = SSR+SSE

Table 5-5: Typical analysis of variance (ANOVA) table.
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Figure 5-5 shows a typical analysis of Variance (ANOVA) Table
containing six columns: Source of Variation, degrees of freedom (df),
sums of squares (SS), mean square (MS), the variance ratio or F
statistic (F), and the P -value (P). There are two useful by-products
of this analysis. First, the estimated variance of the errors, s2

e, is given
by MSE. Also, R2 can easily be calculated as the ratio SSR/SST.

For the case of simple regression, there are two parameters (α and
β) and so m = 2, and so for the PCV data, the linear regression
model relating PCV sales to GDP would yield the following ANOVA
table:

Source df SS MS F P

Regression 1 0.735 0.735 154.72 0.000

Error 17 0.081 0.00475

Total 18 0.816

Here the P -value is very small indeed, less than 0.0005. This suggests
very strongly that the relationship between PCV and GDP is signif-
icant. In other words, if the real slope β was zero, it is extremely
unlikely that these data would have arisen.

When a computer package does not report the P -value, it is
possible to calculate it from an F table. These show how large the
F statistic must be before we can conclude that the regression is
significant. To look up the F table, we need to know the degrees of
freedom for the denominator and for the numerator. As noted above,
for simple regression the df for the numerator is 1 and the df for the
denominator is n − 2 = 17. The F table (Table C in Appendix III)
for this combination of degrees of freedom give three critical values:
3.03, 4.45 and 8.40.

• If the F statistic is smaller than the first value, then the P -value
is bigger than 0.10.

• If the F statistic is between the first value and the middle value,
then the P -value is between 0.05 and 0.10.

• If the F statistic is between the middle value and the last value,
then the P -value is between 0.01 and 0.05.
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• If the F statistic is greater than the lower value then the P -value
is smaller than 0.01.

In this case, the F statistic is 154.72 which is larger than all three
critical values. So the P -value must be smaller than 0.01.

One point can be noted here concerning the F -test for overall
significance of the regression line. In the case of simple regression,
the F -test is really the same as testing the significance of the slope
coefficient. In multiple regression (Chapter 6), the overall F -test is
not the same as any one of the tests of significance for individual
coefficients.

5/3/3 Confidence intervals for individual coefficients

In Section 5/3/1 it was pointed out that in the practical process
of estimating the coefficients a and b, they must both be considered
random variables. In other words, both a and b fluctuate from sample
to sample.

The sampling distribution of a (the intercept coefficient) is a
normal distribution with mean α and standard error:

standard error of a
s.e.(a) = σε

√
1
n

+
X̄2

∑
(Xi − X̄)2

. (5.17)

The sampling distribution of b (the slope coefficient) is a normal
distribution with mean β and standard error:

standard error of bs.e.(b) = σε

√
1∑

(Xi − X̄)2
. (5.18)

In both these equations, the standard deviation of the errors (σε) is
unknown, but we can estimate it by

standard deviation of

errors

se =

√∑
(Yi − Ŷi)2

n− 2
.

Using the PCV data (see Table 5-4), the following values are
obtained:
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Parameter Estimate s.e.
α a = −4.208 1.040
β b = 1.599 0.129

The standard errors are used to tell us how much the estimates are
likely to fluctuate from sample to sample.

The best way of describing how much each estimate fluctuates is in
the form of a confidence interval. We can obtain confidence intervals
for the intercept and slope:

α : a ± t∗s.e.(a)
β : b ± t∗s.e.(b).

Here t∗ is a multiplying factor that depends on the number of obser-

confidence intervals

for α & β

vations used in the regression and the level of confidence required.

With the PCV data, 95% confidence intervals are obtained with
t∗ = 2.11. So the intervals are

−4.208± 2.11(1.040) = −4.208± 2.194 = [−6.40,−2.03]
1.599± 2.11(0.129) = 1.599± 0.270 = [1.33, 1.87].

That is, we can be 95% sure that the true value of α lies between
−6.40 and −2.03 and we can be 95% sure that the true value of β
lies between 1.33 and 1.87. The values of a and b represent our best
estimates of the values of α and β.

The value of t∗ is obtained from Table B in Appendix III. The
degrees of freedom of a parameter estimate is the same as the
degrees of freedom for the denominator in the F -test: the number
of observations (n) minus the number of parameters estimated (m).
For simple regression (with only one explanatory variable), m = 2.

For the PCV data, the degrees of freedom is 19 − 2 = 17. This
gives the row of the table. The relevant column is selected on the
basis of the level of confidence required. For example, 90% confidence
intervals would use t∗ = 1.74 and 99% confidence intervals would use
t∗ = 2.90 (for 17 degrees of freedom). Generally, the larger the level
of confidence, the larger the value of t∗ and so the wider the interval.
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5/3/4 t-tests for individual coefficients

A related idea is a t-test which is a test of whether a parameter is
equal to zero. Two t-tests can be set up to test the intercept and
slope values, as follows:

ta = a/s.e.(a)
tb = b/s.e.(b).

These statistics indicate if the values for a and b are significantly

t statistic for a

t statistic for b

different from zero. For example, when the slope is significantly
different from zero, the value of tb will be large (in either the positive
or negative direction depending on the sign of b).

Most computer packages will also report the P -values along with P-value

each of the t statistics. Each of these P -values is the probability of
obtaining a value of |t| as large as the one calculated for your data, if
in fact the parameter is equal to zero. So, if a P -value is small, then
the estimated parameter is significantly different from zero. As with
F -tests, it is customary to conclude that an estimated parameter is
significantly different from zero if the P -value is smaller than 0.05,
although this threshold is arbitrary.

For the PCV data, the following values are obtained:
Parameter Estimate s.e. t P

α a = −4.208 1.040 -4.0465 0.0008
β b = 1.599 0.129 12.4387 0.0000

Both the P -values are small indicating that both parameters, the
slope and the intercept, are highly significant—meaning significantly
different from zero.

There is a direct relationship between confidence intervals and P -
values. If the 95% confidence interval does not contain zero, then the
P -value must be less than 0.05. Generally if the 100γ% confidence
interval does not contain zero, the P -value must be less than 1− γ.

For a simple regression (with one X variable), the P -value for the
t-test of the slope b is exactly the same as the P -value for the F -test
of the regression. Also, F = t2b . These tests are equivalent.

When a computer package does not report the P -value, it is possi-
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ble to calculate it from t tables. These show how large the t statistic
must be before we can conclude that the parameter is significant.
Table B in Appendix III can be used to find a P -value given a t
statistic. As with confidence intervals, the degrees of freedom is n−2
where n is the number of observations.

Considering the estimated parameters a and b separately is helpful,
but it is worth remembering that they do not behave independently.
They have a joint sampling distribution, and, in fact, there can be
a strong correlation between a and b because the LS regression line
goes through the mean of Y and the mean of X. If the mean of
X is positive, then the correlation between a and b is negative: an
increase in slope leads to a decrease in intercept, and vice versa. On
the other hand, if the mean of X is negative, then the correlation
between a and b is positive: an increase in slope leads to an increase
in intercept, and vice versa.

5/3/5 Forecasting using the simple regression model

This is a book about forecasting. How does one use a regression model
to forecast Y values? This translates into using new X values and
asking what Y values are implied by these X values. We can compute
point estimates for Y (i.e., single values, Ŷ ) or interval estimates
(prediction intervals). Given a particular new X value, designated
X0, the estimated regression model yields

point forecast Ŷ0 = a + bX0

as the expected value of Y given X0. However, since a and b are both
random variables (fluctuating from sample to sample), and since there
is some random error in every observation, we do not expect the new
observation Y0 to be exactly Ŷ0.

How far it may vary is measured by its standard error given by

standard error of

forecast s.e.(Ŷ0) = se

√
1 +

1
n

+
(X0 − X̄)2∑
(Xi − X̄)2

. (5.19)

(The sum on the right-hand side is over all the n known X values.)

Note in equation (5.19) that the only item to change on the right-
hand side is X0, the new X value. If this value equals the mean of
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the n known X values, then equation (5.19) yields the lowest possible
value for the standard error of the mean forecast. As X0 moves away
from X̄, the standard error increases.

Example

To illustrate the points made above, consider the PCV example once
again. The LS regression solution is

Yi (PCV sales) = −4.21 + 1.60Xi (GDP).

and the F -test (F = 154.7, with 1 and 17 df) was highly significant.
The linear regression equation significantly improves upon the use of
the mean alone as a forecast of PCV sales. In other words, knowing
the GDP in Western Europe helps to estimate sales much better than
if GDP were ignored.

Now suppose that decision makers in the PCV industry need to
forecast what the sales of PCV would be if GDP were 7.5, 8.0, or
8.5. The first thing they could do is substitute these values into the
regression equation and get estimates of sales as follows:

7.78 when the GDP is 7.5
8.58 when the GDP is 8.0
9.38 when the GDP is 8.5

Equation (5.19) can be used to determine the standard errors of
forecasts for individual values. In this example, we have X̄ = 8.09,∑

(Xi − X̄)2 = 0.288, and s2
e = 0.00475 so that se =

√
0.00475 =

0.0689. So we have the general formula:

s.e.(Ŷ0) = (0.0689)

√
1 +

1
19

+
(X0 − 8.09)2

0.288
.

where the only item to be defined is the new GDP value (X0) of
interest. For the three values of GDP under consideration, the
standard errors are

s.e.(Y0) = 0.1036 when the GDP is 7.5
s.e.(Y0) = 0.0716 when the GDP is 8.0
s.e.(Y0) = 0.0881 when the GDP is 8.5

Note that the middle one is smaller than the others because GDP
of 8.0 is much closer to the mean of the observed GDP values than
either 7.5 or 8.5.
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These standard errors can then be used to obtain prediction inter-
vals for the future sales of PCV. The general formula for a prediction
interval is

prediction interval Y0 ± t∗s.e.(Y0). (5.20)

The value of t∗ is exactly the same as that used in confidence intervals
for individual parameters. So the value of t∗ is obtained from Table B
in Appendix III. The row is chosen by the degrees of freedom (n−2)
and the column is chosen by the percentage interval required.

For these three GDP values of interest, the degrees of freedom is
19 − 2 = 17, and for 90% prediction intervals we use t∗ = 1.74. So
we obtain the following 90% prediction intervals:

7.78± 1.74(0.1036) = 7.78± 0.180 = [7.60, 7.96]
8.58± 1.74(0.0716) = 8.58± 0.125 = [8.46, 8.71]
9.38± 1.74(0.0881) = 9.38± 0.153 = [9.23, 9.53]

These prediction intervals are shown in Figure 5-15 along with the
observed data. The prediction intervals are symmetric about the
point estimates and the range of the prediction interval increases as
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Figure 5-15: Prediction intervals for GDP of 7.5, 8.0 and 8.5. The prediction
intervals are smallest near the average GDP, and get larger as we move away from
the average GDP.
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the new X0 value (price in this instance) moves away from the mean
(X̄).

There is an obvious danger in forecasting beyond the range of the
data. We identified a straight line relationship for these data when danger of

extrapolationGDP lay between about 7.9 and 8.3. But in extrapolating the line
beyond that range, we are assuming that the linear relationship holds
for a wider range of GDP. If the relationship is not linear for GDP less
than 7.9 or GDP greater than 8.3, then the forecast and prediction
interval obtained for a GDP outside the data range may be a long
way from the true value of PCV sales. It is safest to make predictions
for values of GDP within the range of the data, or not too far outside
that range.

5/4 nonlinear relationships

We discovered in Figure 5-11 that the relationship between pulp
shipments and world pulp price was nonlinear. Although we had
fitted a linear relationship in Figure 5-5, the residual plot from the
fitted model showed a straight line relationship was not appropriate.
We can write the nonlinear relationship as

shipments = f(price) or S = f(P ).

This equation states that the level of shipments is a function of price,
and that future values of shipments may be forecast by identifying
this price relationship.

Figure 5-16 shows the data with a nonlinear relationship fitted to
the observations. We could use the fitted line to forecast the pulp
shipments at any given price. The nonlinear relationship fitted to the
pulp data was found using a local regression (see Section 5/4/3).

There are an infinite variety of nonlinear functions. Some of the
simplest nonlinear functions have been given names. Figure 5-17
shows a variety of functional relationships that could exist between
Y and X.
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Figure 5-16: A scatterplot of the pulp data with a nonlinear relationship shown.
This was estimated using a local regression.

5/4/1 nonlinearity in the parameters

An important technical distinction needs to be made between linear
and nonlinear regression models. All regression models are written
as equations linking the forecast and explanatory variables. For
example, Y = 1.5 + 2.5X expresses Y as a function of X. When
this equation is written in its general form, Y = α + βX, where α
and β are the two parameters, we can make two statements about it.
First, Y is a linear function of X—because if we plot Y against X it
will turn out to be a straight line, and second, this equation is linear
in the parameters.

“Linear in the parameters” means that once you give a value to
X, the parameters occur as variables raised to the power 1 and in
additive form. For example Y = α + βX is linear in the parameters
α and β. If X is given a value, say 2, then the resulting equation is
Y = α + 2β, a linear function of the parameters. On the other hand,
Y = ceβX+α is not linear in the parameters. If X is given the value 2,
the resulting equation is Y = ceα+2β which is not a linear function of
the parameters. In Figure 5-17, functions (i), (iii), and (iv) are linear
in the parameters but function (ii) is nonlinear in the parameters.

The reason for making this distinction between linear and nonlinear
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(i)
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Figure 5-17: Different forms of functional relationships connecting Y and X: (i)
linear Y = α+βX; (ii) exponential Y = eα+βX ; (iii) quadratic Y = α+β1X+β2X

2;
and (iv) cubic Y = α + β1X + β2X

2 + β3X
3.

in the parameters is of computational interest. It is relatively easy to
estimate the coefficients of a regression equation when it is linear in
the parameters. It is much more difficult if the equation is not linear
in the parameters. Whether it is linear or nonlinear in the variables
is of less importance.

Having selected a particular function, it becomes necessary to
estimate, from the known data pairs, the values of the parameters in
the function. If the function is linear in the parameters, the principle
of LS can be applied directly and expressions for the parameter
estimates can be found using calculus.
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For functions which are nonlinear in the parameters, it is much
more difficult. For example, Figure 5-17(ii), if it is not transformed
in any way, would pose difficulties in solving for α and β (since these
parameters occur in the exponent of e). It is possible to solve such a
problem by nonlinear LS, but the methodology is iterative and often
cannot guarantee that the global LS error fit will be obtained.

5/4/2 Using logarithms to form linear models

However, it should be noted that many nonlinear functions can be
transformed into linear functions. A few simple cases can illustrate
the point. Consider

W = ABX . (5.21)

Equation (5.21) relates variable W to variable X and a plot of W
versus X would be nonlinear. Our concern is with the parameters
A and B, which appear as a product (therefore not linear) and B is
raised to a power other than 1 (therefore not linear). To fit this curve
to a set of data pairs (W,X) would require an iterative procedure,
unless logarithms are taken of both sides:

log W = log A + (log B)X.

Substituting Y = log W , α = log A and β = log B gives

Y = α + βX. (5.22)

Equation (5.22) is now a simple linear relationship since the function
is linear in α and β. (It is also linear in X.) Thus we can use simple
LS regression on equation (5.22), solve α and β , and then recover A
and B via antilogarithms to get the parameter estimates for equation
(5.21).

A second example of a nonlinear function of parameters is that of
Figure 5-17(ii):

W = eα+βX . (5.23)

Taking logarithms to base e of both sides yields

loge W = (α + βX) loge e

= α + βX (since loge e = 1).
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Substituting Y = loge W gives Y = α + βX which is now in linear
form, so that α and β can be estimated directly. Using these values in
equation (5.23) allows W to be predicted (estimated) for any known
value of X.

5/4/3 Local regression

Local regression smoothing was discussed in Section 3/4 and used to
estimate the trend-cycle of a time series. The same technique can be
used for regression to estimate a nonlinear relationship.

In linear regression, we fit a straight line Y = a + bX. The
parameters, a and b, are found by minimizing the sum of squares

n∑

i=1

(Yi − a− bXi)2.

Local regression is a way of fitting a much more flexible curve to
the data. Instead of fitting a straight line to the entire data set, we fit
a series of straight lines to sections of the data. The resulting curve
is our nonlinear relationship.

The situation was simpler in Chapter 3 since there the explanatory
variable was always time which was equally spaced. Here our ex-
planatory variable could be anything and observations are not always
equally spaced.

The estimated curve at the point X is Y = a + bX where a and b
are chosen to minimize the weighted sum of squares weighted sum of

squares
n∑

j=1

wj(X)(Yj − a− bXj)2. (5.24)

Here wj(X) represents the weights. Note that there is a different
value of a and b for every value of X, and that X may take values
other than the observed X1, . . . , Xn.

To find the values of wj(X), we first define the distances between
X and all the observed Xi. Let ∆j(X) = |Xj −X| be the distance
from X to Xj . Then we choose the largest distance we wish to include
in the calculation. This is called the bandwidth h. The weights are



226 Chapter 5. Simple regression

then defined using a weight function. For example, we could use the
quartic function

wj(X) =

{
(1− (∆j(X)/h)2)2 for −h < ∆j(X) < h;
0 otherwise.

(The weights must also be scaled so that they sum to one.) This
gives positive weight to the points with Xi value no more than h
from X and zero weights elsewhere. The points closest to X receive
the largest weights.

The calculation for the value of the curve at X = 700 is shown in
Figure 5-18. The steps involved are as follows.

Step 1 The bandwidth to be used in the weighted regression was
chosen to be h = 115. The shaded area, centered at X = 700,
shows all points with Xi value within 115 from 700 (i.e., between
585 and 815). Eighteen points fall within this range.

Step 2 The observations are assigned weights using the weight func-
tion shown in the upper right panel. The function has a
maximum at X = 700; the observations with price close to 700
receive the largest weights and observations with price further
away receive smaller weights. The weights become zero at
the boundaries of the shaded region. Observations outside the
shaded region receive zero weights, so they are excluded from
the calculation.

Step 3 A line is fitted to the data using weighted least squares with
the values of a and b chosen to minimize (5.24). The fit is shown
in the lower left panel. The weights determine the influence each
observation has on the fitting of the line. The estimate of the
relationship at X = 700 is shown by the filled circle.

The same calculations are carried out for many different values of
X. The number of points included in the calculation will vary with
X. The resulting estimates are joined together to form the line shown
in the lower right panel.

One parameter must be selected before fitting a local regression,
the bandwidth (or smoothing parameter) h. This is chosen in the
same way as the smoothing parameter for estimating a trend-cycle.
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Figure 5-18: Steps 1–3 show the steps involved in calculating a local linear
regression for the pulp data at price $700. Here the bandwidth h was chosen to
be 115. When this is done for a range of different prices, the resulting curve is
shown at lower right.

The goal is to choose h to produce a relationship which is as smooth
as possible without distorting the underlying pattern in the data. In
this example, h = 115 is a good choice that appears to follow the
nonlinear relationship without undue wiggles.



Appendix 5-A
Determining the values of a and b

Assume there are n pairs of data points denoted by

(X1, Y1), . . . , (Xn, Yn).

Then the regression equation Ŷi = a + bXi can be estimated so as to
minimize the sum of the squared deviations.

Defining ei = Yi − Ŷi, the sum of squared deviations is

n∑

i=1

e2
i =

n∑

i=1

(Yi − Ŷi)2 =
n∑

i=1

(Yi − a− bXi)2.

Applying calculus,

∂
∑

e2
i

∂a
= −2

∑
(Yi − a− bXi) = 0 (5.25)

∂
∑

e2
i

∂b
= −2

∑
Xi(Yi − a− bXi) = 0. (5.26)

From (5.25)
−

∑
Yi + na + b

∑
Xi = 0

and so
a =

1
n

(
∑

Yi − b
∑

Xi) = Ȳ − bX̄. (5.27)

From (5.26)

−
∑

XiYi + a
∑

Xi + b
∑

X2
i = 0. (5.28)

Substituting the value of a from (5.27) into (5.28) and solving for b
yields

b =
n

∑
XiYi −

∑
Xi

∑
Yi

n
∑

X2
i − (

∑
Xi)2

. (5.29)

After some algebraic manipulation, this can be shown to be equivalent
to

b =
∑

(Xi − X̄)(Yi − Ȳ )∑
(Xi − X̄)2

(5.30)

228
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Thus, the values of a and b in (5.27) and (5.30) correspond to the
points where the first derivatives of (5.25) and (5.26) are zero; that
is, where the sum of the squared errors is at a minimum.

Since the value of b is known through (5.30), it can be substituted
into (5.27) to get a. The solution point for a and b is indeed where∑

e2
i is at a minimum, as can be verified by computing the second

derivatives, and showing that

∂2 ∑
e2
i

∂a2
> 0 and

∂2 ∑
e2
i

∂b2
> 0.
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Exercises

5.1 (a) Below are three scatterplots. Guess whether the
correlation is closest to ±0.2, ±0.7, or ±1.
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(b) If the correlation coefficient is −0.75, below-average val-
ues of one variable tend to be associated with below-
average values of the other variable. True or false?
Explain.

(c) A study finds an association between the number of new
houses built and average weekly earnings (AWE). Should
you conclude that AWE causes new houses? Or can you
explain the association between AWE and new houses in
some other way?

(d) A positive correlation between inflation and unemploy-
ment is observed. Does this indicate a causal connection
or can it be explained in some other way?

(e) A survey in 1960 showed a correlation of r = −0.3
between age and educational level for persons aged over
25. How can you explain the negative correlation?

5.2 Suppose the following data represent the total costs and the
number of units produced by a company.

Total Cost Y 25 11 34 23 32
Units Produced X 5 2 8 4 6

(a) Determine the linear regression line relating Y to X.

(b) Compute the F statistic and its associated P -value, and
the 95% confidence intervals for the slope and intercept.

(c) Calculate rXY , rY Ŷ , and R2. Check that rXY = rY Ŷ and
R2 = r2

Y Ŷ
.
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X

Y
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95% prediction interval 80% prediction interval

Figure 5-19: Prediction intervals.

(d) Figure 5-19 shows the prediction intervals corresponding
to the above data. Interpret the meaning of the different
lines.

5.3 Skin cancer rates have been steadily increasing over recent
years. It is thought that this may be due to ozone depletion.
The following data are ozone depletion rates in various loca-
tions and the rates of melanoma (a form of skin cancer) in
these locations.

Ozone dep (%) 5 7 13 14 17 20 26 30 34 39 44
Melanoma (%) 1 1 3 4 6 5 6 8 7 10 9

(a) Plot melanoma against ozone depletion and fit a straight
line regression model to the data.

(b) Plot the residuals from your regression against ozone
depletion. What does this say about the fitted model?

(c) What percentage of the variation in rates of melanoma
is explained by the regression relationship?
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(d) In 1993, scientists discovered that 40% of ozone was
depleted in the region of Hamburg, Germany. What
would you expect to be the rate of melanoma in this
area? Give a prediction interval.

(e) Explain the assumptions and limitations in your predic-
tion. What other factors may play a role?

5.4 Data on the test scores of various workers and their subsequent
production ratings are shown in the table below.

Worker Test Production Worker Test Production
score rating score rating

X Y X Y

A 53 45 K 54 59
B 36 43 L 73 77
C 88 89 M 65 56
D 84 79 N 29 28
E 86 84 O 52 51
F 64 66 P 22 27
G 45 49 Q 76 76
H 48 48 R 32 34
I 39 43 S 51 60
J 67 76 T 37 32

Table 5-6: Scores on manual dexterity test and production ratings for 20 workers.

(a) Plot these data on a graph with test score as the X-axis
and production rating as the Y -axis.

(b) Compute the coefficients of the linear regression of Y on
X, and examine the significance of the relationship.

(c) If a test score was 80, what would be your forecast of the
production rating? What is the standard error of this
forecast?

(d) Determine the 95% confidence interval for the slope co-
efficient in the regression equation.

(e) Determine the 95% prediction interval for the Y values
corresponding to the X values of 20, 40, 60, and 80. If
possible, construct a graph similar to that in Figure 5-19.
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5.5 Electricity consumption was recorded for a small town on 12
randomly chosen days. The following maximum temperatures
(degrees Celsius) and consumption (megawatt-hours) were
recorded for each day.

Day 1 2 3 4 5 6 7 8 9 10 11 12
Mwh 16.3 16.8 15.5 18.2 15.2 17.5 19.8 19.0 17.5 16.0 19.6 18.0
temp 29.3 21.7 23.7 10.4 29.7 11.9 9.0 23.4 17.8 30.0 8.6 11.8

(a) Plot the data and find the regression model for Mwh with
temperature as an explanatory variable. Why is there a
negative relationship?

(b) Find the correlation coefficient, r.
(c) Produce a residual plot. Is the model adequate? Are

there any outliers or influential observations?
(d) Use the model to predict the electricity consumption that

you would expect for a day with maximum temperature
10◦ and a day with maximum temperature 35◦. Do you
believe these predictions?

5.6 Figure 5-8 (p. 198) presents the King Kong data set and shows
how strong the influence of one outlier can be in determining
the correlation coefficient.

(a) Imagine that the King Kong data added to the 20 normal
gorillas were H = 130 and W = 45 (a very skinny King
Kong!) and recompute rHW .

(b) Imagine that the King Kong data were H = 40 and W =
150 (a short fat King Kong!) and recompute rHW .

(c) What can you conclude generally about the impact of
such outliers on r?

5.7 Table 5-7 gives the winning times (in seconds) for the men’s
400 meters final in each Olympic Games from 1896 to 1996.

(a) Plot the winning time against the year. Describe the
main features of the scatterplot.

(b) Fit a regression line to the data. Obviously the winning
times have been decreasing, but at what average rate per
year?

(c) Plot the residuals against the year. What does this
indicate about the suitability of the fitted line?
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1896 54.2 1924 47.6 1956 46.7 1980 44.60
1900 49.4 1928 47.8 1960 44.9 1984 44.27
1904 49.2 1932 46.2 1964 45.1 1988 43.87
1908 50.0 1936 46.5 1968 43.8 1992 43.50
1912 48.2 1948 46.2 1972 44.66 1996 43.49
1920 49.6 1952 45.9 1976 44.26

Table 5-7: Winning times (in seconds) for the men’s 400 meters final in each
Olympic Games from 1896 to 1996.

(d) Predict the winning time for the men’s 400 meters final
in the 2000 Olympics. Give a prediction interval for
your forecast. What assumptions have you made in these
calculations?

5.8 The data in Table 5-8 concern the monthly sales figures of a
shop which opened in January 1987 and sells gifts, souvenirs,
and novelties. The shop is situated on the wharf at a beach
resort town in Queensland, Australia. The sales volume varies
with the seasonal population of tourists. There is a large influx
of visitors to the town at Christmas and for the local surfing
festival, held every March since 1988. Over time, the shop has
expanded its premises, range of products, and staff.

(a) Produce a time plot of the data and describe the pat-
terns in the graph. Identify any unusual or unexpected
fluctuations in the time series.

(b) Explain why it is necessary to take logarithms of these
data before fitting a model.

(c) Calculate total sales each year and find the logarithms of
these sales. Plot these against the year and fit a linear
regression line to these data.

(d) Use your regression model to predict the logarithm of
the total annual sales for 1994, 1995, and 1996. Produce
prediction intervals for each of your forecasts.

(e) Transform your predictions and intervals to obtain pre-
dictions and intervals for the raw data.
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1987 1988 1989 1990 1991 1992 1993
Jan 1664.81 2499.81 4717.02 5921.10 4826.64 7615.03 10243.24
Feb 2397.53 5198.24 5702.63 5814.58 6470.23 9849.69 11266.88
Mar 2840.71 7225.14 9957.58 12421.25 9638.77 14558.40 21826.84
Apr 3547.29 4806.03 5304.78 6369.77 8821.17 11587.33 17357.33
May 3752.96 5900.88 6492.43 7609.12 8722.37 9332.56 15997.79
Jun 3714.74 4951.34 6630.80 7224.75 10209.48 13082.09 18601.53
Jul 4349.61 6179.12 7349.62 8121.22 11276.55 16732.78 26155.15
Aug 3566.34 4752.15 8176.62 7979.25 12552.22 19888.61 28586.52
Sep 5021.82 5496.43 8573.17 8093.06 11637.39 23933.38 30505.41
Oct 6423.48 5835.10 9690.50 8476.70 13606.89 25391.35 30821.33
Nov 7600.60 12600.08 15151.84 17914.66 21822.11 36024.80 46634.38
Dec 19756.21 28541.72 34061.01 30114.41 45060.69 80721.71 104660.67

Table 5-8: Monthly sales figures for a souvenir shop on the wharf at a beach resort
town in Queensland, Australia.

(f) Consider how you might split each annual forecast into
monthly forecasts of sales, allowing for the seasonal pat-
tern in sales volume.

5.9 Table 5-9 shows data from poultry farmers on the percentage
mortality of their birds. The farmers use two different types of
bird denoted here by Type A and Type B. They are concerned
that the Type B birds have a higher mortality than the Type
A birds.

(a) Produce a scatterplot of the two variables. Fit a linear
regression model to the data with the percentage of Type
A birds as the explanatory variable and the percentage
mortality as the forecast variable. Show the fitted line
on your graph.

(b) Use a t-test to see if the slope of the line is significantly
different from zero. Also give a 95% confidence inter-
val for the slope coefficient. Are the farmers’ concerns
justified?

(c) What is the expected percentage mortality for a farmer
using all Type A birds? Give a prediction interval for
your answer. Repeat for a farmer using all Type B birds.
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X Y X Y X Y X Y X Y X Y

75.1 4.87 75.5 6.86 83.6 7.97 42.8 4.68 100.00 3.87 64.9 5.34
86.5 6.56 100.0 4.97 100.0 6.72 100.0 6.97 100.00 6.90 100.0 5.09
72.1 4.84 100.0 7.65 89.6 5.83 100.0 5.25 64.54 7.76 100.0 4.22
89.8 4.87 72.4 4.17 100.0 6.84 100.0 8.86 100.00 7.69 100.0 6.39
80.2 4.07 80.9 6.54 100.0 4.36 100.0 7.34 94.62 7.86 100.0 5.08
75.6 4.16 77.6 3.31 100.0 6.51 100.0 4.15 100.00 8.93 100.0 8.02
78.2 3.50 100.0 5.03 63.1 3.81 100.0 5.06 37.5 7.79 100.0 6.93
86.9 7.11 84.9 6.70 100.0 4.47 65.4 3.88 100.0 6.09 65.9 4.38
60.0 8.89 79.2 5.07 100.0 5.68 63.5 3.80 100.0 11.26 100.0 8.10
93.1 4.68 85.6 4.82 100.0 4.08 85.6 5.90 100.0 14.96 100.0 11.18
83.5 5.62 96.9 7.40 100.0 3.58 78.18 6.20 100.0 5.32 100.0 3.72
73.3 3.98 87.0 5.56 59.1 5.20 63.30 5.70 100.0 5.07 100.0 4.33
80.4 4.84 36.6 3.39 100.0 5.42 74.76 8.36 100.0 4.82 100.0 3.77
85.0 4.07 100.0 4.21 68.9 3.72 33.89 5.80 100.0 5.18 100.0 4.86
60.2 4.30 50.0 3.24 100.0 5.81 86.65 4.85 100.0 5.03 100.0 6.04
60.1 3.62 95.5 3.62 100.0 4.55 64.65 5.58 100.0 5.80 95.0 4.87
86.5 8.35 100.0 5.68 100.0 6.21 100.00 7.62 100.0 7.03 66.7 4.31
78.2 4.55 100.0 4.46 100.0 8.44 78.81 11.45 100.0 4.63 53.3 4.25
64.8 6.06 100.0 4.43 100.0 5.04 89.75 3.86 92.7 4.85 98.2 5.89
77.6 9.52 100.0 3.22 0.0 3.92 69.61 6.32 100.0 7.23 100.0 5.87
57.4 5.40 100.0 4.42 100.0 3.72 100.00 4.86 100.0 8.15 100.0 7.04
92.3 4.75 100.0 7.08 100.0 4.44 68.25 5.58 100.0 5.60 64.9 4.73
81.4 3.73 100.0 5.04 100.0 4.39 90.61 4.97 100.0 4.77 100.0 7.47
72.1 4.05 100.0 7.58 100.0 6.17 100.00 4.64 100.0 4.87 70.1 7.96
70.8 3.86 100.0 4.73 100.0 5.41 2.72 6.29 100.0 5.74 100 8.92
79.9 6.65 100.0 5.24 100.0 7.63 100.00 4.84 100.0 6.98 100 6.65

Table 5-9: Mortality data for 156 Victorian poultry farms collected in the period
August 1995–July 1996. The percentage mortality (birds that died during breeding
period) is denoted by Y and the percentage of Type A birds is given by X.

(d) What proportion of variation in mortality can be as-
cribed to bird type?

(e) One poultry farmer tells you that he tends to use higher
proportions of Type A birds in summer because they are
better adapted to the Australian heat. How does this
information alter your interpretation of the results?
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City Average price Consumption
(cents per per customer

thousand cubic feet) (thousand cubic feet)
Amarillo 30 134
Borger 31 112
Dalhart 37 136
Shamrock 42 109
Royalty 43 105
Texarkana 45 87
Corpus Christi 50 56
Palestine 54 43
Marshall 54 77
Iowa Park 57 35
Palo Pinto 58 65
Millsap 58 56
Memphis 60 58
Granger 73 55
Llano 88 49
Brownsville 89 39
Mercedes 92 36
Karnes City 97 46
Mathis 100 40
La Pryor 102 42

Table 5-10: Price and per capita consumption of natural gas in 20 towns in Texas.

5.10 Table 5-10 shows a data set consisting of the demand for
natural gas and the price of natural gas for 20 towns in Texas
in 1969.

(a) Are these cross-sectional or time series data?
(b) Plot these data on a graph with consumption as the Y -

axis and price as the X-axis.
(c) The data are clearly not linear. Two possible nonlinear

models for the data are given below

exponential model

piecewise linear

model

Yi = exp(a + bXi + ei)

Yi =

{
a1 + b1Xi + ei when Xi ≤ 60
a2 + b2Xi + ei when Xi > 60.

The second model divides the data into two sections,
depending on whether the price is above or below 60
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cents per 1,000 cubic feet. The parameters a1, a2, b1, b2

can be estimated by simply fitting a linear regression to
each of the two groups of data.
Can you explain why the slope of the fitted line should
change with Xi?

(d) Fit the two models and find the coefficients, and residual
variance in each case. For the first model, use (5.15) to
estimate the residual variance. But for the second model,
because there are four parameters, the residual degrees
of freedom is n − 4. So the residual variance σ2

ε can be
estimated using the following equation (similar to (5.15))

s2
e =

1
n− 4

n∑

i=1

e2
i .

(e) For each model, find the value of R2 and produce a
residual plot. Comment on the adequacy of the two
models.

(f) If you have access to a suitable computer package, fit a
local linear regression to these data. You will need to try
several bandwidths and select the one which looks most
appropriate. What does the fitted curve suggest about
the two models?

(g) For prices 40, 60, 80, 100, and 120 cents per 1,000 cubic
feet, compute the forecasted per capita demand using the
best model of the two above.

(h) Compute the standard errors for each of the forecasts,
and 95% prediction intervals. [If using the second model,
use n−4 degrees of freedom in obtaining the multiplying
factor t∗.] Make a graph of these prediction intervals and
discuss their interpretation.
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6/1 Introduction to multiple linear regression

Simple regression, as discussed in Chapter 5, is a special case of
multiple regression. In multiple regression there is one variable to
be predicted (e.g., sales), but there are two or more explanatory
variables. The general form of multiple regression is multiple regression

model
Y = b0 + b1X1 + b2X2 + · · ·+ bkXk + e.

Thus if sales were the variable to be forecast, several factors such as
GNP, advertising, prices, competition, R&D budget, and time could
be tested for their influence on sales by using regression. If it is found
that these variables do influence the level of sales, they can be used
to predict future values of sales.

Case Study: Mutual savings bank deposits

To illustrate the application of multiple regression in a forecasting
context, data from a mutual savings bank study will be examined
throughout the chapter. These data refer to a mutual savings bank
in a large metropolitan area. In 1993 there was considerable concern
within the mutual savings banks because monthly changes in deposits
were getting smaller and monthly changes in withdrawals were getting
bigger. Thus it was of interest to develop a short-term forecasting
model to forecast the changes in end-of-month (EOM) balance over
the next few months. Table 6-1 shows 60 monthly observations
(February 1988 through January 1993) of end-of-month balance (in
column 2) and a plot of these EOM values is shown in Figure 6-1.
Note that there was strong growth in early 1991 and then a slowing
down of the growth rate since the middle of 1991.

Also presented in Table 6-1 are the composite AAA bond rates
(in column 3) and the rates on U.S. Government 3-4 year bonds (in
column 4). It was hypothesized that these two rates had an influence
on the EOM balance figures in the bank.

Now of interest to the bank was the change in the end-of-month
balance and so first differences of the EOM data in Table 6-1 are
shown as column 2 of Table 6-2. These differences, denoted D(EOM)
in subsequent equations are plotted in Figure 6-2, and it is clear that
the bank was facing a volatile situation in the last two years or so.
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(1) (2) (3) (4) (1) (2) (3) (4)
Month (EOM) (AAA) (3-4) Month (EOM) (AAA) (3-4)

1 360.071 5.94 5.31 31 380.119 8.05 7.46
2 361.217 6.00 5.60 32 382.288 7.94 7.09
3 358.774 6.08 5.49 33 383.270 7.88 6.82
4 360.271 6.17 5.80 34 387.978 7.79 6.22
5 360.139 6.14 5.61 35 394.041 7.41 5.61
6 362.164 6.09 5.28 36 403.423 7.18 5.48
7 362.901 5.87 5.19 37 412.727 7.15 4.78
8 361.878 5.84 5.18 38 423.417 7.27 4.14
9 360.922 5.99 5.30 39 429.948 7.37 4.64
10 361.307 6.12 5.23 40 437.821 7.54 5.52
11 362.290 6.42 5.64 41 441.703 7.58 5.95
12 367.382 6.48 5.62 42 446.663 7.62 6.20
13 371.031 6.52 5.67 43 447.964 7.58 6.03
14 373.734 6.64 5.83 44 449.118 7.48 5.60
15 373.463 6.75 5.53 45 449.234 7.35 5.26
16 375.518 6.73 5.76 46 454.162 7.19 4.96
17 374.804 6.89 6.09 47 456.692 7.19 5.28
18 375.457 6.98 6.52 48 465.117 7.11 5.37
19 375.423 6.98 6.68 49 470.408 7.16 5.53
20 374.365 7.10 7.07 50 475.600 7.22 5.72
21 372.314 7.19 7.12 51 475.857 7.36 6.04
22 373.765 7.29 7.25 52 480.259 7.34 5.66
23 372.776 7.65 7.85 53 483.432 7.30 5.75
24 374.134 7.75 8.02 54 488.536 7.30 5.82
25 374.880 7.72 7.87 55 493.182 7.27 5.90
26 376.735 7.67 7.14 56 494.242 7.30 6.11
27 374.841 7.66 7.20 57 493.484 7.31 6.05
28 375.622 7.89 7.59 58 498.186 7.26 5.98
29 375.461 8.14 7.74 59 500.064 7.24 6.00
30 377.694 8.21 7.51 60 506.684 7.25 6.24

Table 6-1: Bank data: end-of-month balance (in thousands of dollars), AAA bond
rates, and rates for 3-4 year government bond issues over the period February 1988
through January 1993.

The challenge to the forecaster is to forecast these rapidly changing
EOM values.

In preparation for some of the regression analyses to be done in this
chapter, Table 6-2 designates D(EOM) as Y , the forecast variable,
and shows three explanatory variables X1, X2, and X3. Variable X1 is
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Figure 6-1: A time plot of end-of-month balances in a mutual savings bank.

the AAA bond rates from Table 6-1, but they are now shown leading
the D(EOM) values. Similarly, variable X2 refers to the rates on
3-4 year government bonds and they are shown leading the D(EOM)
values by one month. Finally, variable X3 refers to the first differences
of the 3-4 year government bond rates, and the timing for this variable
coincides with that of the D(EOM) variable.

Referring to the numbers in the first row of Table 6-2, they are
explained as follows:

1.146 = (EOM balance Mar. 1988) − (EOM balance Feb. 1988)
5.94 = AAA bond rate for Feb. 1988
5.31 = 3-4 year government bond rate for Feb. 1988
0.29 = (3-4 rate for Mar. 1988) − (3-4 rate for Feb. 1988)

(Note that the particular choice of these explanatory variables is not
arbitrary, but rather based on an extensive analysis that will not be
presented in detail here.)

For the purpose of illustration in this chapter, the last six rows
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t Y X1 X2 X3 t Y X1 X2 X3

Month D(EOM) (AAA) (3-4) D(3-4) Month D(EOM) (AAA) (3-4) D(3-4)
1 1.146 5.94 5.31 0.29 31 2.169 8.05 7.46 −0.37
2 −2.443 6.00 5.60 −0.11 32 0.982 7.94 7.09 −0.27
3 1.497 6.08 5.49 0.31 33 4.708 7.88 6.82 −0.60
4 −0.132 6.17 5.80 −0.19 34 6.063 7.79 6.22 −0.61
5 2.025 6.14 5.61 −0.33 35 9.382 7.41 5.61 −0.13
6 0.737 6.09 5.28 −0.09 36 9.304 7.18 5.48 −0.70
7 −1.023 5.87 5.19 −0.01 37 10.690 7.15 4.78 −0.64
8 −0.956 5.84 5.18 0.12 38 6.531 7.27 4.14 0.50
9 0.385 5.99 5.30 −0.07 39 7.873 7.37 4.64 0.88

10 0.983 6.12 5.23 0.41 40 3.882 7.54 5.52 0.43
11 5.092 6.42 5.64 −0.02 41 4.960 7.58 5.95 0.25
12 3.649 6.48 5.62 0.05 42 1.301 7.62 6.20 −0.17
13 2.703 6.52 5.67 0.16 43 1.154 7.58 6.03 −0.43
14 −0.271 6.64 5.83 −0.30 44 0.116 7.48 5.60 −0.34
15 2.055 6.75 5.53 0.23 45 4.928 7.35 5.26 −0.30
16 −0.714 6.73 5.76 0.33 46 2.530 7.19 4.96 0.32
17 0.653 6.89 6.09 0.43 47 8.425 7.19 5.28 0.09
18 −0.034 6.98 6.52 0.16 48 5.291 7.11 5.37 0.16
19 −1.058 6.98 6.68 0.39 49 5.192 7.16 5.53 0.19
20 −2.051 7.10 7.07 0.05 50 0.257 7.22 5.72 0.32
21 1.451 7.19 7.12 0.13 51 4.402 7.36 6.04 −0.38
22 −0.989 7.29 7.25 0.60 52 3.173 7.34 5.66 0.09
23 1.358 7.65 7.85 0.17 53 5.104 7.30 5.75 0.07
24 0.746 7.75 8.02 −0.15 54 4.646 7.30 5.82 0.08
25 1.855 7.72 7.87 −0.73 55 1.060 7.27 5.90 0.21
26 −1.894 7.67 7.14 0.06 56 −0.758 7.30 6.11 −0.06
27 0.781 7.66 7.20 0.39 57 4.702 7.31 6.05 −0.07
28 −0.161 7.89 7.59 0.15 58 1.878 7.26 5.98 0.02
29 2.233 8.14 7.74 −0.23 59 6.620 7.24 6.00 0.24
30 2.425 8.21 7.51 −0.05

Table 6-2: Bank data: monthly changes in balance as forecast variable and three
explanatory variables. (Data for months 54–59 to be ignored in all analyses and
then used to check forecasts.)

in Table 6-2 will be ignored in all the analyses that follow, so that
they may be used to examine the accuracy of the various forecasting
models to be employed. By the end of the chapter we will forecast
the D(EOM) figures for periods 54–59, and will be able to compare
them with the known figures not used in developing our regression
model.
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Figure 6-2: (a) A time plot of the monthly change of end-of-month balances at a
mutual savings bank. (b) A time plot of AAA bond rates. (c) A time plot of 3-4
year government bond issues. (d) A time plot of the monthly change in 3-4 year
government bond issues. All series are shown over the period February 1988 through
January 1993.

The bank could forecast Y (the D(EOM) variable) on the basis of
X1 alone, or on the basis of a combination of the X1, X2, and X3

variables shown in columns 3, 4, and 5. So Y , the forecast variable,
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is a function of one or more of the explanatory variables (also called
regressors or independent variables). Although several different forms
of the function could be written to designate the relationships among
these variables, a straightforward one that is linear and additive is

Y = b0 + b1X1 + b2X2 + b3X3 + e, (6.1)

where Y = D(EOM),
X1 = AAA bond rates,
X2 = 3-4 rates,
X3 = D(3-4) year rates,

e = error term.

From equation (6.1) it can readily be seen that if two of the X
variables were omitted, the equation would be like those handled
previously with simple linear regression (Chapter 5). Just as the
method of least squares was used in Chapter 5 to estimate the
coefficients b0 and b1 in simple regression, so it may be used to
estimate b0, b1, b2, and b3 in the equation above.

Time plots of each of the variables are given in Figure 6-2. These
show the four variables individually as they move through time.
Notice how some of the major peaks and troughs line up, implying
that the variables may be related.

Scatterplots of each combination of variables are given in Figure
6-3. These enable us to visualize the relationship between each pair of
variables. Each panel shows a scatterplot of one of the four variables
against another of the four variables. The variable on the vertical
axis is the variable named in that row; the variable on the horizontal
axis is the variable named in that column. So, for example, the panel
in the top row and second column is a plot of D(EOM) against AAA.
Similarly, the panel in the second row and third column is a plot
of AAA against (3–4). This figure is known as a scatterplot matrixscatterplot matrix

and is a very useful way of visualizing the relationships between the
variables.

Note that the mirror image of each plot above the diagonal is given
below the diagonal. For example, the plot of D(EOM) against AAA
given in the top row and second column is mirrored in the second
row and first column with a plot of AAA against D(EOM).



6/1 Introduction to multiple linear regression 247

D(EOM)

6.0 7.0 8.0

•

•

•
•

•
•

••
• •

•
•
•

•

•

•
••
•
•

•

•

••
•

•

•
•

•••
•

•
•

••
•

•
•

•
•

••
•

•

•

•

••

•

•
•

••

•
•

•

•

•

•

•

•
•

•
•
••
••

•
•
•

•

•

•
• •

•
•

•

•

••
•

•

•
•

•••
•

•
•

••
•

•
•

•
•

••
•

•

•

•

••

•

•
•

••

•
•

•

•

•

-0.5 0.5

-2
2

4
6

8

•

•

•
•

•
•
• •

• •

•
•

•

•

•

•
••
•

•

•

•

••
•

•

•
•

• ••
•

•
•

••
•

•
•

•
•

••
•

•

•

•

••

•

•
•

••

•
•

•

•

•

6.
0

7.
0

8.
0

•• •• ••
••

••
•••• ••

•••• ••

•• •• •
•

•••• • •

•
• •• •

• •••• •
• ••••

•• •••• •• •
AAA

• ••
•••

••
••

•••
•• •

• •• ••
•

•••••
•
••

••••

•
••• •
• • ••••

• ••••
••••• ••••

•• ••• •
• •

• •
•• •• • •

•• ••• •

••• • •
•

• •
• •••

•
•• • •

•••• ••
•••• •

• ••• ••• • •

•
• •

• •
••• ••

••••
•

•
•

••
• ••

•• •

• •
• •

••
•

•

•

••

•

•
•

•
•

••
•

•
•

•••
•

•
• •••• •• •

•
••

••
••• • •

••••
•
•

•
••
•••

•••

••
• •

••
•
•

•

••

•

•
•

•
•
••

•
•

•
••
••

•
•••
••••• (3-4)

4
5

6
7

8

•
• •

••
•• •• •
•• ••

•
•
•

• •
•• •

•••

• •
••

••
•

•

•

••

•

•
•

•
•

••
•
•

•
••
• •

•
•••

••• • •

-2 2 6 10

-0
.5

0.
5

•

•

•

•
•

••
•

•

•

••
•

•

•
•

•

•

•

• •

•

•

•

•

•

•

•

•
•

•
•

• •

•

• •

•

•

•
•

•

•• •

•

•••
•

•

• ••
•

• ••
• •

•

•

•
•

••
•

•

•

••
•

•

•
•

•

•

•

••

•

•

•

•

•

•

•

•
•

•
•

••

•

••

•

•

•
•

•

••
•

•

••
•
•

•

•••
•

•••
•

4 5 6 7 8

•

•

•

•
•

••
•
•

•

••
•

•

•
•

•

•

•

••

•

•

•

•

•

•

•

•
•

•
•

••

•

••

•

•

•
•

•

•••

•

••
•
•

•

•••
•

•••
•

D(3-4)

Figure 6-3: Scatterplots of each combination of variables. The variable on the
vertical axis is the variable named in that row; the variable on the horizontal axis is
the variable named in that column. This scatterplot matrix is a very useful way of
visualizing the relationships between each pair of variables.
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Figure 6-3 shows that there is a weak linear relationship between
D(EOM) and each of the other variables. It also shows that two of
the explanatory variables, AAA and (3-4), are related linearly. This
phenomenon is known as collinearity and means it may be difficultcollinearity

to distinguish the effect of AAA and (3-4) on D(EOM).

6/1/1 Multiple regression model: theory and practice

In Section 5/3/1, simple linear regression was presented as a formal
statistical model. We do so now for the general multiple linear
regression model.

Regression model in theory

Yi = β0 + β1X1,i + · · ·+ βkXk,i + εi, (6.2)

where Yi, X1,i, . . . , Xk,i represent the ith observations of each of the
variables Y , X1, . . . , Xk respectively, β0, β1, . . . , βk are fixed (but
unknown) parameters and εi is a random variable that is normally
distributed with mean zero and having a variance σ2

ε .

Note in (6.2) that the form of the regression model (i.e., the part
enclosed by the small rectangle) is linear in the coefficients. The
exponent of every coefficient is 1—that is, linear—and this means
that estimates of the coefficients can be obtained by direct calculation
using the least squares (LS) method. The shape of the function
relating Y to the several X variables is no longer quite so easy to
describe. If there is only one X variable in (6.2), then the shape of
the underlying function is a straight line. If there are two variables,
then Y is mapped into a plane (above the axes formed by the two
X variables). If there are more than two explanatory variables in
(6.2), then we say Y is mapped into a hyperplane (meaning a higher
dimensional surface).

As with simple regression, there are several assumptions made
about Xi and εi which are important:assumptions

1. The explanatory variables X1, . . . , Xk take values which are
assumed to be either fixed numbers (measured without error),
or they are random but uncorrelated with the error terms εi.
In either case, the values of Xj (j = 1, 2, . . . , k) must not be all
the same.
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2. The error terms εi are uncorrelated with one another.

3. The error terms εi all have mean zero and variance σ2
ε , and have

a normal distribution.

These assumptions are discussed in more detail in Section 6/1/6.

Now in practice, the task of regression modeling is to estimate the
unknown parameters of the model (6.2), namely, β0, β1, . . . , βk, and
σ2

ε . From a known data set (such as in Table 6-2), the LS procedure
can be applied to determine b0, b1, . . . , bk and an estimate of σ2

ε . Thus
the pragmatic form of the statistical regression model is as follows.

Regression model in practice

Yi = b0 + b1X1,i + · · ·+ bkXk,i + ei, (6.3)

for i = 1, 2, . . . , n, where b0, b1, . . . , bk are estimates of β0, β1, . . . , βk

and are all random variables, and ei is the estimated error (or
residual) for the ith observation and is a random variable. The
estimated variance of the errors is denoted by s2

e.

Note that the coefficients in the model are no longer fixed as they
were in (6.2). From sample to sample the b-coefficients fluctuate,
giving rise to a statistical family of regression surfaces.

For the bank data in Table 6-2—using only the first 53 rows—the
model in equation (6.1) can be solved using least squares to give

Ŷ = −4.34 + 3.37(X1)− 2.83(X2)− 1.96(X3). (6.4)

Note that a “hat” is used over Ŷ to indicate that this is an estimate
of Y , not the observed Y . This estimate Ŷ is based on the three
explanatory variables only. The difference between the observed Y
and the estimated Ŷ tells us something about the “fit” of the model,
and this discrepancy is called the residual (or error):

residualei = Yi − Ŷi

↑ ↑
(observed) (estimated using

regression model)
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6/1/2 Solving for the regression coefficients

A computer program would normally be used to solve for the coeffi-
cients in a multiple regression model. However, it is important to get
a good understanding of what is behind the method. The practitioner
proposes a model for the data; for example,

Yi = b0 + b1X1,i + b2X2,i + b3X3,i + ei

= Ŷi + ei.

The method of least squares is used to find the minimum sum ofleast squares

estimation squares of the error terms—that is, find b0, b1, b2 and b3 to minimize

S =
n∑

i=1

e2
i

=
n∑

i=1

(Yi − Ŷi)2

=
n∑

i=1

(Yi − b0 − b1X1,i − b2X2,i − b3X3,i)2.

Readers with a calculus background will recognize that this problem
is solved by taking partial derivatives of S with respect to each of the
unknown coefficients b0, b1, b2, and b3, setting these derivatives equal
to zero, and solving a set of four equations in four unknowns to get
estimated values for b0, b1, b2 and b3.

The solution to the bank data has already been shown in equation
(6.4). Consider the first observation vector in Table 6-2:

Y1 = 1.146, X1,1 = 5.94, X2,1 = 5.31, X3,1 = 0.29.

Then Ŷ1 = −4.34 + 3.37(5.94)− 2.83(5.31)− 1.96(0.29)
= 0.086 using (6.4)

e1 = Y1 − Ŷ1

= 1.146− 0.086 = 1.060.

We have found the residual (or error) for the first Y value. Proceeding
in this manner through all of the first 53 rows of Table 6-2 we can
determine the sum of the squared errors to be

S =
53∑

i=1

e2
i = 219.60.
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(1) (2) (3) (4) (5) (6) (7) (8) (9)
Period Y Ŷ Y − Ŷ Ŷ − Ȳ Y − Ȳ (Y − Ŷ )2 (Ŷ − Ȳ )2 (Y − Ȳ )2

1 1.146 0.086 1.06 −2.34 −1.28 1.12 5.46 1.63
2 −2.443 0.253 −2.70 −2.17 −4.87 7.27 4.71 23.69
3 1.497 0.009 1.49 −2.41 −0.93 2.21 5.83 0.86
4 −0.132 0.417 −0.55 −2.01 −2.56 0.30 4.03 6.53
5 2.025 1.129 0.90 −1.29 −0.40 0.80 1.68 0.16
...

...
...

...
...

...
...

...
...

49 5.192 3.774 1.42 1.35 2.77 2.01 1.82 7.66
50 0.257 3.183 −2.93 0.76 −2.17 8.56 0.58 4.70
51 4.402 4.124 0.28 1.70 1.98 0.08 2.89 3.91
52 3.173 4.209 −1.04 1.79 0.75 1.07 3.19 0.56
53 5.104 3.859 1.25 1.43 2.68 1.55 2.06 7.18

Sums 128.465 128.465 0.00 0.00 0.00 219.60 280.38 499.99
SSE SSR SST

Table 6-3: Bank data: showing the original Y , the fitted Ŷ , and the residual (Y −
Ŷ ). The remaining columns show the calculation of the residual sum of squares and
R2.

This number is the lowest it can be when Y is regressed linearly on
X1, X2, and X3. It is the LS solution for these explanatory variables.

Details of this computation are shown in Table 6-3, along with
other information to be used later. Column 2 shows the original Y
values, D(EOM). Column 3 gives the Ŷ values based on equation
(6.4), and column 4 is the list of errors of fit. Note three things:
(1) the column sums for columns 2 and 3 are the same—which also
indicates that the means of Y and Ŷ are the same; (2) the sum of
the residuals in column 4 is zero—as it will always be for LS fitting
of linear regression models (unless the intercept b0 is omitted); and
(3) because of (1) and (2) above, it will also be true that the sums
on columns 5 and 6 will be zero.

6/1/3 Multiple regression and the
coefficient of determination

In Table 6-3, column 2 gives the observed Y values and column 3 gives
the estimated values Ŷ , based on the fitted regression model (6.4).
The correlation between Y and Ŷ can be computed using equation
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(5.12) and turns out to be rY Ŷ = 0.749. The square of this correlation
is called the coefficient of determination:coefficient of

determination
R2 = r2

Y Ŷ = (0.749)2 = 0.561.

R itself is known as the multiple correlation coefficient, and is themultiple correlation

coefficient correlation between a forecast variable Y and an estimate of Y based
on multiple explanatory variables.

To compute R2 another way, the form is the same as for simple
regression:

R2 =
∑

(Ŷi − Ȳ )2∑
(Yi − Ȳ )2

=
explained SS

total SS
=

SSR
SST

(6.5)

where SS means sum of squared deviations.

For the bank data, referring to Table 6-3, the R2 value can be
computed using equation (6.5) as follows:

R2 =
280.38
499.99

= 0.561.

As with simple regression, R2 has a useful interpretation as the
proportion of variance accounted for (explained) by the explanatory
variables X1, X2, . . . , Xk.

6/1/4 The F -test for overall significance

After estimating the coefficients of a regression model to determine
the Ŷ values, there will be a set of errors of fit—such as ei = (Yi− Ŷi)
for the ith observation. Figure 5-9 shows that one way to discuss
errors of fit is to partition the discrepancy (Yi − Ȳ ) into two parts:

(Yi − Ȳ ) = (Yi − Ŷi) + (Ŷi − Ȳ ).

In Section 5/2/4 it was shown that if such a partition is made for
all Yi values, and if each part in the partition is squared, then the
following relation among the sums of squared deviations holds:sums of squares

∑
(Yi − Ȳ )2 =

∑
(Yi − Ŷi)2 +

∑
(Ŷi − Ȳ )2.

↑ ↑ ↑
total SS unexplained SS explained SS
(SST) (SSE) (SSR)
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Furthermore, the degrees of freedom for this partition satisfy the
relation

total df = unexplained df + explained df.

If we are dealing with k explanatory variables, X1 through Xk, then
there will be k + 1 coefficients, b0 through bk, and the degrees of
freedom for each part of the partition are calculated as follows: degrees of freedom

total: dfT = n− 1 (no. obsns. −1)
explained: dfR = k (no. coefficients −1)
unexplained: dfE = n− k − 1 (no. obsns. − no. coefficients).

It is now possible to construct an overall F -test to check on the
statistical significance of the regression model. Since an F statistic is
defined as the ratio of two variances (or “mean squares” as statisti-
cians often call them), we have to convert “sums of squares” to “mean
squares” as follows: mean squares

total: MST = SST / dfT
explained: MSR = SSR / dfR
unexplained: MSE = SSE / dfE

The F statistic that tests the significance of the regression model F statistic

is

F =
MSR
MSE

=
∑

(Ŷ − Ȳ )2/k
∑

(Y − Ŷ )2/(n− k − 1)
. (6.6)

Note that this F -test is sensitive to the relative strengths of the
numerator and denominator. If the unexplained MS (the variance
of the errors) is large, then the regression model is not doing well,
and F becomes smaller. If the explained MS is large relative to the
unexplained MS, then F becomes larger. Looking up an F table, we
can make a decision as to the significance of the regression model.

As mentioned in Section 5/3/2 there is a close connection between
R2 and F , so that in the case of multiple regression we can write

F =
R2/k

(1−R2)/(n− k − 1)
. (6.7)

Just as with simple regression, computer packages often present
the calculation in the form of an analysis of variance (ANOVA) table ANOVA table

as shown in Table 6-4. Note that R2 and F are easily obtained from
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Source df SS MS F P

Regression dfR = k SSR MSR = SSR/dfR MSR/MSE P -value

Error dfE = n− k − 1 SSE MSE = SSE/dfE

Total dfT = dfR+dfE SST = SSR+SSE

Table 6-4: Typical analysis of variance (ANOVA) table.

this table. The F value is given in the column headed F and R2 is
simply the ratio SSR/SST.

For the bank problem, the ANOVA table is given below.

Source df SS MS F P

Regression 3 280.38 93.46 20.85 0.000
Error 49 219.60 4.48

Total 52 499.99

We could also have calculated F using (6.7):

F =
(0.561)/3

(1− 0.561)/49
= 20.85.

The P -value in the ANOVA table is very small, less than 0.0005.P-value

This suggests very strongly that the three variables are accounting for
a significant part of the variation in Y . The ANOVA table does not
show if all of the three variables are important, or which of the three
is most important. But it does show that there is some relationship
between D(EOM) and the three variables.

When a computer package does not report the P -value, it is
possible to calculate it from an F table using the same procedure
as in simple regression. For multiple regression, the F statistic has k
degrees of freedom for the numerator and n−k−1 degrees of freedom
for the denominator.
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Looking up the F table for (3, 49) df, it is found that only 0.01 (or
1%) of the area under the F distribution lies to the right of F = 4.22.
Since the computed F value for the bank data is 20.85, we can con-
clude that this is a highly significant regression model. That is, the
explanatory variables explain a significant amount of the variability
in the change in end-of-month deposits at this mutual savings bank.
And we can also say that the coefficient of determination (R2) is
highly significant.

6/1/5 Individual coefficients: confidence intervals
and t-tests

Before getting into this section it is advisable to appreciate the merits
of computing

1. the simple correlation coefficients between all pairs of explana-
tory variables (i.e., X1, X2, . . . , Xk);

2. the simple correlation coefficients between the forecast variable
Y and each of the X variables in turn; and

3. the coefficient of determination, R2, for the linear regression
model.

The first set of correlations is helpful in selecting appropriate ex-
planatory variables for a regression model (see Section 6/3) and, at a
deeper level of analysis, is critical for examining multicollinearity (see
Section 6/4). The second set indicates how each explanatory variable,
on its own, relates to Y , and R2 indicates the extent to which a linear
combination of the X variables can explain the variability in Y .

After examining the overall significance of the regression model it
is sometimes useful to study the significance of individual regression
coefficients. There is one very important point to bear in mind.

A t-test on an individual coefficient is a test of its signifi-
cance in the presence of all other explanatory variables.

So confidence intervals for each coefficient are computed in the pres-
ence of the other explanatory variables. Multiple regression makes
use of the interdependence of the explanatory variables to model Y .
It is improper to treat individual coefficients as if they could stand
alone (except in the very special case where all explanatory variables
are uncorrelated with each other).
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For each regression coefficient bj we can determine a standard error
(a measure of the stability of the coefficient), calculate its confidence
interval, and assess its significance in the regression equation. If the
particular term has no real effect in the regression equation, then
(given the normality and constancy assumptions in the regression
model—see Section 6/1/1) it is known that t, defined by the following
equation, has a t-distribution with (n− k − 1) df:

t-test t =
bj

se(bj)
, (6.8)

where bj = estimated jth coefficient,
and se(bj) = standard error of bj .

Thus, using equation (6.8) for each regression coefficient, we can do
a formal statistical test of the significance of that coefficient. This
is a test of whether the explanatory variable in question is helping
significantly in the prediction of Y —in the presence of the other
explanatory variables.

In the case of the bank data and the linear regression of D(EOM) on
(AAA), (3-4), and D(3-4), the full output from a regression program
included the following information:

Term Coeff. Value se of bj t P -value
Constant b0 −4.3391 3.2590 −1.3314 0.1892
AAA b1 3.3722 0.5560 6.0649 0.0000
(3-4) b2 −2.8316 0.3895 −7.2694 0.0000
D(3-4) b3 −1.9648 0.8627 −2.2773 0.0272

Note that for each estimated coefficient, there is a standard error, a
t value, and a P -value. We can use the P -value to assess the effect
of each variable.

Consider the coefficient b1 for the variable (AAA). The P -value is
very small indeed—to four decimal places it is essentially zero. From
this we conclude that the estimated b1-coefficient is very significantly
different from zero. The (AAA) variable is a significant explanatory
variable in the presence of the other two explanatory variables.
Similarly, the coefficients b2 and b3, for (3-4) and D(3-4), respectively,
are highly significant, in the presence of the other two explanatory
variables.
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Since the overall F -test indicated a significant regression line (in
Section 6/1/4), it was to be expected that at least one of the t-tests
would also be significant. (However, the converse is not necessarily
true.) In the case of the bank data, D(EOM) has a significant
relationship to (AAA), (3-4), and D(3-4), but as we will see, there is
room for considerable improvement still.

To calculate confidence intervals for the individual coefficients, confidence intervals

we can use the standard errors given in the table above. Hence,
a confidence interval for βj is

bj ± t∗s.e.(bj).

The multiplying factor, t∗, can be obtained from Table B in Appendix
III and depends on n (the number of observations used in the
regression), k (the number of explanatory variables included), and
the level of confidence required. The df (degrees of freedom) of a
parameter estimate is n− k − 1, the same as the df for the t-test.

For the bank regression, the df = 53 − 3 − 1 = 49. The df gives
the row of the table and the relevant column is selected on the basis
of the level of confidence required. There is no row for 49 df in the
table. We can take the row closest to 49 df (i.e., the row for 40 df),
or we can interpolate between the 40 df and 60 df rows, or we can
use a computer to find the exact value for 49 df. Whichever of these
methods we choose will have little impact on the result. In this case,
95% confidence intervals would use t∗ = 2.01 and 99% confidence
intervals would use t∗ = 2.68 (for 49 df). The following table gives
95% intervals for the regression parameters.

Constant −4.34± 2.01(3.26) = [ −10.89, 2.21 ]
AAA 3.37± 2.01(0.56) = [ 2.25, 4.49 ]
(3-4) −2.83± 2.01(0.39) = [ −3.61, −2.05 ]
D(3-4) −1.96± 2.01(0.86) = [ −3.70, −0.23 ]

As with simple regression, there is a direct relationship here
between confidence intervals and P -values. If the 95% confidence
interval does not contain zero, then the P -value must be less than
0.05. Generally if the 100γ% confidence interval does not contain
zero, the P -value must be less than 1− γ.

There are two additional aspects to consider in dealing with tests of
individual coefficients. First, the stability of the regression coefficients
depends upon the intercorrelation among the explanatory variables.
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Given two explanatory variables, X1 and X2, the higher the corre-
lation between them the more unstable will be the two coefficients
(b1 and b2) determined for these variables. In the case of more than
two explanatory variables the situation is similar but more subtle—in
the sense that even without large correlations it is possible to have
very unstable coefficients—and Section 6/3 will discuss this matter
in more detail.

The second aspect to consider is the estimated correlations among
the regression coefficients themselves. It will be remembered that in
the practical regression model the coefficients b0 through bk are all
random variables—that is, they fluctuate from sample to sample and
have a joint probability distribution. Hence it is possible to determine
the correlations among the coefficients. Many computer programs do
not automatically provide this information, but it is very helpful. For
example, in the previous chapter (Section 5/3/4) it was noted that
the slope and the intercept are always going to be correlated because
an LS regression line goes through the mean of Y and the mean of
X.

In multiple regression, the situation is more complicated, but if,
for instance, two coefficients b3 and b5 are found to be significantly
correlated (positive or negative), then the investigator should be
warned that individual t-tests on b3 and b5 should not be considered
in isolation of each other. The two coefficients are dependent on each
other.

Table 6-5 shows the correlations among the explanatory and fore-
cast variables in the bank example. None of the explanatory variables
has a particularly high correlation with the Y value D(EOM), and
the explanatory variables themselves do not correlate very highly

Y X1 X2 X3

D(EOM) (AAA) (3-4) D(3-4)
Y = D(EOM) 1.000 0.257 −0.391 −0.195
X1 = (AAA) 0.257 1.000 0.587 −0.204
X2 = (3-4) −0.391 0.587 1.000 −0.201
X3 = D(3-4) −0.195 −0.204 −0.201 1.000

Table 6-5: Bank data: the correlations among the forecast and explanatory variables.
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b0 b1 b2 b3

b0 1.000 −0.799 −0.035 −0.208
b1 −0.799 1.000 −0.569 0.108
b2 −0.035 −0.569 1.000 0.103
b3 −0.208 0.108 0.103 1.000

Table 6-6: Bank data: the interrelatedness among the regression coefficients.

(rX1X2 = 0.587 is the biggest). We suspect no multicollinearity
problem (see Section 6/4) and the correlations rX1Y , rX2Y , and rX3Y

would tend to suggest that these three explanatory variables together
will not be able to explain a lot of the variance in Y . They do combine
to explain 53% (R2), it is a significant contribution (F -test), and all
three coefficients are significantly different from zero (t-tests), but
more can be done.

Finally, Table 6-6 shows how the regression coefficients themselves
are interrelated. Note how all three coefficients, b1, b2, and b3,
correlate negatively with the constant b0. There is an analogy here to
the simple regression case—tilt a hyperplane “up” and the constant
goes “down.” Note, too, that b1 and b2 correlate −0.569. The
variables X1 and X2 correlate 0.587 and their coefficients correlate
−0.569. Thus it is necessary to interpret these two variables jointly.
Increase b1 and there would, in general, be a decrease in b2, and
vice versa. These considerations are obviously very important in
forecasting.

6/1/6 The assumptions behind multiple linear regression
models

The theoretical regression model described in Section 6/1/1 makes
certain assumptions, so that the practical application of such a model
requires the user to examine these assumptions in the context of the
problem at hand. There are four basic assumptions:

1. model form
2. independence of residuals
3. homoscedasticity
4. normality of residuals.
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If each of these assumptions is valid for the data set at hand, then
the multiple linear regression model may be a good one, providing
useful forecasts. But if the errors show any kind of pattern, then the
model is not incorporating all the useful information in the data set.

The full implications of each assumption can only be appreciated in
conjunction with a thorough understanding of the statistical theory
behind regression, but the following practical points can be made.

1. With regard to “model form,” the assumption refers to themodel form

form of the relationship between the forecast variable and the
explanatory variables. If the assumed form is incorrect, then
the forecasts may be inaccurate and the F -test, t-tests, and
confidence intervals are not strictly valid any longer. Often a
more appropriate model form (e.g., a non-linear model) can be
found and the model reestimated.

2. The “independence of residuals” assumption is also tied directlyindependence

to the validity of the F - and t-tests, R2, and confidence inter-
vals. If the residuals are not independent, the use of the F -
and t-tests and confidence intervals is not strictly valid and the
estimates of the coefficients may be unstable. We will examine
this assumption in Section 6/2/1. When the independence
assumption is violated, it can be corrected using the approach
discussed in Section 8/1.

3. Homoscedasticity is a word used for the “constant variance”homoscedasticity

assumption. The regression model assumes that the residuals
have the same variance throughout. Once again the impact of
this assumption is on the validity of the statistical tests (F and
t) and confidence intervals associated with the formal regression
model. For many time series (e.g., passenger traffic on airlines,
monthly withdrawals at a savings bank) the raw data itself
show multiplicative trend and/or seasonality, and if regression
models are used in such cases, the equal variance assumption
for residuals might well be violated. When this assumption is
violated, the problem is called “heteroscedasticity,” or changing
variance. When the residuals show heteroscedasticity, the prob-
lem can often be corrected using a mathematical transformation
(see Section 2/6/1).
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4. Many regression models assume a normal distribution for the normal errors

error term. This makes no difference to the estimates of the
coefficients, or the ability of the model to forecast. But it
does affect the F - and t-tests and confidence intervals. This
is not such a serious assumption in that residuals are the
result of many unimportant factors acting together to influence
the forecast variable, and the net effect of such influences is
often reasonably well modeled by a normal distribution. If the
assumption is seriously violated, it is inappropriate to do the
significance testing. Sometimes a mathematical transformation
(Section 2/6/1) can help in correcting this problem.

One assumption of the regression model that has not been treated
above is the statement that the explanatory variables are fixed—
that is, measured without error. This is patently false in real-world
settings. Econometricians have dealt with this subject in great detail
and the interested reader should pursue the topic in Judge et al.,
(1988).

Apart from the assumption of independent residuals, each of these
assumptions can be examined by producing appropriate plots of
residuals.

Figure 6-4 shows four plots of the residuals after fitting the model

D(EOM) = −4.34 + 3.37(AAA)− 2.83(3-4)− 1.96(D(3-4)).

These plots help examine the linearity and homoscedasticity assump-
tions.

The bottom right panel of Figure 6-4 shows the residuals (ei)
against the fitted values (Ŷi). The other panels show the residuals
plotted against the explanatory variables. Each of the plots can be
interpreted in the same way as the residual plot for simple regression
(see Section 5/2/5). The residuals should not be related to the fitted
values or the explanatory variables. So each residual plot should show
scatter in a horizontal band with no values too far from the band and
no patterns such as curvature or increasing spread. All four plots in
Figure 6-4 show no such patterns.

If there is any curvature pattern in one of the plots against an
explanatory variable, it suggests that the relationship between Y and
X variable is non-linear (a violation of the linearity assumption). The
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Figure 6-4: Bank data: plots of the residuals obtained when D(EOM) is regressed
against the three explanatory variables AAA, (3-4), and D(3-4). The lower right
panel shows the residuals plotted against the fitted values (ei vs Ŷi). The other plots
show the residuals plotted against the explanatory variables (ei vs Xj,i).

plot of residuals against fitted values is to check the assumption of
homoscedasticity and to identify large residuals (possible outliers).
For example, if the residuals show increasing spread from left to right
(i.e., as Ŷ increases), then the variance of the residuals is not constant.

It is also useful to plot the residuals against explanatory variables
which were not included in the model. If such plots show any pat-
tern, it indicates that the variable concerned contains some valuable
predictive information and it should be added to the regression model.
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Figure 6-5: Bank data: histogram of residuals with normal curve superimposed.

To check the assumption of normality, we can plot a histogram
of the residuals. Figure 6-5 shows such a histogram with a normal
curve superimposed. The histogram shows the number of residuals
obtained within each of the intervals marked on the horizontal axis.
The normal curve shows how many observations one would get on
average from a normal distribution. In this case, there does not
appear to be any problem with the normality assumption.

There is one residual (with value −5.6) lying away from the other
values which is seen in the histogram (Figure 6-5) and the residuals
plots of Figure 6-4. However, this residual is not sufficiently far from
the other values to warrant much close attention.

6/2 Regression with time series

With time series regression there are some additional problems that
need to be addressed.

• There is a possible lack of independence in the residuals which
needs to be examined (Section 6/2/1).
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• We may need to allow for time-related effects such as trend,
seasonality, or trading day variation (Section 6/2/2).

• When forecasting the Y variable, we need to first have forecasts
for each of the explanatory variables (Section 6/5).
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Figure 6-6: Plots of three sets of residuals. (a) uncorrelated residuals. (b) positively
correlated residuals. (c) negatively correlated residuals.



6/2 Regression with time series 265

6/2/1 Checking independence of residuals

Figure 6-6 shows time plots for three series of artificial residuals, only
one of which is independent. Panel (a) shows a series of independent
(unpatterned) residuals. Note that we may well see “pattern” in
Figure 6-6(a), especially when successive points are joined, but this
perception of a pattern is clearly stronger for panel (b). In Figure
6-6(b), the errors tend to stay negative longer than expected (if they
were truly random) and then stay positive longer than expected. The
third set (c) shows another residual pattern—a see-saw or zigzag
effect. The errors seem to flip back and forth between being positive
and negative. The residuals shown in panels (b) and (c) are not
independent—they show autocorrelation (or serial correlation) which

serial correlationmeans each residual is affected by the previous one. Panel (b) shows
positive autocorrelation (each residual is positively correlated with
the previous one) and panel (c) shows negative autocorrelation (each
residual is negatively correlated with the previous one).

It is also possible to have correlation between residuals more than
one time period apart. For example, if the data are seasonal but
the seasonality has not been included in the model, there may be
correlation at the seasonal lag.

The top panel in Figure 6-7 shows a time plot of the residuals from
the bank data model. There may be a slight seasonal pattern here.
Notice the peaks around January of each year. This suggests there
may be some seasonality in the residual series, which we should allow
for in our model.

An alternative approach to checking for autocorrelation is to com-
pute the autocorrelation function or ACF and plot it as a correlogram
(see Section 2/2/3). The bottom panel in Figure 6-7 shows the ACF
of the same residuals from the bank model. This shows clearly there
is a problem with autocorrelation, particularly at lag 12 (the seasonal
lag). There are also significant correlations at some other lags.

The horizontal bands shown on the correlogram (Figure 6-7) are
at ± 2√

n
= ±0.27 since n = 53. These provide a rough guide as to the

significance of each correlation. But more accurate tests are available.
Here, we will look only at the Durbin-Watson test for autocorrelation
at lag 1. This is not as restrictive as it sounds since autocorrelation
at lag 1 is the most common form, and if there is autocorrelation at
lag 1, there is often correlation at other lags too.
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Residuals from model for bank data
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Figure 6-7: Bank data: top—a time plot of the residuals when D(EOM) is regressed
against the three explanatory variables (AAA), (3-4), and D(3-4); bottom—the ACF
of the residuals.
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(1) (2) (3) (4)
Time Error Squared error

t et e2
t et − et−1 (et − et−1)2

1 -0.60 0.36
2 -0.90 0.81 -0.30 0.09
3 -0.30 0.09 0.60 0.36
4 3.20 10.24 3.50 12.25
5 -6.10 37.21 -9.30 86.49
6 -5.40 29.16 0.70 0.49
7 1.30 1.69 6.70 44.89
8 -8.10 65.61 -9.40 88.36
9 -2.20 4.84 5.90 34.81

10 0.30 0.09 2.50 6.25
11 1.30 1.69 1.00 1.00
12 4.90 24.01 3.60 12.96
13 -4.00 16.00 -8.90 79.21
14 -0.40 0.16 3.60 12.96
15 1.20 1.44 1.60 2.56
SS 193.40 382.68

DW =
382.68
193.40

= 1.979

Table 6-7: Computation of the Durbin-Watson statistic for the residuals plotted in
Figure 6-6(a).

The Durbin-Watson statistic is defined by:

Durbin-Watson

statistic
DW =

∑n
t=2(et − et−1)2∑n

t=1 e2
t

(6.9)

The numerator takes differences between successive errors, squares
these differences, and adds them up. The denominator is simply the
sum of the squared errors. Table 6-7 indicates how these calculations
can be made for the artificial data plotted in Figure 6-6(a). Column
2 contains the squared errors and column 3 contains the successive
error differences. For example, the first column 3 entry is determined
as follows:

e2 − e1 = (−0.90)− (−0.60) = −0.30.
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The Durbin-Watson statistic is computed by taking the ratio of the
totals of columns 2 and 3 of Table 6-7:

DW =
382.68
193.40

= 1.979.

For data sets (b) and (c) in Figure 6-6, the DW statistic is
computed to be 0.706 and 3.140, respectively. Note the following:

• When there is a distinct slow-moving pattern to the errors—as
in case (b)—successive error differences tend to be small and
the DW statistic will be small.

• When there is a distinct fast-moving (zigzag) pattern—as in
case (c)—the successive error differences tend to be large and
the DW statistic will be large.

As a matter of fact, the DW statistic ranges in value from 0 through
4, with an intermediate value of 2. The theory behind this statistic
is complicated (see Appendix 6-A for some details), but it is readily
usable in a practical setting. For the random errors in Table 6-7 the
DW statistic is near 2. For set (b) the DW value is less than one—
indicating positive autocorrelation (i.e., successive errors tend to have
a positive relationship). And for set (c), DW = 3.14, indicating
negative autocorrelation (i.e., successive errors tend to be negatively
related).

Actually, the DW statistic is very close to 2(1− r2) where r is the
autocorrelation at lag one. However it is useful to consider DW as
well as lag one autocorrelation because DW can be tested using the
Durbin-Watson test described in Appendix 6-A.

Returning now to the bank example and the set of residuals in
Figure 6-7, the Durbin-Watson statistic is computed to be

DW = 1.48 (for Figure 6-7 residuals).

This value is less than 2, and indicates that there is some positive
lag one autocorrelation remaining in the errors. (Note that DW is
a measure of the autocorrelation at lag one only—it cannot detect
autocorrelations at higher lags.) Because there is still some pattern
in the residuals, we can improve on the bank forecasting model.
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6/2/2 Time-related explanatory variables

We can create new explanatory variables to allow various time-related
features of our data to be included in the regression model. The most
common applications of this idea are described below.

Time If we wish to include a linear time trend in our regression linear trend

model, we can create an explanatory variable Xj which takes
values equal to the times of observation.

Seasonal dummy variables One way to handle seasonality is to dummy variable

assume that the seasonal component is unchanging from year
to year and to model it by a collection of dummy (or indicator)
variables each of which has only two allowable values, 0 or 1. For indicator variable

example, if we have monthly data, we may define the following
11 monthly variables:

D1 = 1 if the month is Jan. and zero otherwise;
D2 = 1 if the month is Feb. and zero otherwise;

...
D11 = 1 if the month is Nov. and zero otherwise.

Each of these dummy variables is equivalent to a new explana-
tory variable. Note that if we had used 12 dummy variables
for the 12 monthly periods, we would encounter the problem
of multicollinearity (discussed in Section 6/4). Instead, we
use one less than the number of periods. The general rule is:
use (s − 1) dummy variables to denote s different periods. So
quarterly data can be handled similarly but with only three
dummy variables.

The coefficients associated with these variables reflect the av-
erage difference in the forecast variable between those months
and the omitted month. So the coefficient associated with D1

is a measure of the effect of January on the forecast variable
compared to December. If some other month had been chosen
as the base period, the regression values would look different,
but still tell the same story.

An example of seasonal dummy variables with the bank data is
given later in this section.
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Trading day variation Sales data often vary according to the daytrading day variation

of the week. So to forecast monthly sales figures, we need to
take into account the number of Mondays, Tuesdays, etc. in
each month. Similarly, many stores do their bookkeeping on
Friday afternoons so that the number of Fridays in a month
will affect the monthly sales figures.

One approach is to set up variables denoting the number of
times each day of the week occurs in each month. That is,

T1 = the number of times Monday occurred in that month;
T2 = the number of times Tuesday occurred in that month;

...
T7 = the number of times Sunday occurred in that month.

The regression coefficients for the trading day variables give a
measure of the trading day effect for each of the seven days.

This model is easily modified to allow for a variety of trading
situations. For example, if there is never any trade on Sundays,
we would exclude the Sunday term from the model.

Bell and Hillmer (1983) suggest an alternative approach which
leads to more stable estimates.

Variable holiday effects The effect of Christmas on monthly salesholiday effects

data is easily handled because Christmas always occurs in
December. So the method of seasonal dummy variables will
include the effect of Christmas in the December component.

Easter is more difficult because it is not always in the same
month, sometimes occurring in March and sometimes in April.
Similarly, the Chinese New Year can occur in different months.

One approach is to define a dummy variable for Easter:

V = 1 if any part of the Easter period falls in that month
and zero otherwise.

Then the coefficient associated with V represents the average
increase in the forecast variable due to Easter. More compli-
cated Easter models can be defined by allowing for the number
of days of pre-Easter sales in each month (see Bell and Hillmer,
1983).
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Interventions We have seen how seasonal components and variable
holiday effects can be modeled using dummy variables. Dummy
variables can be much more widely useful to model a great
variety of possible events.

One application is to model interventions. An intervention interventions

occurs when there is some outside influence at a particular
time which affects the forecast variable. For example, the
introduction of seat belts may have caused the number of road
fatalities to undergo a level shift downward. We can define a
dummy variable consisting of 0’s before the introduction of seat
belts and 1’s after that month. Then the regression coefficient
measures the effect of the seat belt introduction. This assumes
that the effect occurred instantly. If the effect of seat belt
legislation resulted in a continuous decrease in road fatalities as
more people began to use them, we would need to use a different
explanatory variable allowing for such a decrease rather than a
simple level shift.

Dummy variables can be used in many contexts to denote
special events. However, the analyst should beware of using
too many dummy variables; each new dummy variable is a new
explanatory variable, requiring another regression coefficient to
be estimated and thereby losing one degree of freedom for the
error term.

The modeling of interventions is discussed in Section 8/3.

Advertising expenditure Sales may be able to be modeled as a
function of advertising expenditure. Since the effect of adver-
tising lasts for some time beyond the actual advertising cam-
paign, we need to include several weeks (or months) advertising
expenditure in the model:

A1 = advertising expenditure for the previous month;
A2 = advertising expenditure for two months previously;

...
Am = advertising expenditure for m months previously.

Since we would expect the effect of advertising to tail off over
time, it is common to require the coefficients associated with
these variables to decrease. This type of model is discussed in
more detail in Section 8/2.
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D(EOM) (AAA) (3-4) D(3-4) D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11

1 1.146 5.94 5.31 0.29 1 0 0 0 0 0 0 0 0 0 0
2 –2.443 6.00 5.60 –0.11 0 1 0 0 0 0 0 0 0 0 0
3 1.497 6.08 5.49 0.31 0 0 1 0 0 0 0 0 0 0 0
4 –0.132 6.17 5.80 –0.19 0 0 0 1 0 0 0 0 0 0 0
5 2.025 6.14 5.61 –0.33 0 0 0 0 1 0 0 0 0 0 0
6 0.737 6.09 5.28 –0.09 0 0 0 0 0 1 0 0 0 0 0
7 –1.023 5.87 5.19 –0.01 0 0 0 0 0 0 1 0 0 0 0
8 –0.956 5.84 5.18 0.12 0 0 0 0 0 0 0 1 0 0 0
9 0.385 5.99 5.30 –0.07 0 0 0 0 0 0 0 0 1 0 0

10 0.983 6.12 5.23 0.41 0 0 0 0 0 0 0 0 0 1 0
11 5.092 6.42 5.64 –0.02 0 0 0 0 0 0 0 0 0 0 1
12 3.649 6.48 5.62 0.05 0 0 0 0 0 0 0 0 0 0 0
13 2.703 6.52 5.67 0.16 1 0 0 0 0 0 0 0 0 0 0
14 –0.271 6.64 5.83 –0.30 0 1 0 0 0 0 0 0 0 0 0
15 2.055 6.75 5.53 0.23 0 0 1 0 0 0 0 0 0 0 0
16 –0.714 6.73 5.76 0.33 0 0 0 1 0 0 0 0 0 0 0
17 0.653 6.89 6.09 0.43 0 0 0 0 1 0 0 0 0 0 0
18 –0.034 6.98 6.52 0.16 0 0 0 0 0 1 0 0 0 0 0
19 –1.058 6.98 6.68 0.39 0 0 0 0 0 0 1 0 0 0 0
20 –2.051 7.10 7.07 0.05 0 0 0 0 0 0 0 1 0 0 0
21 1.451 7.19 7.12 0.13 0 0 0 0 0 0 0 0 1 0 0
22 –0.989 7.29 7.25 0.60 0 0 0 0 0 0 0 0 0 1 0
23 1.358 7.65 7.85 0.17 0 0 0 0 0 0 0 0 0 0 1
24 0.746 7.75 8.02 –0.15 0 0 0 0 0 0 0 0 0 0 0
25 1.855 7.72 7.87 –0.73 1 0 0 0 0 0 0 0 0 0 0
26 –1.894 7.67 7.14 0.06 0 1 0 0 0 0 0 0 0 0 0
27 0.781 7.66 7.20 0.39 0 0 1 0 0 0 0 0 0 0 0
28 –0.161 7.89 7.59 0.15 0 0 0 1 0 0 0 0 0 0 0
29 2.233 8.14 7.74 –0.23 0 0 0 0 1 0 0 0 0 0 0
30 2.425 8.21 7.51 –0.05 0 0 0 0 0 1 0 0 0 0 0
31 2.169 8.05 7.46 –0.37 0 0 0 0 0 0 1 0 0 0 0
32 0.982 7.94 7.09 –0.27 0 0 0 0 0 0 0 1 0 0 0
33 4.708 7.88 6.82 –0.60 0 0 0 0 0 0 0 0 1 0 0
34 6.063 7.79 6.22 –0.61 0 0 0 0 0 0 0 0 0 1 0
35 9.382 7.41 5.61 –0.13 0 0 0 0 0 0 0 0 0 0 1
36 9.304 7.18 5.48 –0.70 0 0 0 0 0 0 0 0 0 0 0
37 10.690 7.15 4.78 –0.64 1 0 0 0 0 0 0 0 0 0 0
38 6.531 7.27 4.14 0.50 0 1 0 0 0 0 0 0 0 0 0
39 7.873 7.37 4.64 0.88 0 0 1 0 0 0 0 0 0 0 0
40 3.882 7.54 5.52 0.43 0 0 0 1 0 0 0 0 0 0 0
41 4.960 7.58 5.95 0.25 0 0 0 0 1 0 0 0 0 0 0
42 1.301 7.62 6.20 –0.17 0 0 0 0 0 1 0 0 0 0 0
43 1.154 7.58 6.03 –0.43 0 0 0 0 0 0 1 0 0 0 0
44 0.116 7.48 5.60 –0.34 0 0 0 0 0 0 0 1 0 0 0
45 4.928 7.35 5.26 –0.30 0 0 0 0 0 0 0 0 1 0 0
46 2.530 7.19 4.96 0.32 0 0 0 0 0 0 0 0 0 1 0
47 8.425 7.19 5.28 0.09 0 0 0 0 0 0 0 0 0 0 1
48 5.291 7.11 5.37 0.16 0 0 0 0 0 0 0 0 0 0 0
49 5.192 7.16 5.53 0.19 1 0 0 0 0 0 0 0 0 0 0
50 0.257 7.22 5.72 0.32 0 1 0 0 0 0 0 0 0 0 0
51 4.402 7.36 6.04 –0.38 0 0 1 0 0 0 0 0 0 0 0
52 3.173 7.34 5.66 0.09 0 0 0 1 0 0 0 0 0 0 0
53 5.104 7.30 5.75 0.07 0 0 0 0 1 0 0 0 0 0 0
54 4.646 7.30 5.82 0.08 0 0 0 0 0 1 0 0 0 0 0
55 1.060 7.27 5.90 0.21 0 0 0 0 0 0 1 0 0 0 0
56 –0.758 7.30 6.11 –0.06 0 0 0 0 0 0 0 1 0 0 0
57 4.702 7.31 6.05 –0.07 0 0 0 0 0 0 0 0 1 0 0
58 1.878 7.26 5.98 0.02 0 0 0 0 0 0 0 0 0 1 0
59 6.620 7.24 6.00 0.24 0 0 0 0 0 0 0 0 0 0 1

Table 6-8: Bank data: showing the addition of 11 dummy variables to handle seasonality.
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The bank data with seasonal dummy variables

Since the bank data is monthly, we will use 11 dummy variables, as
shown in Table 6-8. Note that, since Y here is D(EOM), and the
first observation is the difference for March 1988−Feb. 1988, dummy
variable D1 really refers to a (March−Feb.) change, not a specific
month. Note, too, that for the twelfth data row, all 11 dummy
variables have the value zero—so this set of 11 dummy variables
identifies all 12 change periods.

Running a regression model on the data in Table 6-8 shows a big
improvement over the simpler model analyzed previously. The results
are as follows:

The Regression Equation is:

Ŷ = −2.20 + 3.3X1 − 2.8X2 − 1.7X3 − 0.4D1 − 4.5D2 − 1.3D3

− 3.1D4 − 1.4D5 − 3.0D6 − 3.7D7 − 4.7D8 − 1.9D9

−2.5D10 + 1.4D11. (6.10)

The full output from a regression program included the following infor-
mation.

Term Coeff. (bj) se of bj t P -value
Constant −2.1983 1.9894 −4.1762 0.0002

X1 AAA 3.2988 0.3248 10.1580 0.0000
X2 (3-4) −2.7524 0.2289 −12.0250 0.0000
X3 D(3-4) −1.7308 0.5535 −3.1271 0.0034
D1 (Mar-Feb) −0.4403 0.8211 −0.5362 0.5949
D2 (Apr-Mar) −4.5125 0.8322 −5.4221 0.0000
D3 (May-Apr) −1.3130 0.8551 −1.5355 0.1329
D4 (Jun-May) −3.1493 0.8377 −3.7593 0.0006
D5 (Jul-Jun) −1.3833 0.8269 −1.6729 0.1026
D6 (Aug-Jul) −3.0397 0.8675 −3.5042 0.0012
D7 (Sep-Aug) −3.7102 0.8650 −4.2893 0.0001
D8 (Oct-Sep) −4.6966 0.8640 −5.4362 0.0000
D9 (Nov-Oct) −1.8684 0.8634 −2.1641 0.0368
D10 (Dec-Nov) −2.4762 0.8832 −2.8036 0.0079
D11 (Jan-Dec) 1.4419 0.8694 1.6585 0.1055

Comparing this equation with the solution in equation (6.4), the
following results are obtained.
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Current model with Earlier model without
seasonal dummies seasonal dummies

R2 0.887 0.561
MSE 1.49 4.48

F 21.27 20.85
df (14,38) (3,49)
P 0.0000 0.0000

DW 0.71 1.48

The proportion of variance in Y , explained by regressing on these
14 explanatory variables, is now 88.7% (R2), instead of just 56.1%.
The mean square error has dropped considerably, from 4.48 to 1.49.
The F values, in an absolute sense, are not very different, but there
has been a shift in the degrees of freedom (from denominator to
numerator), which makes the numerator more stable. In other words,
the F value for the current model (with seasonal dummy variables)
is more significant than for the earlier model.

Also note that the Durbin-Watson statistic gives more cause for
concern now (DW = 0.72) than it did earlier (DW = 1.48). There is
not nearly as much unexplained error left in the current model, but
what there is, is still patterned. There is strong evidence of positively
autocorrelated errors. This point will be elaborated on in the next
section.

Figure 6-8 shows the residuals from the new model. This is on
the same scale as Figure 6-7 so that a comparison can be made more
easily. The improvement is clear. There is no longer evidence of
seasonality and the residuals are generally smaller, but the autocor-
relation at lags one and two appears even stronger than before. This
is because we have taken out the seasonal variation making it easier
to identify other patterns such as autocorrelation. The use of dummy
variables to denote seasonality has resulted in a significantly improved
bank model. We will discuss methods for including autocorrelation
in the regression model in Section 8/1.

6/3 Selecting variables

Developing a regression model for real data is never a simple process,
but some guidelines can be given. Whatever the situation is (and
we will illustrate this section with the bank data), experts in the
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Residuals from new model for bank data
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Figure 6-8: Residuals from the new bank model (with seasonal dummy variables):
top—a time plot of the residuals; bottom—the ACF of the residuals. There is no
longer evidence of seasonality, but there is strong autocorrelation.

general area will have to be called upon for counsel. For a defined
forecast variable, Y , it will be necessary to draw up a “long list” of
variables that impact on Y —this will be a set of potential explanatory
variables. The “long list” will usually be reduced to a “short list” by
various means, and a certain amount of creativity is essential. The
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shape of the model (or the functional form for the regression model)
will gradually be decided upon in conjunction with the development
of the “short list,” and finally, the parameters of the model will be
estimated using data collected for that purpose. In this section, we
describe briefly how the bank problem was handled.

6/3/1 The long list

Based on (i) hunches of experts and other knowledgeable people, (ii)
availability of data, and (iii) practical time and cost constraints, it was
decided that end-of-month balances in a mutual savings bank were
conceivably related to (or depended on) the following 19 economic
variables:

1. U.S. Gross Demand Deposits
2. First Gross Demand Deposits
3. U.S. Personal Income
4. Northeast Personal Income
5. Massachusetts Personal Income
6. N.H. Personal Income
7. Rates for Three-Month Bills
8. Rates for 3-4 Year Government Issues
9. Rates for AAA Bonds

10. U.S. Negotiable CDs
11. First Negotiable CDs
12. U.S. Mutual Savings Bank Savings
13. First Mutual Savings Bank Savings
14. Massachusetts Mutual Savings Bank Savings
15. N.H. Mutual Savings Bank Savings
16. U.S. Consumer Price Index
17. U.S. Savings and Loan Index
18. First Savings and Loan Index
19. National Personal Income

In addition, since the EOM data set (Table 6-1) was a monthly time
series, some other variables were being kept in mind—namely, “time”
and “seasonal indices.” The model “shape” was to be a simple linear
(in the coefficients) function, with the possibility that a non-linear
trend line would have to be accommodated.
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6/3/2 The short list

There are many proposals regarding how to select appropriate vari-
ables for a final model. Some of these are straightforward, but not
recommended:

• Plot Y against a particular explanatory variable (Xj) and if it
shows no noticeable relationship, drop it.

• Look at the intercorrelations among the explanatory variables
(all of the potential candidates) and every time a large corre-
lation is encountered, remove one of the two variables from
further consideration; otherwise you might run into multi-
collinearity problems (see Section 6/4).

• Do a multiple linear regression on all the explanatory variables
and disregard all variables whose t values are very small (say
|t| < 0.05).

Although these approaches are commonly followed, none of them is
reliable in finding a good regression model.

Some proposals are more complicated, but more justifiable:
• Do a best subsets regression (see Section 6/3/3).
• Do a stepwise regression (see Section 6/3/4).
• Do a principal components analysis of all the variables (includ-

ing Y ) to decide on which are key variables (see Draper and
Smith, 1981).

• Do a distributed lag analysis to decide which leads and lags are
most appropriate for the study at hand.

Quite often, a combination of the above will be used to reach the
final short list of explanatory variables and the functional form that
seems most justified.

For the bank forecasting problem, the 19 potential candidates for
explanatory variables were reduced to a short list of just four using
a principal components analysis:

7. Rates for Three-Month Bills
8. Rates for 3-4 Year Government Issues
9. Rates for AAA Bonds

10. U.S. Negotiable CDs

Next, to study the relevance of lags or leads, the matrix of explana-
tory variables (n = 60 rows and 4 columns—X1, X2, X3, X4) was



278 Chapter 6. Multiple Regression

X1,1 X2,1 X3,1

Y1 X1,1 X2,1 X3,1 X1,2 X2,2 X3,2

Y2 X1,2 X2,2 X3,2 X1,3 X2,3 X3,3 X1,1 X2,1 X3,1

B
A

C

Yn−1 X1,n−1 X2,n−1 X3,n−1 X1,n X2,n X3,n X1,n−2 X2,n−2 X3,n−2

Yn X1,n X2,n X3,n X1,n−1 X2,n−1 X3,n−1

↑ X1,n X2,n X3,n

↑
(Shift up one line so
that the explanatory (Shift down one line so
variables lead Y that the explanatory
by one.) variables lag Y

by one.)

Table 6-9: Introducing leads and lags into the regression model.

shifted one period ahead of Y and one period behind Y , as indicated
in Table 6-9. The original data matrix is designated A. The data
block labeled B is the data for the explanatory variables shifted up one
line (i.e., one time period)—so that “leads” can be evaluated—and
data block C shows how data for the explanatory variables can be
shifted down one period—so that “lags” can be evaluated. Note that
the first observation and last observation cannot now be used in the
regression model since a full set of explanatory variables do not exist
for these cases. If necessary, further leads and lags can be built up in
this manner (but each lead or lag will result in one more observation
being unavailable).

Sometimes we may wish to use the first differences of some of the
explanatory variables as additional explanatory variables in block A.
In this case, it will not be possible to use the lag 1 variables because
of the problem of multicollinearity discussed in Section 6/4.
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For the bank data, since the Y variable was itself a first difference
D(EOM), it makes sense to use first differences rather than lags of the
chosen (short-list) explanatory variables. Thus instead of just four
explanatory variables in data block A, eight explanatory variables
were used:

(3 month) (3-4 yr) (AAA) (CPI)
and D(3 months) D(3-4 yr) D(AAA) D(CPI)

With these eight explanatory variables, leads of 1 and 2 periods, lags
of 2 periods (but not 1 period), seasonal dummy variables, and a time
trend, the total number of candidates for explanatory variables is 44:

1. four short-list explanatory variables
2. four first differences from (1)
3. 1-period leads on the eight variables in (1) and (2)
4. 2-period leads on the eight variables in (1) and (2)
5. 2-period lags on the eight variables in (1) and (2)
6. 11 seasonal dummy variables
7. 1 time variable

6/3/3 Best subsets regression

Ideally, we would like to calculate all possible regression models using
our set of 44 candidate explanatory variables and choose the best
model among them. There are two problems here. First it may not
be feasible to compute all the models because of the huge number of
combinations of variables that is possible. Second, how do we decide
what is best?

We will consider the second problem first. A näıve approach to
selecting the best model would be to find the model which gives the
largest value of R2. In fact, that is the model which contains all
the explanatory variables! Every additional explanatory variable will
result in an increase in R2. Clearly not all of these explanatory
variables should be included. So maximizing the value of R2 is not
an appropriate method for finding the best model.

The problem is that R2 does not take into account degrees of
freedom. To overcome this problem, an adjusted R2 is defined, as adjusted R2

follows:
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R̄2 = 1− (1−R2)
(total df)
(error df)

= 1− (1−R2)
n− 1

n− k − 1
(6.11)

where n is the number of observations and k is the number of
explanatory variables in the model.

Note that R̄2 is referred to as “adjusted R2” or “R-bar-squared,” or
sometimes as “R2, corrected for degrees of freedom.”

For the bank data,

R̄2 = 1− (1− 0.561)
53− 1

53− 3− 1
= 0.534

when the seasonal dummy variables are excluded and

R̄2 = 1− (1− 0.887)
53− 1

53− 14− 1
= 0.845

when the seasonal dummy variables are included. So, using R̄2 as a
measure, the second model is still much better.

There are other measures which, like R̄2, can be used to find the
best regression model. Some computer programs will output several
possible measures. Apart from R̄2, the most commonly used measures
are Mallow’s Cp statistic and Akaike’s AIC statistic (see Draper and
Smith, 1981; Judge et al., 1988).

We can compare the R̄2 values for all the possible regression models
and select the model with the highest value for R̄2. We have 44
possible explanatory variables and we can use anywhere between 0
and 44 of these in our final model. That is a total of 244 = 18
trillion possible regression models! Even using modern computing
facilities, it is impossible to compute that many regression models
in a person’s lifetime. So we need some other approach. Clearly the
problem can quickly get out of hand without some help. To select the
best explanatory variables from among the 44 candidate variables, we
need to use stepwise regression (discussed in the next section).

For a smaller number of explanatory variables, it is possible to
compute all possible regression models. We will consider a restricted
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set of 17 variables for the bank problem:

Y = D(EOM) [as in Table 6-2]
X1 = (AAA)−1 [as in Table 6-2]
X2 = (3-4)−1 [as in Table 6-2]
X3 = D(3-4)0 [as in Table 6-2]
D1 = dummy variable for a (Mar−Feb) change
D2 = dummy variable for a (Apr−Mar) change

...
D11 = dummy variable for a (Jan−Dec) change
X4 = time
X5 = (time)2

X6 = (time)3

The last three allow for up to a cubic trend with the variable “time”
as the number of months (i.e., column (1) of Table 6-1).

Many computer programs have facilities for identifying the best
subsets of the explanatory variables when the number of explanatory
variables is not too large. That is, the best models with only one
explanatory variable are identified, the best models with two explana-
tory variables are identified, and so on. Table 6-10 shows the results
from a best subsets regression analysis for the bank data. The three
best models of each size are given in the table. The first column gives
k, the number of explanatory variables in the model. An x indicates
the variable has been included. Models can be compared using the
R̄2 value in the right-hand column. The best model overall is marked
with an asterisk (∗) and has R̄2 = 0.858. As noted previously, the best
model with respect to R2 is the model containing all 17 explanatory
variables.

The final model from the best subsets regression includes the three
original variables (X1, X2 and X3), 10 of the 11 seasonal variables
(all but D1), and (time)3 (X6). In fact, it makes no sense to include
a cubic time term without the linear and quadratic terms. When
this constraint is made, the model chosen is identical except that the
cubic term (X6) is replaced by a linear term (X4). The resulting
model has R̄2 = 0.856.

So our final regression model is as follows:
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k AAA (3-4) D(3-4) Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan t t2 t3 R2 R̄2

X1 X2 X3 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 X4 X5 X6

1 x 0.277 0.263
1 x 0.258 0.244
1 x 0.215 0.200
2 x x 0.514 0.495
2 x x 0.415 0.392
2 x x 0.379 0.354
3 x x x 0.620 0.597
3 x x x 0.586 0.560
3 x x x 0.564 0.537
4 x x x x 0.677 0.650
4 x x x x 0.677 0.650
4 x x x x 0.670 0.642
5 x x x x x 0.726 0.697
5 x x x x x 0.722 0.692
5 x x x x x 0.721 0.691
6 x x x x x x 0.778 0.749
6 x x x x x x 0.761 0.730
6 x x x x x x 0.753 0.720
7 x x x x x x x 0.808 0.779
7 x x x x x x x 0.800 0.769
7 x x x x x x x 0.795 0.763
8 x x x x x x x x 0.831 0.800
8 x x x x x x x x 0.825 0.793
8 x x x x x x x x 0.824 0.792
9 x x x x x x x x x 0.854 0.823
9 x x x x x x x x x 0.842 0.809
9 x x x x x x x x x 0.840 0.806

10 x x x x x x x x x x 0.868 0.836
10 x x x x x x x x x x 0.862 0.829
10 x x x x x x x x x x 0.862 0.829
11 x x x x x x x x x x x 0.877 0.844
11 x x x x x x x x x x x 0.877 0.844
11 x x x x x x x x x x x 0.875 0.842
†12 x x x x x x x x x x x x 0.886 0.852
12 x x x x x x x x x x x x 0.885 0.851
12 x x x x x x x x x x x x 0.882 0.847
13 x x x x x x x x x x x x x 0.890 0.853
13 x x x x x x x x x x x x x 0.889 0.852
13 x x x x x x x x x x x x x 0.889 0.852
∗14 x x x x x x x x x x x x x x 0.896 0.858
14 x x x x x x x x x x x x x x 0.896 0.858
14 x x x x x x x x x x x x x x 0.895 0.856
15 x x x x x x x x x x x x x x x 0.897 0.856
15 x x x x x x x x x x x x x x x 0.897 0.856
15 x x x x x x x x x x x x x x x 0.897 0.855
16 x x x x x x x x x x x x x x x x 0.898 0.852
16 x x x x x x x x x x x x x x x x 0.898 0.852
16 x x x x x x x x x x x x x x x x 0.897 0.852
17 x x x x x x x x x x x x x x x x x 0.898 0.848

Table 6-10: Best subset analysis for the bank data. The model marked ∗ is the best
model overall. The model marked † is the model selected using stepwise regression.
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The Regression Equation is:

Ŷ = −6.2 + 4.4X1 − 3.2X2 − 1.7X3 − 4.4D2 − 1.2D3 − 3.0D4

− 1.2D5 − 3.0D6 − 3.5D7 − 4.5D8 − 1.7D9 − 2.3D10 + 1.6D11

− 0.04(time). (6.12)

The full output from a regression program included the following
information.

Term Coeff. (bj) se of bj t P -value
Constant −6.1525 2.7476 −4.9404 0.0000

X1 AAA 4.3925 0.6874 6.3901 0.0000
X2 (3-4) −3.2230 0.3466 −9.2999 0.0000
X3 D(3-4) −1.6893 0.5343 −3.1617 0.0031
D2 (Apr–Mar) −4.4136 0.6758 −6.5310 0.0000
D3 (May–Apr) −1.2279 0.7044 −1.7433 0.0894
D4 (Jun–May) −2.9812 0.6817 −4.3732 0.0001
D5 (Jul–Jun) −1.1753 0.6692 −1.7563 0.0871
D6 (Aug–Jul) −2.9832 0.7231 −4.1255 0.0002
D7 (Sep–Aug) −3.5119 0.7120 −4.9326 0.0000
D8 (Oct–Sep) −4.4730 0.7098 −6.3020 0.0000
D9 (Nov–Oct) −1.6645 0.7088 −2.3484 0.0242
D10 (Dec–Nov) −2.3400 0.7337 −3.1895 0.0029
D11 (Jan–Dec) 1.6342 0.7170 2.2794 0.0283
X4 time −0.0417 0.0235 −1.7743 0.0840

Comparing this model with the previous two models fitted, we
obtain the following results.

Best regression Model with First model without
model all seasonal dummies seasonal dummies

R2 0.895 0.887 0.561
R̄2 0.856 0.845 0.534

MSE 1.39 1.49 4.48
F 23.06 21.27 20.85
df (14,38) (14,38) (3,49)
P 0.0000 0.0000 0.0000

DW 0.82 0.71 1.48

Ten of the 11 seasonal dummy variables were entered and all but
two show very significant t values. Since these variables do not
correlate very highly with one another, the individual t-tests can be
interpreted readily.
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Clearly there is a lot of significant seasonality in the D(EOM)
measures. How do we isolate the seasonality effects? Suppose we
concentrate on the (April–March) change, which means rows 2, 14,
26, 38, and 50. For each of these rows the second dummy variable
D2 = 1 and all others are zero. Putting these values into the
regression equation (6.12), we get

D(EOM) = −6.2 + 4.4X1 − 3.2X2 − 1.7X3 − 4.4(1)− 0.04(time).

Note that the dummy variable D2 has the effect of changing the
constant term only. The new constant is

−6.2− 4.4 = −1.8 (for April - Mar.)

Repeating this procedure systematically for 12 possible changes, we
could determine the seasonality indices for each change. This will beseasonal indices

an exercise at the end of the chapter.

The F value (with 14 and 38 df) for this analysis is 23.06, which
is again very significant, as expected, and the MSE is 1.39 which is
the lowest yet obtained. Additional improvements in the model are
unlikely to come easily.

At this stage it is necessary to check again that the assumptions of
the model are satisfied by plotting the residuals. In fact, the residual
plots are almost identical to those given in Figures 6-4 and 6-8 and
so are not reproduced here.

Perhaps the only remaining bothersome aspect of the model is the
obvious presence of positive autocorrelation in the residuals. The DW
statistic has a value 0.82, which indicates positive autocorrelation.
The time plot of residuals (similar to Figure 6-8) also gives evidence
of the pattern remaining in the residuals. Underlying many economic
time series is the presence of business cycles of one kind or another,business cycles

and often such cycles are established by default. In other words,
after everything reasonable is done to model systematic aspects of
a Y variable, the residual pattern may be “random noise” plus a
“business cycle aspect.” Chapter 8 deals with this problem in the
general context of regression models with correlated residuals.

One consequence of autocorrelation in the residuals (discussed
in Section 8/1/1) is that the F -test and t-tests above may not be
valid as they rely on the residuals being uncorrelated. Similarly, the
computation of R̄2 in determining the best model may be affected by
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the autocorrelation. Therefore, the identified model should not be
considered the final solution, but the best found so far. Applying
the methods of Chapter 8 to the bank data may lead to further
improvements.

6/3/4 Stepwise regression

Stepwise regression is a method which can be used to help sort out the
relevant explanatory variables from a set of candidate explanatory
variables when the number of explanatory variables is too large to
allow all possible regression models to be computed.

The book by Draper and Smith (1981) has an excellent treatment
of the main kinds of stepwise regression in use today. Three such
approaches are:

1. Stepwise forward regression,
2. Stepwise backward regression,
3. Stepwise forward-with-a-backward-look regression.

The first method has several variations of its own, one of which is
as follows. From among the potential explanatory variables, pick the
one that has the highest correlation with Y . Determine the residuals
from this regression, and think of these residuals as a new set of
Y values. From among the remaining explanatory variables, pick
the one that correlates most highly with these residuals. Continue
this process until no remaining explanatory variable has a significant
relationship with the last set of residuals.

The stepwise backward method also has several variations. One is
to start with a regression including all the variables—assuming this is
possible—and weeding out that variable that is least significant in the
equation (as measured by the t value). Then, with this variable out,
another regression solution is run, and the next variable to remove is
determined, and so on.

Neither the stepwise forward nor the stepwise backward method
is guaranteed to produce the optimal pair of explanatory variables,
or triple of explanatory variables, and so on. There is, in fact, only
one sure way of doing this—do all possible regressions! Since this is
impractical we often have to rely on less than perfect answers, and
the third method is of considerable value.
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The reason for the name “stepwise forward-with-a-backward-look”
is explained below.

Step 1: Find the best single variable (X1∗).

Step 2: Find the best pair of variables (X1∗ together with one of the
remaining explanatory variables—call it X2∗).

Step 3: Find the best triple of explanatory variables (X1∗, X2∗ plus
one of the remaining explanatory variables—call the new one
X3∗).

Step 4: From this step on, the procedure checks to see if any of
the earlier introduced variables might conceivably have to be
removed. For example, the regression of Y on X2∗ and X3∗
might give better R̄2 results than if all three variables X1∗,
X2∗, and X3∗ had been included. At step 2, the best pair of
explanatory variables had to include X1∗, by step 3, X2∗ and
X3∗ could actually be superior to all three variables.

Step 5: The process of (a) looking for the next best explanatory vari-
able to include, and (b) checking to see if a previously included
variable should be removed, is continued until certain criteria
are satisfied. For example, in running a stepwise regression
program, the user is asked to enter two “tail” probabilities:

1. the probability, P1, to “enter” a variable, and
2. the probability, P2, to “remove” a variable.

When it is no longer possible to find any new variable that
contributes at the P1 level to the R̄2 value, or if no variable
needs to be removed at the P2 level, then the iterative procedure
stops.

With all the procedures mentioned in the preceding sections, a
forecaster can spend a lot of time trying various combinations of
variables—original measures, first differences, lags, leads, and so on—
there really is no substitute for a little creativity and a lot of “feeling”
for the subject matter under consideration.

Application to the bank data

To complete the bank example, we will do a stepwise regression on
the same restricted set of variables considered in the previous section.
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Step AAA (3-4) D(3-4) Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan t t2 t3 R2 R̄2

X1 X2 X3 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 X4 X5 X6

1 x 0.277 0.263
2 x x 0.415 0.392
3 x x x 0.521 0.491
4 x x x x 0.622 0.590
5 x x x 0.620 0.597
6 x x x x 0.677 0.650
5 x x x x x 0.726 0.697
6 x x x x x x 0.778 0.749
7 x x x x x x x 0.808 0.779
8 x x x x x x x x 0.831 0.800
9 x x x x x x x x x 0.854 0.823

10 x x x x x x x x x x 0.868 0.836
11 x x x x x x x x x x x 0.877 0.844
12 x x x x x x x x x x x x 0.886 0.852

Table 6-11: Bank data: a final stepwise regression analysis of 17 explanatory variables.

The stepwise results are given in Table 6-11. For this run the
probability to enter and remove a variable was set at 0.10. Note that
as the procedure unfolds, the R̄2 values steadily increase—even when
a variable is removed at step 5. At the end of the analysis R̄2 = 0.852.
Different computer packages may give slightly different results from
those in Table 6-11—there are several different parameters which
control the stepwise regression algorithm.

The final model from the stepwise regression is almost the same as
that for the best subsets regression except the seasonal variables D3

and D5 have been omitted. The value of R̄2 = 0.852 which is almost
as good as 0.858 obtained in Table 6-10, but achieved with far fewer
computations.

6/4 Multicollinearity

If two vectors (columns of data) point in the same direction, they
can be called collinear. In regression analysis, multicollinearity is the
name given to any one or more of the following conditions:

• Two explanatory variables are perfectly correlated (and there-
fore, the vectors representing these variables are collinear).
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• Two explanatory variables are highly correlated (i.e., the cor-
relation between them is close to +1 or −1).

• A linear combination of some of the explanatory variables is
highly correlated with another explanatory variable.

• A linear combination of one subset of explanatory variables is
highly correlated with a linear combination of another subset
of explanatory variables.

The reason for concern about this issue is first and foremost a
computational one. If perfect multicollinearity exists in a regressionunstable

computations problem, it is simply not possible to carry out the LS solution. If
nearly perfect multicollinearity exists, the LS solutions can be affected
by round-off error problems in some calculators and some computer
packages. There are computational methods that are robust enough
to take care of all but the most difficult multicollinearity problems
(see Draper and Smith, 1981), but not all packages take advantage
of these methods.

The other major concern is that the stability of the regressionunstable coefficients

coefficients is affected by multicollinearity. As multicollinearity
becomes more and more nearly perfect, the regression coefficients
computed by standard regression programs are therefore going to be
(a) unstable—as measured by the standard error of the coefficient,
and (b) unreliable—in that different computer programs are likely to
give different solution values.

Multicollinearity is not a problem unless either (i) the individual
regression coefficients are of interest, or (ii) attempts are made to
isolate the contribution of one explanatory variable to Y , without the
influence of the other explanatory variables. Multicollinearity will
not affect the ability of the model to predict.

A common but incorrect idea is that an examination of the inter-
correlations among the explanatory variables can reveal the presence
or absence of multicollinearity. While it is true that a correlation very
close to +1 or −1 does suggest multicollinearity, it is not true (unless
there are only two explanatory variables) to infer that multicollinear-
ity does not exist when there are no high correlations between any
pair of explanatory variables. This point will be examined in the next
two sections.
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6/4/1 Multicollinearity when there are
two explanatory variables

If Y is being regressed on X1 and X2, multicollinearity1 means
that the correlation between X1 and X2 is perfect (or very nearly
so). Thus, in this case, multicollinearity can be detected by looking
at the correlation between the explanatory variables and making a
decision as to what constitutes nearly perfect multicollinearity. From
a computational point of view rX1X2 = 0.99 may give no trouble, but
from a practical point of view this would undoubtedly be viewed as
a serious case of multicollinearity.

The practical concern is with the standard error of the two regres-
sion coefficients, b1 and b2. The formula for the calculation of the
standard errors of b1 and b2 has the following form:

seb =
v∗e

1− r2
X1X2

where v∗e is related to the error variance. Clearly, as rX1X2 approaches
+1 or −1, the denominator approaches the value zero. Dividing by
a number that approaches zero means exploding the standard error.
If the standard error of a coefficient is very large, then the analyst
cannot put much faith in the value of the coefficient.

6/4/2 Multicollinearity when there are more than
two explanatory variables

As mentioned in the introduction to this section, multicollinearity
becomes increasingly difficult to detect as the number of explanatory
variables increases. To illustrate the point, consider Table 6-12,
which presents a data matrix for a forecast variable Y (quarterly
sales) and four seasonal dummy variables, D1 through D4. (We
can disregard the fact that these are dummy variables—they are
simply four explanatory variables.) The lower part of Table 6-12
also gives the correlation matrix for all the variables. Concentrating
on the correlations among the four explanatory variables themselves,

1Actually, when there are only two explanatory variables, there is no need to
use the word “multicollinear.” Two explanatory variables are merely “collinear”
or not.
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Y D1 D2 D3 D4

86 1 0 0 0
125 0 1 0 0
167 0 0 1 0
65 0 0 0 1
95 1 0 0 0

133 0 1 0 0
174 0 0 1 0
73 0 0 0 1
96 1 0 0 0

140 0 1 0 0
186 0 0 1 0
74 0 0 0 1

104 1 0 0 0
148 0 1 0 0
205 0 0 1 0
84 0 0 0 1

107 1 0 0 0
155 0 1 0 0
220 0 0 1 0
87 0 0 0 1

The Correlation Matrix
Y D1 D2 D3 D4

Y 1.000 -0.364 0.178 0.818 -0.632
D1 -0.364 1.000 -0.333 -0.333 -0.333
D2 0.178 -0.333 1.000 -0.333 -0.333
D3 0.818 -0.333 -0.333 1.000 -0.333
D4 -0.632 -0.333 -0.333 -0.333 1.000

Table 6-12: Quarterly data and seasonal dummy variables showing the correlations
among the dummy variables and Y .

notice that they are all the same and all reasonably small (−0.333)—
certainly not big enough to make anyone think of multicollinearity.
Yet, if a regression run is attempted for the model

Y = b0 + b1D1 + b2D2 + b3D3 + b4D4,

the computer program should reject the data. This occurs because
the set of four dummy variables represents perfect multicollinearity
since

1− (D1 + D2 + D3) = D4

so that it is theoretically impossible to compute the regression so-
lution. The correct regression model is obtained by leaving out one
dummy variable or the constant b0.

It is not only seasonal indices which cause multicollinearity prob-
lems. In many financial analyses, a large number of financial ratios
and indices are used, and many of them depend on one another in
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various ways. The fact of the matter is that cases of perfect (or
nearly so) multicollinearity have occurred, and will continue to occur,
as analysts depend more and more on large data bases with literally
thousands of potential variables to choose from.

6/5 Multiple regression and forecasting

The main objective of this book is to examine forecasting models and
then to critique their practical use. Regression models can be very
useful in the hands of a creative forecaster, but there are two distinct
phases to consider. The first is actually developing and fitting a
model (which has been the subject matter of the current chapter so
far), and the second is to do some actual forecasting with the model.
We now concentrate on this second phase.

For any forecast to be made, a set of values for the future values
of the explanatory variables has to be provided. These are then put
into the regression equation and a predicted value Ŷ is obtained. To
decide how much faith to put in this value of Ŷ , equation (6.13) is
used to evaluate the standard error of the forecast.

In Chapter 5, equation (5-19) defined the standard error of forecast
for Ŷ . For the general case of multiple linear regression, the standard
error formula has to be given in matrix algebra terms, as follows:

standard error of

forecast
s.e.(Ŷ0) = se

√
1 + c′(X ′X)−1c, (6.13)

where c is the vector [1 X∗
1 X∗

2 . . . X∗
k ]′ of new values for the

explanatory variables, X is the matrix of order n by k +1, where the
first column is a set of ones and the other columns are the vectors of
explanatory variables.

Equation (6.13) (and similarly, equation (5-19)) is based on the
assumption that the explanatory variables are measured without
error. When forecasts of Y are made, they depend on future values of
the explanatory variables, X∗

1 , X∗
2 , . . . , X∗

k . In the case of regression
models for time series data, future values of the explanatory variables
often have to be forecast themselves, and so are subject to error.
Hence, the standard error formulas underestimate the actual forecast
errors.
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6/5/1 Example: cross-sectional regression and forecasting

Table 6-13 displays some meteorological data. The objective of this
analysis is to find out if upper atmosphere water vapor content is
related to measurements that can be made on the ground. It is
expensive to send weather balloons aloft to get direct measurement
of Y (water vapor), so that if the explanatory variables (X1, X2, X3,
X4, and X5) can “explain” a significant amount of the variation in
Y , a useful model will be provided. The explanatory variables in this
instance are pressure (X1), temperature (X2), dew point (X3), and
the wind vector is resolved into an east-west component (X4) and a
north-south component (X5).

Using n = 299 daily observations on these six variables, a multiple
linear regression model was estimated as follows:

Y = 23.725− 0.228X1 − 0.024X2 + 0.182X3 − 0.006X4 − 0.006X5,
(6.14)

and the standard deviation of the residuals was se = 0.622.

Suppose now that a prediction is to be made on the basis of the
following set of ground control values:

X∗
1 = 1005, X∗

2 = 22.0, X∗
3 = 13.0, X∗

4 = 10, X∗
5 = 10.

Substituting these values in equation (6.14) gives a prediction Ŷ (of
water vapor content) of 2.595. Using equation (6.13), the standard
error of this prediction will be 0.636.

In order to give 95% prediction limits on the Ŷ forecast, we addprediction interval

and subtract 1.96 times the standard error to 2.595, as follows:

2.595± 1.96[0.636] = 2.595± 1.247 = [1.35, 3.84].

The regression run gave an R2 of 0.665, so that it is not surprising
to find a large prediction interval for Ŷ . A lot of the variance in Ŷ is
not being explained by the regression.
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X1 X2 X3 X4 X5 X6 Y
Wind Wind Water

Day Pressure Temp Dew Pt. E-W N-S Vapor

1 1013.3 24.7 15.0 0.00 25.00 2.65
2 1011.6 24.8 17.0 12.86 15.32 2.63
3 1009.4 26.5 19.4 7.87 21.61 4.95
4 1003.1 29.6 20.1 20.78 12.00 4.49
5 1006.6 25.7 19.5 0.00 7.00 3.17
6 1006.5 25.0 20.1 8.21 22.55 3.88
7 1016.9 21.6 16.3 0.00 12.00 3.90
8 1011.8 24.7 18.0 9.58 26.31 3.51
9 1010.3 25.9 18.3 0.00 20.00 3.90

10 1013.6 25.6 18.7 6.89 5.79 3.47
11 1005.4 27.9 21.9 5.81 15.97 5.53
12 1013.4 25.8 20.0 3.13 17.73 3.48
13 1009.6 26.2 20.2 11.28 4.10 4.35
14 1013.0 24.8 21.5 0.00 26.00 4.38
15 1009.8 27.7 20.6 10.00 17.32 4.39
16 1005.9 26.2 22.0 3.13 17.73 5.02
17 1011.0 23.9 22.0 1.03 2.82 4.77
18 1003.7 28.1 23.4 12.21 14.55 5.36
19 1001.4 23.0 18.5 5.36 4.50 3.85

. . . . . . . . . . . . . . . . . . . . .

293 1011.3 26.0 16.4 6.16 16.91 2.94
294 1012.4 23.6 21.0 6.93 4.00 4.28
295 1013.0 22.4 15.0 1.56 8.86 4.14
296 1013.3 22.6 19.4 0.00 0.00 4.31
297 1015.6 23.4 20.3 3.08 8.46 4.13
298 1007.2 27.5 22.0 14.78 17.62 3.64
299 1003.0 32.0 19.4 3.13 17.73 3.42

Table 6-13: Meteorological data: water vapor in the upper atmosphere is the
forecast variable.
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6/5/2 Example: time series regression and forecasting

For the bank example (see Table 6-8) and the regression model (6.12),
the data setup is as follows:

Period D(EOM) (AAA) (3-4) D(3-4)
52 Jun ’72–May ’72 May ’72 May ’72 Jun ’72–May ’72
53 Jul ’72–Jun ’72 Jun ’72 Jun ’72 Jul ’72–Jun ’72

(Data for D(EOM) assumed unknown from here on)

54 Aug ’72–Jul ’72 Jul ’72 Jul ’72 Aug ’72–Jul ’72
55 Sep ’72–Aug ’72 Aug ’72 Aug ’72 Sep ’72–Aug ’72
56 Oct ’72–Sep ’72 Oct ’72 Oct ’72 Oct ’72–Sep ’72
57 Nov ’72–Oct ’72 Nov ’72 Nov ’72 Nov ’72–Oct ’72
58 Dec ’72–Nov ’72 Dec ’72 Dec ’72 Dec ’72–Nov ’72
59 Jan ’73–Dec ’72 Jan ’73 Jan ’73 Jan ’73–Dec ’72

The objective is to forecast D(EOM) for periods 54, 55, . . . , 59
(six-month forecast). It becomes crucial to consider the timing of
the availability of the data. For example, when will the value of
D(EOM) for (July 1992–June 1992) be known? Maybe after the first
few days into August 1992. When will the June 1992 rates be known
for (AAA) and (3-4)? And when will D(3-4) for (July 1992–June
1992) be available? Answers to these questions will determine how
difficult it will be to forecast D(EOM) for period 54.

The equation for forecasting D(EOM) for period 54 is

D(EOM)54 = −6.2+4.4(AAA)54−3.2(3-4)54−1.7D(3-4)54−3.0−0.04(54).

The second last term (−3.0) arises because the only seasonal dummy
variable which is not zero is D6 and takes the value 1 (see Table 6-8)
with coefficient −3.0. Therefore, if the time point of reference is, for
example, August 5, 1992, the data

(AAA)54 for (July 1992) will already be known,
(3-4)54 for (July 1992) will already be known,

D(3-4)54 for (August 1992–July 1992) will not be known.
The last variable, D(3-4)54, will have to be forecast. Any of the
methods in Chapter 4 might well be tried until a “best” forecast for
(3-4) rates for August 1992 can be obtained. Then D(3-4) for period
54 will be calculable.

For period 55, none of the three explanatory variable values will
be known as of August 5, 1992. They will all have to be forecast.
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(1) (2) (3) (4) (5) (6) (7) (8)
Period Period Period Period Period Period

Label 54 55 56 57 58 59
X1 (AAA)−1 7.298 7.305 7.307 7.309 7.311 7.313
X2 (3-4)−1 5.820 5.848 5.883 5.918 5.952 5.987
X3 D(3-4)0 0.028 0.035 0.035 0.034 0.035 0.034
D2 Apr–Mar 0 0 0 0 0 0
D3 May–Jun 0 0 0 0 0 0
D4 Jun–May 0 0 0 0 0 0
D5 Jul–Jun 0 0 0 0 0 0
D6 Aug–Jul 1 0 0 0 0 0
D7 Sep–Aug 0 1 0 0 0 0
D8 Oct–Sep 0 0 1 0 0 0
D9 Nov–Oct 0 0 0 1 0 0
D10 Dec–Nov 0 0 0 0 1 0
D11 Jan–Dec 0 0 0 0 0 1
Time 54 55 56 57 58 59
D(EOM) 1.863 1.221 0.114 2.779 1.959 5.789

Table 6-14: Bank data: forecast values of the explanatory variables obtained using
Holt’s method.

Similarly, for any future time period, the values of (3-4) and (AAA)
will have to be forecast first, and only then can the regression equation
be used. All the dummy variables and the (time) variable in (6.12)
present no problem—they are constants.

Table 6-14 shows the forecasts which are needed. Columns (3)
through (8) are the time periods 54 through 59, for which forecasts
of D(EOM) are required. In row 1, dealing with (AAA)−1—that
is, AAA bond rates lagged one period—the regression equation will
require values for periods 54 through 59. The (AAA)1 value for
period 54 is already known (it is 7.30) because (AAA)1 leads D(EOM)
by one period. The other values for (AAA)1 have to be estimated
(forecast). To do this, Holt’s method of exponential smoothing (see
Section 4/3/3) was used and the 5-period ahead forecasts using this
method are shown in Table 6-14. (Note that no attempt has been
made to do the best job of forecasting the explanatory variables. It
is one of the exercises to improve upon the procedure illustrated in
this section.)



296 Chapter 6. Multiple Regression

Similarly, for row 2, dealing with (3-4)−1—that is, rates for 3-4
year government issues—the value for period 54 is already known (it
is 5.82) and the other values have to be forecast. Again using Holt’s
method to provide these forecasts, we determine the values shown in
the rest of row 2. The row 3 data in Table 6-14 are the set of first
differences for the (3-4) data. Note that it was actually necessary
to forecast six periods ahead for the (3-4) data so as to get the last
D(3-4) value of 0.034 in row 3 of Table 6-14.

The rows dealing with the dummy variables are straightforward.
For example, the first four dummy variables (chosen in the best
subsets procedure leading to equation (6.12)) take on the value 0
for all periods 54 through 59. All other dummy variables have one
value that is 1 and all other values zero, as shown in Table 6-14.
Finally, for the linear trend term, the values in Table 6-14 are simply
(54), (55), . . . , (59).

In the very last row of Table 6-14 are the forecasts for D(EOM)
for periods 54 through 59 obtained using equation (6.12) with the
values of explanatory variables given in the table. For example, under
column (2), for period 54 (which refers to the change period Aug.
1992 minus July 1992) the forecast of D(EOM) is 1.863. This is
obtained by substituting the values in column 3 into equation (6.12)
as follows:

1.863 = −6.15 + 4.39(7.298)− 3.22(5.820)− 1.69(0.028)− 4.41(0)
− 1.23(0)− 2.98(0)− 1.18(0)− 2.98(1)− 3.51(0)
− 4.47(0)− 1.66(0)− 2.34(0) + 1.63(0)− 0.042(54).

From the bank’s point of view, if it is August 5, 1992 and the value of
D(EOM) for (July 1992–June 1992) is known, then they can expect
an increase of $1,863 in end-of-month balance by the end of August.
This is what the forecast says.

Similarly, the other forecasts can be used to get an idea of the
changes in (EOM) that can be expected in future months. Since the
regression method allows the forecaster to provide prediction intervals
around any given forecast, we now use equation (6.13) to obtain 90%
prediction intervals for the forecasts. Table 6-15 and Figure 6-9 show
the results. Note that five out of the six actual values for these periods
fall within the intervals for Ŷ .
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Period True value Forecast Standard 90% Prediction
Y Ŷ Error Interval

54 4.646 1.86 1.42 [−0.47 , 4.20 ]
55 1.060 1.22 1.40 [−1.09 , 3.53 ]
56 −0.758 0.11 1.41 [−2.20 , 2.43 ]
57 4.702 2.78 1.42 [ 0.44 , 5.12 ]
58 1.878 1.96 1.44 [−0.42 , 4.33 ]
59 6.620 5.79 1.44 [ 3.42 , 8.16 ]

Table 6-15: Predictions and prediction intervals for the bank forecasts for periods
54 through 59 using the regression model in equation (6.12).
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Figure 6-9: Predictions for the bank data as given in Table 6-15. The solid line
shows the actual data, the dotted line shows the forecasts. The 90% intervals are
shown as the shaded region.
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6/5/3 Recapitulation

From the previous section it is clear that if a regression model involved
a explanatory variable that leads the forecast variable by two periods,
say, then two forecasts of Ŷ can be made without having to forecast
the explanatory variables. There are two values of the explanatory
variable in hand already. Whenever Ŷ is being forecast further ahead,
then the explanatory variables must also be forecast, and the forecast
values (Ŷ ) are subject to additional uncertainty which is not reflected
in the forecast intervals.

Dummy variables can be used effectively to handle seasonality or
special events or both. In the cases mentioned above, the dummy
variables affected only the constant term (the intercept), but they
can be used to influence the slope coefficients as well.

Regression packages are widely available, so that the computa-
tional grind is minimal, but forecasters should be aware that not all
computer programs are equally good. Some are robust with respect
to roundness of errors—others are not. Some are sensitive to near-
collinearity problems—others are not. Some provide information on
the correlations among the explanatory variables and the correlations
among the regression coefficients—others do not. Some allow for
graphical output—others do not. In our opinion, it is worthwhile
making sure a comprehensive regression package is available for the
model-building process described in this chapter.

Since explanatory variables often have to be predicted before the
forecast variable can be predicted, it is important to get good fore-
casts for these explanatory variables. Many firms buy the services
of forecasting houses to get such forecasts, and, often, corporate
planners will buy econometric forecasts which will then be passed
down to the business units of the company for their forecasting and
planning models. Much has been written on the relative merits of
econometric forecasts—and the performance of such forecasts over
time—but some major companies make use of them as inputs for
other models (e.g., regression models at the business unit level).

Regression analysis is a powerful method and the most commonly
used approach to model the effect of explanatory variables on the
forecast variable.
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6/6 Econometric models

In the same way that simple regression is a special case of multiple
regression, the latter is a special case of econometric models. While
multiple regression involves a single equation, econometric models can
include any number of simultaneous multiple regression equations.
The term “econometric models” will be used in this book to denote
systems of linear equations involving several interdependent variables.
It should be noted that this is not the only usage of the term
“econometrics,” since there are those who use it as a general term to
cover simple, multiple, and systems of multiple regression equations.
The more limited definition used in this chapter appears to be the
most common usage at this time.

The objective of this section is not to provide the level of detailed
information needed to fully utilize these models, but to review the
main ideas and concepts underlying econometric models and present
the main advantages and difficulties involved.

6/6/1 The basis of econometric modeling

Regression analysis assumes that each of the explanatory variables
included in the regression equation is determined by outside fac-
tors; that is, they are exogenous to the system. In economic or
organizational relationships, however, such an assumption is often
unrealistic. To illustrate this point, one can assume that sales
= f(GNP, price, advertising). In regression, all three explanatory
variables are assumed to be exogenously determined; they are not
influenced by the level of sales itself. This is a fair assumption as far
as GNP is concerned, which, except for very large corporations, is not
influenced directly by the sales of a single firm. However, for price
and advertising there is unlikely to be a similar absence of influence.
For example, if the per unit cost is proportional to sales volume,
different levels of sales will result in higher or lower per unit costs.

Furthermore, advertising expenditures will certainly influence the
per unit price of the product offered, since production and selling
costs influence the per unit price. The price in turn influences
the magnitude of sales, which can consequently influence the level
of advertising. These interrelationships point to the mutual inter-
dependence among the variables of such an equation. Regression
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analysis is incapable of dealing with such interdependence as part of
the explanatory model.

Instead we can use a system of simultaneous equations that can
deal with the interdependence among the variables. For example,
these interdependencies might be represented by the following simple
econometric model:

sales = f(GNP, price, advertising)
production cost = f(number of units produced, inventories,

labor costs, material cost)
selling expenses = f(advertising, other selling expenses)

advertising = f(sales)
price = f(production cost, selling expenses, ad-

ministrative overhead, profit).
In place of one regression equation expressing sales as a function of
three explanatory variables, the set of five simultaneous equations
above expresses sales and the explanatory variables as functions of
each other plus other exogenous factors.

The basic premise of econometric modeling is that everything in the
real world depends upon everything else. Changing A not only affects
A and its immediate system, but also the environment in general.
The practical question is, of course, where to stop considering these
interdependencies. One could develop an almost infinite number of
interdependent relationships, but data collection, computational lim-
itations, and estimation problems restrict one in practice to a limited
number of relationships. In addition, the marginal understanding,
or forecasting accuracy, does not increase in proportion to the effort
required to include an additional variable or equation after the first
few. In econometric models, a major decision is determining how
much detail to include, since more detail inevitably means more
complexity.

In an econometric model one is faced with many tasks similar to
those in multiple regression analysis. These tasks include:

1. determining which variables to include in each equation (spec-
ification);

2. determining the functional form (i.e., linear, exponential, loga-
rithmic, etc.) of each of the equations;

3. estimating in a simultaneous manner the parameters of all the
equations;
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4. testing the statistical significance of the results;
5. checking the validity of the assumptions involved.

Steps 2, 4, and 5 do not differ in their basic approach from those
of multiple regression, and therefore will not be discussed further in
this chapter. However, it should be mentioned that there is usually
not much choice on Step 2, and Step 4 is seldom pursued rigorously,
in practice. Furthermore, in practice, Step 3 is not often done in a
simultaneous manner.

6/6/2 The advantages and drawbacks of econometric
methods

The main advantage of econometric models lies in their ability to
deal with interdependencies. If a government, for example, would
like to know the results of a 10% tax reduction aimed at stimulating
a recessionary economy, it has few alternatives other than econo-
metric models. A tax cut will have direct and immediate effects
on increasing personal disposable income and probably decreasing
government revenues. It will also tend to influence inflation, un-
employment, savings, capital spending, and so on. Each of these
will in turn influence personal disposable income and therefore taxes
of subsequent years. Through a series of chain reactions, the 10%
decrease will affect almost all economic factors and business revenues.
These interdependencies must be considered if the effect of the tax
cut is to be accurately predicted. (However, it must be remembered
that while an econometric model may provide useful insights, the
“effects” it captures will be those built into it.)

Econometric models are valuable tools for increasing the under-
standing of the way an economic system works and for testing and
evaluating alternative policies. These goals, however, are somewhat
different from forecasting. Complex econometric models do not
always give better forecasts than simpler time series approaches. It is
important to distinguish between econometric models used for policy
analysis and econometric models used for forecasting. They are two
different things.

Econometric models for forecasting are generally much simpler
and involve fewer equations than those designed for policy study.
The main purpose of forecasting versions is to derive values for the
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explanatory variables so that they do not have to be estimated. For
example, in the simple econometric model given above, two of the
variables (price and advertising) can be estimated internally. Thus
there is no need to specify their values in order to forecast sales. GNP,
on the other hand, still needs to be specified because it is determined
outside or exogenously.

Whether intended for policy or forecasting purposes, econometric
models are considerably more difficult to develop and estimate than
using alternative statistical methods. The difficulties are of two types:

1. technical aspects, involved in specifying the equations and es-
timating their parameters, and

2. cost considerations, related to the amount of data needed and
the computing and human resources required.

In the final analysis, the question is whether the extra burden
required for developing and running an econometric model justifies
the costs involved. It is the authors’ experience that the answer is
yes if the user is a government, maybe if it is a large organization
interested in policy considerations, and probably not if it is a medium
or small organization, or if the econometric model is intended for
forecasting purposes only. The above guidelines do not apply to
buying the services of one of the several econometric models available
commercially. Generally, the cost of using such services is only a small
fraction of that of developing and operating one’s own econometric
model. But even the forecasting accuracy of such models must be
considered against cheaper or free alternatives (e.g., the cost-free
forecasts provided by central banks, governmental organizations, or
OECD).

One of the major weaknesses of econometric models is the absence
of a set of rules that can be applied across different situations. This
makes the development of econometric models highly dependent upon
the specific situation and requires the involvement of a skilled and
experienced econometrician. Such skills are expensive, increasing
forecasting costs. Finally, once a model is developed, it cannot be
left to run on its own with no outside interference. Continuous mon-
itoring of the results and updating for periodic changes are needed.
These disadvantages have limited the application of econometrics to
forecasting, even in large organizations.



Appendix 6-A
The Durbin-Watson statistic

The Durbin-Watson (DW) statistic tests the hypothesis that there
is no lag one autocorrelation present in the residuals. Like the
F -test and t-tests, the computed value of the Durbin-Watson test is
compared with the corresponding values from Table F of Appendix
III. If there is no autocorrelation, the DW distribution is symmetric
around 2, its mean value.

The test is based on the five regions shown in Figure 6-10. These
are computed using the two values (DWL and DWU ) which are read
from the row of the DW table that corresponds to the degrees of
freedom of the data.

The five intervals are:

1. less than DWL

2. between DWL and DWU

3. between DWU and 4−DWU

4. between 4−DWU and 4−DWL

5. more than 4−DWL

If the computed value of DW is either in interval 1 or 5, the
existence of autocorrelation is indicated. If DW is in interval 3,
no autocorrelation is present. If it is in either 2 or 4, the test is
inconclusive as to whether autocorrelation exists.

For example, if there are three explanatory variables and 30 obser-
vations, then

DWL = 1.21 and DWU = 1.65.

If DW is less than 1.21 or more than

4−DWL = 41.21 = 2.79,

303
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DW DW 2 4-DW 4-DWL U U L

Not significantSignificant
positive autocorrelation

Significant
negative autocorrelation

Don’t
know

Don’t
know

Figure 6-10: Durbin-Watson distribution.

there is autocorrelation. If DW is between 1.65 and 4 − DWU =
2.35, there is no autocorrelation. If DW is between 1.21 and 1.65 or
between 2.35 and 2.79, the test is inconclusive.

It should be noted that when there is no prior knowledge of the sign
of the serial correlation, two-sided tests may be made by combining
single-tail tests. Thus by using the 5% values of DWL and DWU

from Table F in Appendix III, a two-sided test at the 10% level is
obtained.
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Exercises

6.1 Table 6-16 presents some of the computer output from a
regression analysis.

(a) How many observations were involved?
(b) What would be the value of R̄2?
(c) Is the overall regression significant?
(d) Which coefficients are significantly different from zero

(i.e., have P -value less than 0.05)?
(e) What should be done next?

Standard
Variable Coefficient Error t
Constant 357835. 30740.7 11.6404

1 1007.43 524.846 1.91947
2 56089.2 43008.2 -1.30415
3 21165.1 34096.0 0.62075
4 88410.9 35825.1 -2.46785
5 22488.2 35428.0 0.63476
6 35399.5 34087.5 -1.03849
7 21218.7 33351.4 -0.63622
8 122709. 36535.8 -3.35859
9 3048.89 30339.1 -0.10049
10 57311.0 37581.1 -1.52500
11 70596.2 38493.5 -1.83398
12 184778. 36655.7 -5.04089
13 0.417727 0.00684181 6.10550
14 0.216098 0.00653552 -3.30651
15 0.297009 0.00334643 8.87541
16 0.00119271 0.00337776 0.35311
17 0.00685211 0.00326835 -2.09650

R2 = 0.943 s = 3850.12
DF for numerator = 16 DF for denominator = 30
F value = 31.04 Durbin-Watson statistic = 2.27202

Table 6-16: Results of regression run.
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6.2 The Texas natural gas data in Table 5-10 show gas consump-
tion (C) and price (P ). In Exercise 5.10, two regression models
were fitted to these data: a linear regression of log C on P
and a piecewise linear regression of C on P .

(a) Now try what is known as a quadratic regression with

Ĉ = b0 + b1P + b2P
2.

Compare this with the previous results. Check the R̄2

value, the t values for the coefficients, and consider which
of the three models makes most sense.

(b) For the quadratic regression compute prediction intervals
for forecasts of consumption for various prices, for exam-
ple, P = 20, 40, 60, 80, 100, and 120 cents per 1,000
cubic feet [using (6.13)].

(c) What is the correlation between P and P 2? Does this
suggest any general problem to be considered in dealing
with polynomial regressions—especially of higher orders?

6.3 The regression analysis resulting in equation (6.12) was used
to forecast the change in end-of-month balance for a bank for
the next six time periods (periods 54 through 59). See Section
6/5/2 for details. However, since we originally omitted the
known values for D(EOM) for these periods, it is possible to
examine the usefulness of the regression model.

(a) Compare the forecasts with the actuals (Table 6-15) and
determine the MAPE and other summary statistics for
these forecasts.

(b) It was necessary to forecast (AAA) and (3-4) rates for
future periods before it was possible to get forecasts for
D(EOM). Holt’s linear exponential smoothing method
was used in Section 6/5/2 to do this. However, this is
not necessarily the best choice and no attempt was made
to optimize the parameter values. Try finding a better
method to forecast these (AAA) and (3-4) rates, and
then recompute the forecasts for D(EOM) according to
the scheme laid out in Table 6-14.

(c) Compare your new forecasts with the actual D(EOM)
values in Table 6-15 and compute the MAPE and other
statistics to show the quality of the forecasts. How well
do your new forecasts compare with those in Table 6-14?
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X1 7 11 11 3 2 3 21 1 11 10
X2 26 52 55 71 31 54 47 40 66 68
X3 60 20 22 6 44 22 26 34 12 14
Y 78 104 109 102 74 93 115 83 113 109

Table 6-17: Cement composition and heat data. X1, X2, and X3 denote percent-
ages by weight of three components in the cement mixture, and Y denotes the heat
evolved in calories per gram of cement.

6.4 Table 6-17 shows the percentages by weight of three compo-
nents in the cement mixture, and the heat emitted in calories
per gram of cement.

(a) Regress Y against the three components and find confi-
dence intervals for each of the three coefficients.

(b) Carry out an F -test for the regression model. What does
the P -value mean?

(c) Plot the residuals against each of the explanatory vari-
ables. Does the model appear satisfactory?

(d) What proportion of the variation in Y is explained by
the regression relationship?

(e) Which of the three components cause an increase in heat
and which cause a decrease in heat? Which component
has the greatest effect on the heat emitted?

(f) What would be the heat emitted for cement consisting of
X1 = 10, X2 = 40, and X3 = 30? Give a 90% prediction
interval.

6.5 The data set in Table 6-18 shows the dollar volume on the
New York plus American Stock Exchange (as the explanatory
variable X) and the dollar volume on the Boston Regional
Exchange (as the forecast variable Y ).

(a) Regress Y on X and check the significance of the results.
(b) Regress Y on X and t (time) and check the significance

of the results.
(c) Plot the data (Y against X) and join up the points

according to their timing—that is, join the point for
t = 1 to the point for t = 2, and so on. Note that
the relationship between Y and X changes over time.
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Month New York and American Boston Stock
(t) Stock Exchanges (X) Exchange (Y )

Jan 1967 10581.6 78.8
Feb 1967 10234.3 69.1
Mar 1967 13299.5 87.6
Apr 1967 10746.5 72.8
May 1967 13310.7 79.4
Jun 1967 12835.5 85.6
Jul 1967 12194.2 75.0

Aug 1967 12860.4 85.3
Sep 1967 11955.6 86.9
Oct 1967 13351.5 107.8
Nov 1967 13285.9 128.7
Dec 1967 13784.4 134.5
Jan 1968 16336.7 148.7
Feb 1968 11040.5 94.2
Mar 1968 11525.3 128.1
Apr 1968 16056.4 154.1
May 1968 18464.3 191.3
Jun 1968 17092.2 191.9
Jul 1968 15178.8 159.6

Aug 1968 12774.8 185.5
Sep 1968 12377.8 178.0
Oct 1968 16856.3 271.8
Nov 1968 14635.3 212.3
Dec 1968 17436.9 139.4
Jan 1969 16482.2 106.0
Feb 1969 13905.4 112.1
Mar 1969 11973.7 103.5
Apr 1969 12573.6 92.5
May 1969 16566.8 116.9
Jun 1969 13558.7 78.9
Jul 1969 11530.9 57.4

Aug 1969 11278.0 75.9
Sep 1969 11263.7 109.8
Oct 1969 15649.5 129.2
Nov 1969 12197.1 115.1

Table 6-18: Monthly dollar volume of sales (in millions) on Boston Stock Ex-
change and combined New York and American Stock Exchanges. Source: McGee
and Carleton (1970) “Piecewise regression,” Journal of the American Statistical
Association, 65, 1109–1124.
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6.6 Equations (6.10) and (6.12) give two regression models for the
mutual savings bank data.

(a) From equation (6.10) compute a set of seasonal indices by
examining the constant term in the regression equation
when just one dummy variable at a time is set equal to 1,
with all others set to 0. Finally, set all dummy variables
to 0 and examine the constant term.

(b) Repeat this procedure using equation (6.12) and compare
the two sets of seasonal indices.

(c) The use of dummy variables requires that some time
period is regarded as “base period” (the period for which
all the dummy variables have zero value). In equations
(6.10) and (6.12) the twelfth-period was chosen as base.
Rerun the regression model of equation (6.10) using some
other period as the base. Then recompute the seasonal
indices and compare them with those in part (a) above.

6.7 A company which manufactures automotive parts wishes to
model the effect of advertising on sales. The advertising
expenditure each month and the sales volume each month for
the last two years are given in Table 6-19.

(a) Fit the regression model Yt = a + bXt + et where Yt

denotes sales, Xt denotes advertising, and et is the error.

(b) Calculate the Durbin–Watson statistic and show that
there is significant autocorrelation in the residuals.

t X Y t X Y t X Y t X Y
1 25 92.8 7 5 79.9 13 15 85.4 19 15 89.1
2 0 79.2 8 5 81.1 14 5 80.5 20 20 90.9
3 15 84.5 9 15 86.4 15 10 83.5 21 25 92.7
4 10 83.0 10 15 86.3 16 25 92.5 22 15 88.1
5 20 88.1 11 5 79.9 17 15 89.5 23 0 79.5
6 10 83.9 12 20 86.6 18 5 83.6 24 5 82.9

Table 6-19: Sales volume (Y ) and advertising expenditure (X) data for an auto-
motive parts company.
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Autoregressive / Integrated / Moving Average (ARIMA) modelsARIMA models

have been studied extensively. They were popularized by George
Box and Gwilym Jenkins in the early 1970s, and their names have
frequently been used synonymously with general ARIMA models
applied to time series analysis and forecasting. Box and Jenkins
(1970) effectively put together in a comprehensive manner the rel-
evant information required to understand and use univariate time
series ARIMA models. The theoretical underpinnings described by
Box and Jenkins (1970) and later by Box, Jenkins, and Reinsell (1994)
are quite sophisticated, but it is possible for the non-specialist to get
a clear understanding of the essence of ARIMA methodology.

In this chapter, we have four main purposes:

1. introduction of the various concepts useful in time series anal-
ysis (and forecasting);

2. description of the statistical tools that have proved useful in
analyzing time series;

3. definition of some general notation (proposed by Box and Jenk-
ins, 1970) for dealing with general ARIMA models;

4. illustrations of how the concepts, statistical tools, and notation
can be combined to model and forecast a wide variety of time
series.

As indicated in preceding chapters, application of a general class
of forecasting methods involves two basic tasks: analysis of the
data series and selection of the forecasting model (i.e., the specific
methods within that class) that best fits the data series. Thus in
using a smoothing method, analysis of the data series for seasonality
aids in selection of a specific smoothing method that can handle
the seasonality (or its absence). A similar sequence of analysis
and selection is used in working with decomposition methods and
regression methods. Thus, it will come as no surprise that the same
two tasks of analysis and model selection occur again in this chapter.
The first three sections of this chapter will focus on the task of
analysis. The subsequent sections will concentrate on model selection
and applications of the models to forecasting.

After plotting the time series, the major statistical tool is the au-
tocorrelation coefficient, rk, which describes the relationship between
various values of the time series that are lagged k periods apart.
Autocorrelations and related tools are considered in Section 7/1.
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Section 7/2 looks at techniques to make a time series stationary—an
essential step for the analysis and modeling of time series. ARIMA
models are introduced in Section 7/3 and some of their properties are
considered.

The basis of the Box-Jenkins approach to modeling time series is
summarized in Figure 7-1 and consists of three phases: identification,
estimation and testing, and application. In this chapter, each of the
three phases of Figure 7-1 will be examined and practical examples
illustrating the application of the Box-Jenkins methodology to uni-
variate time series analysis will be given. Identifying an appropriate
ARIMA model is considered in Section 7/4 and estimating the pa-
rameters of the model is the subject of Section 7/5. Section 7/6
discusses methods for refining the selected ARIMA model and Section
7/7 uses the techniques of Section 7/1 to test that the chosen model
is appropriate. Finally, the model can be applied in forecasting as
described in Section 7/8.

7/1 Examining correlations in time series data

In this section we concentrate on certain analyses that can be applied
to an empirical time series to determine its statistical properties.
These techniques will later be applied to gain insight as to what kind
of formal forecasting model might be appropriate.

7/1/1 The autocorrelation function

The key statistic in time series analysis is the autocorrelation coeffi- autocorrelation

cient (or the correlation of the time series with itself, lagged by 1, 2,
or more periods). This was introduced in Section 2/2/3. Recall the
formula

rk =

n∑

t=k+1

(Yt − Ȳ )(Yt−k − Ȳ )

n∑

t=1

(Yt − Ȳ )2
. (7.1)



314 Chapter 7. The Box-Jenkins methodology for ARIMA models

Data preparation

• Transform data to stabilize
variance

• Difference data to obtain
stationary series

Model selection

• Examine data, ACF and PACF
to identify potential models

Estimation

• Estimate parameters in
potential models

• Select best model using suitable
criterion

Diagnostics

• Check ACF/PACF of residuals

• Do portmanteau test of residuals

• Are the residuals white noise?

Yes

No

Forecasting

• Use model to forecast

?

?

?

?

�

Phase I
Identification

Phase II
Estimation
and testing

Phase III
Application

Figure 7-1: Schematic representation of the Box-Jenkins methodology for time
series modeling.
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Period Value Period Value Period Value
1 23 13 86 25 17
2 59 14 33 26 45
3 36 15 90 27 9
4 99 16 74 28 72
5 36 17 7 29 33
6 74 18 54 30 17
7 30 19 98 31 3
8 54 20 50 32 29
9 17 21 86 33 30

10 36 22 90 34 68
11 89 23 65 35 87
12 77 24 20 36 44

Table 7-1: Time series with 36 values.

Then r1 indicates how successive values of Y relate to each other,
r2 indicates how Y values two periods apart relate to each other,
and so on. Together, the autocorrelations at lags 1, 2, . . . , make up
the autocorrelation function or ACF. Plots of the ACF were used in autocorrelation

function (ACF)Sections 2/2/3 and 6/2/1.

Consider the time series consisting of the 36 observations in Table
7-1 and plotted in Figure 7-2. This series was constructed using
uncorrelated random numbers between 0 and 100. Suppose, however,
that this fact were not known. It could be determined by applying
autocorrelation analysis. For uncorrelated data, we would expect
each autocorrelation to be close to zero. Figure 7-3 shows the
autocorrelation coefficients for the data in Table 7-1, for time lags
of 1, 2, 3, . . . , 10.

The autocorrelation function is a valuable tool for investigating
properties of an empirical time series, as will become clear in the
pages that follow. However, the statistical theory underlying rk is
quite complicated, and in some cases intractable. For the special case
of a “white noise” series (see Section 7/1/2), the sampling theory of
rk is known and can be used to practical advantage.



316 Chapter 7. The Box-Jenkins methodology for ARIMA models

Time

0 10 20 30

0
20

40
60

80
10

0

Figure 7-2: Time plot of the data in Table 7-1.

r1 = 0.103
r2 = 0.099
r3 = −0.043
r4 = −0.031
r5 = −0.183
r6 = 0.025
r7 = 0.275
r8 = −0.004
r9 = −0.011

r10 = −0.152
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Figure 7-3: Autocorrelations for the series in Table 7-1.
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7/1/2 A white noise model

Equation (7.2) is a simple random model where observation Yt is made
up of two parts, an overall level, c, and a random error component,
et, which is uncorrelated from period to period:

Yt = c + et . (7.2)

The data in Table 7-1 were obtained from this model. It is often called
a “white noise” model—a terminology which comes from engineering. white noise

The white noise model is fundamental to many techniques in time
series analysis. In fact, we have already used it in earlier chapters.
Any good forecasting model should have forecast errors which follow
a white noise model (see Section 2/4/5).

7/1/3 The sampling distribution of autocorrelations

With a time series which is white noise, the sampling theory of rk

is known and so the properties of the ACF can be studied for this
model.

One way of approaching this problem is to study the rk values one
at a time and to develop a standard error formula to test whether a
particular rk is significantly different from zero.

Theoretically, all autocorrelation coefficients for a series of random
numbers must be zero. But because we have finite samples, each of
the sample autocorrelations will not be exactly zero. It has been
shown by Anderson (1942), Bartlett (1946), Quenouille (1949), and
others, that the autocorrelation coefficients of white noise data have
a sampling distribution that can be approximated by a normal curve
with mean zero and standard error 1/

√
n where n is the number of standard error

observations in the series. This information can be used to develop
tests of hypotheses similar to those of the F -test and the t-tests
examined in Chapters 5 and 6.

For example, 95% of all sample autocorrelation coefficients must
lie within a range specified by the mean plus or minus 1.96 standard
errors.1 Since the mean is zero and the standard error is 1/

√
n

1The value of 1.96 is found by looking at Table A, Appendix III, of areas under
the normal curve. Since it is close to 2, it is often approximated by 2.
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for white noise, we expect about 95% of all sample autocorrelation
coefficients to be within ±1.96/

√
n. If this is not the case, the series

is probably not white noise. For this reason, it is common to plot
lines at ±1.96/

√
n when plotting the ACF. These limits are known

as the critical values.critical values

In Table 7-1, n = 36 and so the standard error is 1/
√

36 =
0.167. This means that the limits for the autocorrelations are at
±1.96/

√
36 = ±0.327. These limits are shown on Figure 7-3. All 10

autocorrelation coefficients lie within these limits, confirming what
in this case was already known—the data are white noise.

The concept of a sampling distribution is of critical importance
in time series analysis. The autocorrelation coefficient corresponding
to a time lag of seven periods in Figure 7-3 is 0.275. This value
is different from zero because of the effect of chance. The sampling
distribution provides guidelines as to what is chance and what consti-
tutes a significant relationship. The value of 0.275 is not significantly
different from zero. However, if this value had been obtained for 360
observations instead of 36, the standard error would have been only
0.053 and the limits would have been ±0.103, instead of ±0.327. This
means that, on average, the autocorrelations would be smaller than
±0.103 in 95 out of every 100 times. In that case an r7 of 0.275
would have indicated the presence of a pattern every seven time lags
(or periods), since it would have fallen outside the limits. Of course,
with 360 random values, it would be very unlikely to observe such a
high r value. In summary, the sampling distribution and standard
error allow us to interpret the results from autocorrelation analysis
so that we can distinguish what is pattern from what is randomness,
or white noise, in our data.

7/1/4 Portmanteau tests

Rather than study the rk values one at a time, an alternative ap-
proach is to consider a whole set of rk values, say the first 15 of them
(r1 through r15) all at one time, and develop a test to see whether
the set is significantly different from a zero set. Tests of this sort are
known as portmanteau tests.portmanteau tests

A common portmanteau test is the Box-Pierce test which is based
on the Box-Pierce Q statistic:
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Q = n
h∑

k=1

r2
k

where h is the maximum lag being considered and n is the number of

Box-Pierce Q

statistic

observations in the series. Usually h ≈ 20 is selected. Some packages
will give the Q statistic for several different values of h.

Clearly, if each rk is close to zero, Q will be relatively small whereas
if some rk values are large (either positive or negative), the Q statistic
will be relatively large. The Box-Pierce test was designed by Box
and Pierce (1970) for testing the residuals from a forecast model. If
the residuals are white noise, the statistic Q has a chi-square (χ2) chi-square

distributiondistribution with (h−m) degrees of freedom where m is the number
of parameters in the model which has been fitted to the data. The
value of Q can be compared with the chi-square table (Table E of
Appendix III) to assess if it is significant.

The test can easily be applied to raw data, when no model has
been fitted, by simply setting m = 0.

For the rk values in Figure 7-3, the Box-Pierce Q statistic is
computed as follows:

Q = 36
10∑

k=1

r2
k = 5.62.

Here we have used h = 10 and, since the data in Table 7-1 were not
modeled in any way, m = 0. Hence, we look up the chi-square value of
5.62 (in Table E of Appendix III) with 10 degrees of freedom. In the
row corresponding to 10 df, we see that the probability of obtaining a
chi-square value as large or larger than 5.62 is more than 0.1. So we
conclude that the set of rk values is not significantly different from a
null set.

An alternative portmanteau test is the Ljung-Box test due to Ljung
and Box (1978). They argued that the alternative statistic

Ljung-Box Q∗

statistic
Q∗ = n(n + 2)

h∑

k=1

(n− k)−1r2
k

has a distribution closer to the chi-square distribution than does the
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Q statistic. For the rk values in Figure 7-3,

Q∗ = 36(38)
10∑

k=1

1
36− k

r2
k

= 36(38)
[

1
35

r2
1 +

1
34

r2
2 + · · ·+ 1

26
r2
10

]

= 7.22.

If the data are white noise, the Ljung-Box Q∗ statistic has exactly the
same distribution as the Box-Pierce Q statistic, namely a chi-squarechi-square

distribution distribution with (h−m) degrees of freedom. Comparing Q∗ = 5.93
with Table E of Appendix III (df=10) shows it is not significant.

It is normal to conclude the data are not white noise if the value
of Q (or Q∗) lies in the extreme 5% of the right-hand tail of the χ2

distribution. (That is, the value of Q or Q∗ is greater than the value
given in the column of Table E headed 0.05.) Unfortunately, these
tests sometimes fail to reject poorly fitting models. Care should be
taken not to accept a model on the basis of portmanteau tests alone.

7/1/5 The partial autocorrelation coefficient

In regression analysis, if the forecast variable Y is regressed on
explanatory variables X1 and X2, then it might be of interest to
ask how much explanatory power does X1 have if the effects of X2

are somehow partialled out first. Typically, this means regressing Y
on X2, getting the residual errors from this analysis, and finding the
correlation of the residuals with X1. In time series analysis there is
a similar concept.

Partial autocorrelations are used to measure the degree of asso-partial

autocorrelations ciation between Yt and Yt−k, when the effects of other time lags—
1, 2, 3, . . . , k − 1—are removed.

The value of this can be seen in the following simple example.
Suppose there was a significant autocorrelation between Yt and Yt−1.
Then there will also be a significant correlation between Yt−1 and
Yt−2 since they are also one time unit apart. Consequently, there
will be a correlation between Yt and Yt−2 because both are related
to Yt−1. So to measure the real correlation between Yt and Yt−2, we
need to take out the effect of the intervening value Yt−1. This is what
partial autocorrelation does.
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The partial autocorrelation coefficient of order k is denoted by αk partial

autocorrelationand can be calculated by regressing Yt against Yt−1, . . . , Yt−k:

Yt = b0 + b1Yt−1 + b2Yt−2 + · · ·+ bkYt−k. (7.3)

This is an unusual regression because the explanatory variables on the
right-hand side are previous values of the forecast variable Yt. These
are simply time-lagged values of the forecast variable, and therefore
the name autoregression (AR) is used to describe equations of the autoregression

form of (7.3).

The partial autocorrelation, αk, is the estimated coefficient bk from
this multiple regression. Note that the first partial autocorrelation
is always equal to the first autocorrelation. Varying the number of
terms on the right-hand side of (7.3) will give the partial autocorre-
lations for different values of k. (Actually, there are fast algorithms
for computing partial autocorrelations rather than computing the
regression in (7.3).)

It is usual to plot the partial autocorrelation function or PACF. PACF

The PACF of the data in Table 7-1 is plotted in Figure 7-4.

α1 = 0.103
α2 = 0.089
α3 = −0.062
α4 = −0.030
α5 = −0.171
α6 = 0.065
α7 = 0.315
α8 = −0.096
α9 = −0.092

α10 = −0.168

Lag
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Figure 7-4: Partial autocorrelations for the series in Table 7-1.
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As with the ACF, the partial autocorrelations should all be close to
zero for a white noise series. Quenouille (1949) showed that if the time
series is white noise, then the estimated partial autocorrelations are
approximately independent and normally distributed with a standard
error 1/

√
n. Hence, the same critical values of ±1.96/

√
n can be usedcritical values

with a PACF to assess if the data are white noise.

7/1/6 Recognizing seasonality in a time series

Seasonality is defined as a pattern that repeats itself over fixedseasonality

intervals of time. The sales of heating oil, for example, are high in
winter and low in summer, indicating a 12-month seasonal pattern. If
the pattern is a consistent one, the autocorrelation coefficient at lag
12 months will have a high positive value indicating the existence
of seasonality. If it were not significantly different from zero, it
would indicate that months one year apart are uncorrelated with
no consistent pattern emerging from one year to the next. Such data
would not be seasonal.

In general, seasonality can be found by identifying a large autocor-
relation coefficient or a large partial autocorrelation coefficient at the
seasonal lag. Often autocorrelations at multiples of the seasonal lagseasonal lags

will also be significant. So for monthly data, large autocorrelations
might also be seen at lag 24 and even lag 36.

In Chapter 6, we detected seasonality in the residuals from the
model for the bank data by plotting the ACF in Figure 6-7 (p. 266).
The peak at lag 12 demonstrated the existence of seasonality which
led to an improved model later in Chapter 6.

7/1/7 Example: Pigs slaughtered

Figure 7-5 shows the monthly total number of pigs slaughtered in the
state of Victoria, Australia, from January 1990 through August 1995.
It is very difficult from the time plot to detect any seasonality, or
other pattern in the data. However, the ACF shows some significant
autocorrelation at lags 1, 2, and 3, and the PACF shows significant
partial autocorrelation at lags 1 and 3. These show that the series is
not a white noise series.
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Number of pigs slaughtered
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Figure 7-5: Top: Monthly total number of pigs slaughtered in the state of Victoria,
Australia, from January 1990 through August 1995. (Source: Australian Bureau of
Statistics.) Bottom: ACF and PACF of these data.
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The autocorrelation at lag 12 is also relatively large although not
significant. This may indicate some slight seasonality in the series,
although it is not strong enough to draw a positive conclusion.

The Box-Pierce test for h = 15 gives the result Q = 31.3 and the
Ljung-Box test for h = 15 gives Q∗ = 34.1. As these are based on the
raw data we set m = 0 and compare these figures to a chi-squared
distribution with 15 degrees of freedom. Table E of Appendix III
shows that these results are both significant and we can conclude that
the data are not white noise. The value of Q = 31.3 is significant at
p = 0.01 and Q∗ = 34.1 is significant at p = 0.005. This means that
for white noise data, there is less than a 1% chance of obtaining a
value of Q as high as 31.3 and less than a 0.5% chance of obtaining
a value of Q∗ as high as 34.1.

7/2 Examining stationarity of time series data

Recall that stationarity means that there is no growth or declinestationarity

in the data. The data must be roughly horizontal along the time
axis. In other words the data fluctuate around a constant mean,
independent of time, and the variance of the fluctuation remains
essentially constant over time. For a formal definition of stationarity,
see Box, Jenkins, and Reinsell (1994), p. 23.

We can usually assess stationarity using a time plot.

1. If a time series is plotted and there is no evidence of a change in
the mean over time (e.g., Figure 7-6(a)), then we say the series
is stationary in the mean.

2. If the plotted series shows no obvious change in the variance
over time, then we say the series is stationary in the variance.

Figure 7-6(b) shows a typical data series that is non-stationary in thenon-stationary in

mean mean—the mean of the series changes over time. Figure 7-6(c) shows
a time series that is non-stationary in both mean and variance. Thenon-stationary in

variance mean wanders (changes over time), and the variance (or standard
deviation) is not reasonably constant over time.

The visual plot of a time series is often enough to convince
a forecaster that the data are stationary or non-stationary. The
autocorrelation plot can also readily expose non-stationarity in the
mean. The autocorrelations of stationary data drop to zero relatively
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(a
)

(b
)

(c
)

Figure 7-6: Illustrations of time series data, showing (a) a series stationary in the
mean; (b) a series non-stationary in the mean; and (c) a series non-stationary in
the mean and variance. In each case, n = 100.
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quickly, while for a non-stationary series they are significantly differ-
ent from zero for several time lags. When represented graphically,
the autocorrelations of non-stationary data decrease slowly as the
number of time lags increases.

Figure 7-7 shows the Dow-Jones index over 251 trading days. The
time plot shows that it is non-stationary in the mean. The ACFACF of

non-stationary data also displays a typical pattern for a non-stationary series, with a
slow decrease in the size of the autocorrelations. The autocorrelation
for one time lag, r1, is very large and positive. The autocorrelation
for two time lags is also large and positive, but not as large as r1,
because the random error component has entered the picture twice.
In general, rk for non-stationary data will be relatively large and
positive, until k gets big enough so that the random error components
begin to dominate the autocorrelation. The PACF shown in Figure
7-7 is also typical of a non-stationary series with a large spike close
to 1 at lag 1.

7/2/1 Removing non-stationarity in a time series

Trends, or other non-stationary patterns in the level of a series,
result in positive autocorrelations that dominate the autocorrelation
diagram. Therefore it is important to remove the non-stationarity,
so other correlation structure can be seen before proceeding with
time series model building. One way of removing non-stationarity is
through the method of differencing. We define the differenced series
as the change between each observation in the original series:

Y ′
t = Yt − Yt−1 .

The differenced series will have only n−1 values since it is not possible
to calculate a difference Y ′

1 for the first observation.

Taking the first difference of the Dow-Jones data shown in Figure
7-7 gives the series of day-to-day changes shown in Figure 7-8.
Now the series looks just like a white noise series, with almost no
autocorrelations or partial autocorrelations outside the 95% limits.
(The ACF at lag 6 is just outside the limits, but it is acceptable to
have about 5% of spikes fall a short distance beyond the limits due to
chance.) The Box-Pierce Q statistic takes the value of 27.1 and the
Ljung-Box Q∗ statistic is equal to 28.4 for these data when h = 24
and m = 0.
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Figure 7-7: Dow-Jones index on 251 trading days ending 26 August 1994. Source:
Brockwell and Davis (1996).

Compared to a chi-square distribution with 24 degrees of freedom,
neither of these is significant.

Taking differences has transformed the data into a stationary series
which resembles white noise, showing that the daily change in the
Dow-Jones index is essentially a random amount uncorrelated with
previous days.
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Differenced Dow-Jones index
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Figure 7-8: The first differences of the Dow-Jones index data shown in Figure 7-7.
These data are now stationary and resemble white noise.

Taking first differences is a very useful tool for removing non-
stationarity. However, occasionally the differenced data will not
appear stationary and it may be necessary to difference the data
a second time:second-order

differences
Y ′′

t = Y ′
t − Y ′

t−1 = (Yt − Yt−1)− (Yt−1 − Yt−2) = Yt − 2Yt−1 + Yt−2.
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Y ′′
t is referred to as the series of second-order differences. This series

will have n− 2 values. In practice, it is almost never necessary to go
beyond second-order differences, because real data generally involve
non-stationarity of only the first or second level.

7/2/2 A random walk model

If we denote the Dow-Jones index by Yt, then Figure 7-8 suggests
that a suitable model for the data might be

Yt − Yt−1 = et

where et is white noise. This can be rewritten as

Yt = Yt−1 + et . (7.4)

This model is very widely used for non-stationary data and is known
as a “random walk” model. Figure 7-6(b) shows another random walk random walk

series. Random walks typically have long periods of apparent trends
up or down which can suddenly change direction unpredictably. They
are commonly used in analyzing economic and stock price series.

7/2/3 Tests for stationarity

There have been several statistical tests developed to determine if a
series is stationary. These are also known as unit root tests. The unit root tests

most widely-used such test is the Dickey-Fuller test. Dickey-Fuller test

To carry out the test, we estimate the regression model

Y ′
t = φYt−1 + b1Y

′
t−1 + b2Y

′
t−2 + · · ·+ bpY

′
t−p (7.5)

where Y ′
t denotes the differenced series Yt − Yt−1. The number of

lagged terms in the regression, p, is usually set to be about 3. Then
if the original series, Yt, needs differencing, the estimated value of φ
will be close to zero. If Yt is already stationary, the estimated value
of φ will be negative.

The value of φ is estimated from the regression (7.5) using ordinary
least squares. If differencing is required, then the assumptions behind
the t-test for φ are no longer valid. Instead, the value of φ must be
compared using tables provided by Fuller (1976). If the parameter is
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significant, then the series being tested can be considered stationary.
See Dickey, Bell, and Miller (1986) for more information on the
Dickey-Fuller test.

Australian monthly electricity production
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Figure 7-9: Australian monthly electricity production data from January 1980 to
August 1995.
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7/2/4 Seasonal differencing

With seasonal data which is non-stationary, it may be appropriate
to take seasonal differences. A seasonal difference is the difference seasonal differences

between an observation and the corresponding observation from the
previous year. So for monthly data having an annual 12-month
pattern, we let

Y ′
t = Yt − Yt−12 .

In general, the seasonally differenced series, Y ′
t , is the change between

observations separated by s time periods, where s is the number of
seasons. For monthly data s = 12, for quarterly data s = 4, and so on.
As with first differences, the differencing can be repeated to obtain
second-order seasonal differencing, although this is rarely needed.

A clear illustration of a non-stationary seasonal series is the elec-
tricity production data plotted in Figure 7-9. A longer version of
the same series was considered in Section 2/7/1. Note that the
188 monthly figures show a trend and a very pronounced seasonal
pattern. The autocorrelations illustrate clearly that (i) the series
is non-stationary (the values of rk stay large and positive), and (ii)
the series is seasonal (the values of r12, r24, and r36 are all larger
than their adjacent autocorrelations). The PACF also shows the
seasonality with a large spike at lag 12.

Figure 7-10 shows the seasonally differenced series. The data
plotted are the change in electricity production between months of
consecutive years. The series is now much closer to being stationary.
The seasonality is also much less obvious, although still present as
shown by spikes at lags 12, 24, and 36 in the PACF.

The remaining non-stationarity in the mean can be removed with
a further first difference. The resulting series is shown in Figure 7-11.
If Y ′

t = Yt − Yt−12 denotes the seasonally differenced series, then the
series plotted in Figure 7-11 is

Y ∗
t = Y ′

t − Y ′
t−1

= (Yt − Yt−12)− (Yt−1 − Yt−13)
= Yt − Yt−1 − Yt−12 + Yt−13 . (7.6)
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Seasonally differenced electricity data
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Figure 7-10: The electricity data differenced at lag 12.

When both seasonal and first differences are applied, it makes no
difference which is done first—the result will be the same. However,
we recommend that seasonal differencing be done first because some-
times the resulting series will be stationary and there will be no need
for a further first difference.
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Electricity data differenced at lags 12 and 1
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Figure 7-11: Electricity data after seasonal differencing and first differencing.

It is important that if differencing is used, the differences are
interpretable. For example, first differences are the change between
one observation and the next and seasonal differences are the change
from one year to the next. But taking lag 3 differences for yearly data,
for example, results in a model which cannot be sensibly interpreted.
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7/2/5 Backshift notation

A very useful notational device is the backward shift operator, B,backward shift

operator which is used as follows:

BYt = Yt−1 . (7.7)

In other words, B, operating on Yt, has the effect of shifting the data
back one period. Two applications of B to Yt shifts the data back
two periods, as follows:

B(BYt) = B2Yt = Yt−2 . (7.8)

For monthly data, if we wish to shift attention to “the same month
last year,” then B12 is used, and the notation is B12Yt = Yt−12.

The backward shift operator is convenient for describing the pro-
cess of differencing. A first difference can be written asfirst difference

Y ′
t = Yt − Yt−1 = Yt −BYt = (1−B)Yt . (7.9)

Note that a first difference is represented by (1 − B). Similarly, if
second-order differences (i.e., first differences of first differences) have
to be computed, then:second-order

difference
Y ′′

t = (Y ′
t − Y ′

t−1)
= (Yt − Yt−1)− (Yt−1 − Yt−2)
= Yt − 2Yt−1 + Yt−2

= (1− 2B + B2)Yt

= (1−B)2Yt . (7.10)

Note that the second-order difference is denoted (1 − B)2. (It is
important to recognize that a second-order difference is not the same
as a second difference, which would be denoted 1 − B2; similarly, a
twelfth difference would be 1 − B12, but a twelfth-order difference
would be (1−B)12.)

In general, a dth-order difference can be written asdth-order difference

(1−B)dYt.

A seasonal difference followed by a first difference can be written as

(1−B)(1−Bs)Yt . (7.11)
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The “backshift” notation is convenient because the terms can be
multiplied together to see the combined effect. For example (7.11)
can be expanded to give

(1−B)(1−Bs)Yt = (1−B−Bs+Bs+1)Yt = Yt−Yt−1−Yt−s+Yt−s−1.

For monthly data, s = 12 and we obtain the same result as in (7.6).

7/3 ARIMA models for time series data

In Chapters 5 and 6 we discussed regression models of the form regression

Y = b0 + b1X1 + b2X2 + · · ·+ bpXp + e, (7.12)

where Y is the forecast variable, X1 through Xp are the explanatory
variables, b0 through bp are the linear regression coefficients, and e is
the error term. In equation (7.12), X1, X2, . . . , Xp can represent any
factors such as GNP, advertising, prices, money supply, and so on.

Suppose, however, that these variables are defined as X1 = Yt−1,
X2 = Yt−2, X3 = Yt−3, . . . , Xp = Yt−p. Equation (7.12) then becomes

Yt = b0 + b1Yt−1 + b2Yt−2 + · · ·+ bpYt−p + et. (7.13)

Equation (7.13) is still a regression equation, but differs from (7.12) in
that the right-hand side variables of (7.12) are different explanatory
variables, while those of (7.13) are previous values of the forecast
variable Yt. These are simply time-lagged values of the forecast
variable, and therefore the name autoregression (AR) is used to autoregression

describe equations of the form of (7.13). In fact, equations of this
sort have already been used in (7.3) and (7.5).

One question that arises from considering equation (7.13) is why
autoregression should be treated differently from ordinary regression
models (Chapters 5 and 6). The answer is twofold:

1. In autoregression the basic assumption of independence of the
error (residual) terms can easily be violated, since the explana-
tory (right-hand side) variables in equation (7.13) usually have
a built-in dependence relationship.

2. Determining the number of past values of Yt to include in
equation (7.13) is not always straightforward.
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Just as it is possible to regress against past values of the series,
there is a time series model which uses past errors as explanatory
variables:

Yt = b0 + b1et−1 + b2et−2 + · · ·+ bqet−q + et. (7.14)

Here, explicitly, a dependence relationship is set up among the
successive error terms, and the equation is called a moving averagemoving average

(MA) model.

The phrase moving average in this time series terminology should
not be confused with the same phrase in Chapters 3 and 4. The model
in (7.14) is called a moving average because it is defined as a moving
average of the error series, et. In Chapters 3 and 4, we considered
moving averages of the observations, Yt. In this and subsequent
chapters, moving average is used only in reference to a model of the
form of (7.14).

Autoregressive (AR) models can be effectively coupled with moving
average (MA) models to form a general and useful class of time
series models called autoregressive moving average (ARMA) models.ARMA models

However, they can only be used when the data are stationary. This
class of models can be extended to non-stationary series by allowing
differencing of the data series. These are called autoregressive inte-
grated moving average (ARIMA) models. Box and Jenkins (1970)ARIMA models

popularized ARIMA models.

There is a huge variety of ARIMA models. The general non-
seasonal model is known as ARIMA(p, d, q):ARIMA notation

AR: p = order of the autoregressive part
I: d = degree of first differencing involved

MA: q = order of the moving average part.
The two models we have already seen can be written in this

notation. A white noise model is classified as ARIMA(0,0,0) becausewhite noise

there is no AR aspect to it (Yt does not depend on Yt−1), there is no
differencing involved, and there is no MA part (Yt does not depend on
et−1). Similarly, a random walk model is classified as ARIMA(0,1,0)random walk

because it has no AR or MA aspects and involves one difference.

Note that if any of p, d, or q are equal to zero, the model can also
be written in a shorthand notation by dropping the unused parts
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of the model. For example, an ARIMA(2,0,0) can be written as
AR(2) because there is no differencing (the I part) and no moving
average (MA) part. Similarly, an ARIMA(1,0,1) can also be written
as ARMA(1,1); an ARIMA(0,1,1) can also be written as IMA(1,1);
and so on.

7/3/1 An autoregressive model of order one

Equation (7.15) shows the basic form of an ARIMA(1,0,0) or AR(1)
model. Observation Yt depends on Yt−1, and the value of the
autoregressive coefficient φ1 is restricted to lie between −1 and +1:

ARIMA(1,0,0)

or AR(1)
Yt = c + φ1Yt−1 + et . (7.15)

Figure 7-12(a) shows an illustrative ARIMA(1,0,0) data series with
the equation

Yt = 3 + 0.7Yt−1 + et

where et is normally distributed with mean 0 and variance 1.

The time plot of an AR(1) model varies with the parameter φ1.
For example, when φ1 = 0, Yt is equivalent to a white noise series
(compare equation (7.2)). When φ1 = 1, Yt is equivalent to a random
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Figure 7-12: Illustrations of time series data, showing (a) a first-order au-
toregressive model—ARIMA(1,0,0); and (b) a first-order moving average model—
ARIMA(0,0,1). In both cases, n = 100.
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Figure 7-13: Top: Theoretical ACF and PACF for an AR(1) model with φ1 = 0.7.
Bottom: Empirical ACF and PACF for the series plotted in Figure 7-12(a)

walk series (compare equation (7.4)). The example shown in Figure
7-12) is somewhere between these two extremes. For negative values
of φ1, the series tends to oscillate between postive and negative values.

The top two plots in Figure 7-13 show the theoretical ACF and
PACF for an AR(1) model with φ1 = 0.7. Note that the autocorrela-
tions decay exponentially and that there is only one non-zero partial
autocorrelation at lag 1. In reality, we do not know the order of the
ARIMA model. However, we can use the ACF and PACF to infer
(identify) an AR(1) model when (i) the autocorrelations are exponen-model identification

tially decaying and (ii) there is a single significant partial autocorrela-
tion. The bottom two plots in Figure 7-13 show the empirical ACFs
of the data plotted in Figure 7-12(a). The computed autocorrelations
do decay exponentially, but because of the error component, they do
not die out to zero as do the theoretical autocorrelations on the top of
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Figure 7-13. Similarly, there is one dominant partial autocorrelation,
but also some random non-zero partial autocorrelations. In fact, the
fifteenth partial autocorrelation is, by chance, close to the critical
value denoting statistical significance.

7/3/2 A moving average model of order one

Equation (7.16) gives an MA(1) model or ARIMA(0,0,1) to be gen-
eral. Observation Yt depends on the error term et and also the
previous error term et−1, with coefficient −θ1:

ARIMA(0,0,1)

or MA(1)
Yt = c + et − θ1et−1 . (7.16)

The value of the coefficient θ1 is restricted to lie between −1 and
+1. Note the minus sign on the coefficient θ1 in (7.16). This is a
convention for ARIMA models. Figure 7-12(b) shows an example of
an ARIMA(0,0,1) model with the equation

Yt = 10 + et − 0.7et−1

where et is normally distributed with mean 0 and variance 1.

The top two plots in Figure 7-14 show the theoretical ACF and
PACF for an MA(1) model with θ1 = 0.7. Note that there is only one
non-zero autocorrelation at lag 1 and that the partial autocorrelations
decay exponentially. The bottom two plots show the corresponding
empirical results for the series plotted in Figure 7-12(b).

7/3/3 Higher-order autoregressive models

In general, a pth-order AR model is defined as follows:

ARIMA(p,0,0)

or AR(p)
Yt = c + φ1Yt−1 + φ2Yt−2 + · · ·+ φpYt−p + et, (7.17)

where c = constant term,
φj = jth autoregressive parameter,
et = the error term at time t.
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Figure 7-14: Top: Theoretical ACF and PACF for an MA(1) model with θ1 = 0.7.
Bottom: Empirical ACF and PACF for the series plotted in Figure 7-12(b)

There are specific restrictions on the allowable values of the au-parameter restrictions

toregressive parameters. For p = 1, −1 < φ1 < 1. For p = 2, the
following three conditions must all be met:

−1 < φ2 < 1 φ2 + φ1 < 1 φ2 − φ1 < 1.

More complicated conditions hold for p ≥ 3.

Using the backward shift symbol, B, equation (7.17) can be rewrit-
ten as

or
Yt − φ1Yt−1 − · · · − φpYt−p = c + et

(1− φ1B − · · · − φpB
p)Yt = c + et





(7.18)
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Simulated AR(2) series
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Figure 7-15: An ARIMA(2,0,0) model: Yt = 6 + 1.2Yt−1 − 0.8Yt−2 + et, n = 100.

A great variety of time series are possible with autoregressive
models. Figure 7-15 shows one example, an AR(2) model with the
following equation:

Yt = 6 + 1.2Yt−1 − 0.8Yt−2 + et,

where et was generated from a normal distribution with mean zero
and variance 1. Note that for the AR(2) model, the autocorrelations
die out in a damped sine-wave manner and that there are exactly two
significant partial correlations.

In general, the ACF of an AR(p) model with p ≥ 2 can show
exponential decay or damped sine-wave patterns. The partial auto-
correlations of an AR(p) model are zero beyond lag p.
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Process ACF PACF
AR(1) Exponential decay: on positive

side if φ1 > 0 and alternating in
sign starting on negative side if
φ1 < 0.

Spike at lag 1, then cuts off to
zero: spike positive if φ1 > 0,
negative if φ1 < 0.

AR(p) Exponential decay or damped
sine-wave. The exact pattern de-
pends on the signs and sizes of
φ1, . . . , φp.

Spikes at lags 1 to p, then cuts off
to zero.

MA(1) Spike at lag 1 then cuts off to zero:
spike positive if θ1 < 0, negative
if θ1 > 0.

Exponential decay: on negative
side if θ1 > 0 and alternating in
sign starting on positive side if
θ1 < 0.

MA(q) Spikes at lags 1 to q, then cuts off
to zero.

Exponential decay or damped
sine-wave. The exact pattern de-
pends on the signs and sizes of
θ1, . . . , θq.

Table 7-2: Expected patterns in the ACF and PACF for simple AR and MA models.

7/3/4 Higher-order moving average models

The general MA model of order q can be written as follows:

ARIMA(0,0,q)

or MA(q)
Yt = c + et − θ1et−1 − θ2et−2 − · · · − θqet−q, (7.19)

where c = constant term,
θj = jth moving average parameter,

et−k = the error term at time t− k.

The same restrictions that were required for AR models are also re-parameter restrictions

quired for MA models. Therefore, for q = 1, we require −1 < θ1 < 1.
For q = 2, the following three conditions must all be met:

−1 < θ2 < 1 θ2 + θ1 < 1 θ2 − θ1 < 1.

More complicated conditions hold for q ≥ 3.

In the backshift notation, (7.19) can be written

Yt = c + (1− θ1B − θ2B
2 − · · · − θqB

q)et.
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Simulated MA(2) series
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Figure 7-16: An ARIMA(0,0,2) model: Yt = et − et−1 + 0.8et−2, n = 100.

A wide variety of time series can be produced using moving average
models. Figure 7-16 shows one example defined by the model

Yt = et − et−1 + 0.8et−2.

Note there are two non-zero autocorrelations and that the partial
autocorrelations decay in a damped sine-wave manner. This is
exactly the reverse of what is seen for an AR(2) model. In general,
the autocorrelations of an MA(q) model are zero beyond lag q. If
q ≥ 2, the PACF can show exponential decay or damped sine-wave
patterns.

Table 7-2 summarizes the ACF and PACF patterns for pure AR
and pure MA models.
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Figure 7-17: (a) a mixed model—ARIMA(1,0,1); (b) another version of an
ARIMA(1,0,1). In each case, n = 100.

7/3/5 Mixtures: ARMA models

The basic elements of AR and MA models can be combined to
produce a great variety of models. For example, equation (7.20)
combines a first-order AR model and a first-order MA model. This
is called an ARMA(1,1) or ARIMA(1,0,1) model:

ARIMA(1,0,1)

or ARMA(1,1)
Yt = c + φ1Yt−1 + et − θ1et−1 . (7.20)

Here, Yt depends on one previous Yt−1 value and one previous error
term et−1. The series is assumed stationary in the mean and in the
variance. Figure 7-17(a) gives one example of an artificially generated
ARIMA(1,0,1) series, where φ1 = 0.3, θ1 = −0.7, and c = 7. Figure
7-17(b) gives another example of an ARIMA(1,0,1) model, where
φ1 = −0.8, θ1 = 0.8, and c = 18. In both cases, et is normal with
mean 0 and variance 1. Note how different the two ARIMA(1,0,1)
models can be.

Using the backshift notation, the ARIMA(1,0,1) is written

(1− φ1B)Yt = c + (1− θ1B)et .
↑ ↑

AR(1) MA(1)
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An ARMA model with higher-order terms is written

ARIMA(p,0,q)

or ARMA(p,q)
or

Yt = c + φ1Yt−1 + · · ·+ φpYt−p + et − θ1et−1 − · · · − θqet−q

(1− φ1B − · · · − φpB
p)Yt = c + (1− θ1B − · · · − θqB

q)et .
(7.21)

The same parameter restrictions apply here as for pure AR and pure parameter restrictions

MA models.

7/3/6 Mixtures: ARIMA models

If non-stationarity is added to a mixed ARMA model, then the
general ARIMA(p, d, q) model is obtained. The equation for the
simplest case, ARIMA(1,1,1), is as follows:

(1− φ1B) (1−B)Yt = c + (1− θ1B)et

↑ ↑ ↑
AR(1) First MA(1)

difference

(7.22)

Notice the use of the backward shift operator to describe (i) the first
difference, (ii) the AR(1) portion of the model, and (iii) the MA(1)
aspect.

The general ARIMA(p, d, q) model yields a tremendous variety of
patterns in the ACF and PACF, so that it is unwise to state rules for
identifying general ARIMA models. However, the simpler AR(p) and
MA(q) models do provide some identifying features that can help a
forecaster zero in on a particular ARIMA model identification. It is
also helpful to know that several different models might yield almost
the same quality forecasts, so that the process of identification is not
quite like looking for a needle in a haystack.

In practice, it is seldom necessary to deal with values p, d, or q
that are other than 0, 1, or 2. It is perhaps remarkable that such a
small range of values for p, d, or q can cover a tremendous range of
practical forecasting situations.
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7/3/7 Seasonality and ARIMA models

One final complexity to add to ARIMA models is seasonality. Inseasonal ARIMA

models exactly the same way that consecutive data points might exhibit AR,
MA, mixed ARMA, or mixed ARIMA properties, so data separated
by a whole season (i.e., a year) may exhibit the same properties.

The ARIMA notation can be extended readily to handle seasonalARIMA notation

aspects, and the general shorthand notation is

ARIMA (p, d, q)︸ ︷︷ ︸ (P,D, Q)s︸ ︷︷ ︸
↑ ↖


Non-seasonal
part of the
model







Seasonal
part of
the model




where s = number of periods per season.

The algebra is simple but can get lengthy, so for illustrative pur-
poses consider the following general ARIMA(1, 1, 1)(1, 1, 1)4 model:

(1− φ1B)(1− Φ1B
4)(1−B)(1−B4)Yt = (1− θ1B)(1−Θ1B

4)et.
6 6 6 6 6 6(

Non-seasonal
AR(1)

)

(
Seasonal
AR(1)

)

(
Non-seasonal

difference

)

(
Seasonal
difference

)

(
Non-seasonal

MA(1)

)

(
Seasonal
MA(1)

)

All the factors can be multiplied out and the general model written
as follows:

Yt = (1 + φ1)Yt−1 − φ1Yt−2 + (1 + Φ1)Yt−4

− (1 + φ1 + Φ1 + φ1Φ1)Yt−5 + (φ1 + φ1Φ1)Yt−6

− Φ1Yt−8 + (Φ1 + φ1Φ1)Yt−9 − φ1Φ1Yt−10

+ et − θ1et−1 −Θ1et−4 + θ1Θ1et−5. (7.23)

In this form, once the coefficients φ1, Φ1, θ1, and Θ1 have been
estimated from the data, equation (7.23) can be used for forecasting.

Note that the constant term has been omitted for clarity. If Yt

is replaced by (Yt − µ), where µ is the mean of the Y values, then
a constant term would ultimately appear on the right-hand side of
equation (7.23).
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The seasonal part of an AR or MA model will be seen in the
seasonal lags of the PACF and ACF. For example, the seasonal MA seasonal lags

model ARIMA(0,0,0)(0,0,1)12 will show a spike at lag 12 in the ACF
but no other significant spikes. The PACF will show exponential
decay in the seasonal lags; that is, at lags 12, 24, 36, . . . . Similarly an
ARIMA(0,0,0)(1,0,0)12 (a seasonal AR model) will show exponential
decay in the seasonal lags of the ACF, and a single significant spike
at lag 12 in the PACF.

7/4 Identification

There is such a bewildering variety of ARIMA models, it can be
difficult to decide which model is most appropriate for a given set of
data. The following steps outline an approach to this problem.

1. Plot the data. Identify any unusual observations. Decide
if a transformation is necessary to stabilize the variance. If
necessary, transform the data to achieve stationarity in the
variance.

2. Consider if the (possibly transformed) data appear stationary
from the time plot and the ACF and PACF. If the time plot
shows the data scattered horizontally around a constant mean,
or equivalently, the ACF and PACF drop to or near zero quickly,
it indicates that the data are stationary. If the time plot is
not horizontal, or the ACF and PACF do not drop to zero,
non-stationarity is implied.

3. When the data appear non-stationary, they can be made sta-
tionary by differencing. For non-seasonal data, take first differ-
ences of the data. For seasonal data, take seasonal differences
of the data. Check that these appear stationary. If they are still
non-stationary, take the first differences of the differenced data.
For most practical purposes a maximum of two differences will
transform the data into a stationary series.

4. When stationarity has been achieved, examine the autocorrela-
tion to see if any pattern remains. There are three possibilities
to consider.
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(a) Seasonality may suggest itself—autocorrelations and/or
partial autocorrelations at the seasonal lags are large and
significantly different from zero.

(b) AR or MA models may be revealed—the pattern of au-
tocorrelations and partial autocorrelations will indicate a
possible model. If there are no significant autocorrelations
after lag q, a MA(q) model may be appropriate. If there
are no significant partial autocorrelations after lag p, an
AR(p) model may be appropriate.

(c) If there is no clear MA or AR model suggested, a mixture
model may be necessary. (How to determine the order of
the model will be discussed in Section 7/6.)

We will illustrate this approach through three examples.
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Figure 7-18: Plots of the data in Table 7-3.
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Minute Users Minute Users Minute Users Minute Users
1 88 26 139 51 172 76 91
2 84 27 147 52 172 77 91
3 85 28 150 53 174 78 94
4 85 29 148 54 174 79 101
5 84 30 145 55 169 80 110
6 85 31 140 56 165 81 121
7 83 32 134 57 156 82 135
8 85 33 131 58 142 83 145
9 88 34 131 59 131 84 149

10 89 35 129 60 121 85 156
11 91 36 126 61 112 86 165
12 99 37 126 62 104 87 171
13 104 38 132 63 102 88 175
14 112 39 137 64 99 89 177
15 126 40 140 65 99 90 182
16 138 41 142 66 95 91 193
17 146 42 150 67 88 92 204
18 151 43 159 68 84 93 208
19 150 44 167 69 84 94 210
20 148 45 170 70 87 95 215
21 147 46 171 71 89 96 222
22 149 47 172 72 88 97 228
23 143 48 172 73 85 98 226
24 132 49 174 74 86 99 222
25 131 50 175 75 89 100 220

Table 7-3: The number of users logged on to an Internet server each minute over
100 minutes.

7/4/1 Example 1: A non-seasonal time series

Table 7-3 contains the number of users logged onto an Internet server
each minute over a 100-minute period. Figure 7-18 shows an initial
analysis of the data. The autocorrelation plot gives indications of
non-stationarity, and the data plot makes this clear too. The first
partial autocorrelation is very dominant and close to 1—also showing
the non-stationarity. So we take first differences of the data and
reanalyze.
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Change in number of Internet users
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Figure 7-19: Plots of the differences of the data in Table 7-3.

Figure 7-19 shows the results. Now autocorrelations show a
mixture of an exponential decay and sine-wave pattern and there
are three significant partial autocorrelation. This suggests an AR(3)
model is operating.

So, for the original series, we have identified an ARIMA(3,1,0)
model. That is, the model to be examined has the following form:

(1− φ1B − φ2B
2 − φ3B

3)(1−B)Yt = et.

In terms of the Box-Jenkins stages (Figure 7-1), the identification of
a tentative model has been completed.
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Period Observation Period Observation Period Observation
1 562.674 41 701.108 81 742.000
2 599.000 42 790.079 82 847.152
3 668.516 43 594.621 83 731.675
4 597.798 44 230.716 84 898.527
5 579.889 45 617.189 85 778.139
6 668.233 46 691.389 86 856.075
7 499.232 47 701.067 87 938.833
8 215.187 48 705.777 88 813.023
9 555.813 49 747.636 89 783.417
10 586.935 50 773.392 90 828.110
11 546.136 51 813.788 91 657.311
12 571.111 52 766.713 92 310.032
13 634.712 53 728.875 93 780.000
14 639.283 54 749.197 94 860.000
15 712.182 55 680.954 95 780.000
16 621.557 56 241.424 96 807.993
17 621.000 57 680.234 97 895.217
18 675.989 58 708.326 98 856.075
19 501.322 59 694.238 99 893.268
20 220.286 60 772.071 100 875.000
21 560.727 61 795.337 101 835.088
22 602.530 62 788.421 102 934.595
23 626.379 63 889.968 103 832.500
24 605.508 64 797.393 104 300.000
25 646.783 65 751.000 105 791.443
26 658.442 66 821.255 106 900.000
27 712.906 67 691.605 107 781.729
28 687.714 68 290.655 108 880.000
29 723.916 69 727.147 109 875.024
30 707.183 70 868.355 110 992.968
31 629.000 71 812.390 111 976.804
32 237.530 72 799.556 112 968.697
33 613.296 73 843.038 113 871.675
34 730.444 74 847.000 114 1006.852
35 734.925 75 941.952 115 832.037
36 651.812 76 804.309 116 345.587
37 676.155 77 840.307 117 849.528
38 748.183 78 871.528 118 913.871
39 810.681 79 656.330 119 868.746
40 729.363 80 370.508 120 993.733

Table 7-4: Industry sales for printing and writing paper (in thousands of French
francs). January 1963–December 1972.
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Figure 7-20: Monthly French industry sales of printing and writing paper (in
thousands of francs) between 1963–1972. Data from Table 7-4

7/4/2 Example 2: A seasonal time series

Table 7-4 shows the monthly industry sales (in thousands of francs)
for printing and writing paper between the years 1963 and 1972.
Figure 7-20 shows the very clear seasonal pattern in the data plot
and a general increasing trend. The autocorrelations are almost all
positive, and the dominant seasonal pattern shows clearly in the large
values or r12, r24, and r36.

The evidence of Figure 7-20 suggests taking a seasonal difference.
The seasonally differenced data also appear non-stationary (a plot
of these is not shown) and so the series is differenced again at lag
1. The twice differenced series is shown in Figure 7-21. The twice
differenced data appear to be stationary, and a lot of the dominant
seasonal spikes have disappeared.
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Figure 7-21: Data from Table 7-4 after a seasonal difference and a first difference.

So we have identified the model to be an ARIMA(p, 1, q)(P, 1, Q)12

where values for p, q, P , and Q are yet to be determined. From the
PACF in Figure 7-21, note the exponential decay of the first few
lags—suggesting a non-seasonal MA(1) model. This suggests setting
q = 1 and p = 0. In the ACF, the value r1 is significant—reinforcing
the non-seasonal MA(1) model—and r12 is significant—suggesting a
seasonal MA(1) model. With a little imagination the PACF can be
used to support this seasonal MA(1) model, and we end up with the
tentative identification:
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ARIMA(0, 1, 1)(0, 1, 1)12

or (1−B)︸ ︷︷ ︸ (1−B12)︸ ︷︷ ︸ Yt = (1− θ1B)︸ ︷︷ ︸ (1−Θ1B
12)︸ ︷︷ ︸ et.

↑ ↑ ↑ ↑
Non-seasonal Seasonal Non-seasonal Seasonal

difference difference MA(1) MA(1)

Note that this model is sometimes called the “airline model” be-airline model

cause it was applied to international airline data by Box and Jenkins
(1970). It is one of the most commonly used seasonal ARIMA models.

7/4/3 Example 3: A seasonal time series needing
transformation

As a final example in this section, consider the data in Table 7-5,
which show the monthly shipments of a company that manufactures
pollution equipment. They are plotted in Figure 7-22. It can be seen
clearly that the fluctuations increase as one moves from left to right
on the graph. Until December 1989, the value of shipments was low
and so were the fluctuations. From December 1989 until March 1991,
shipments increased and so did their variations from one month to the
next. The same pattern continues until 1995 when both shipments

S
hi

pm
en

ts
 (

m
ill

io
ns

 o
f f

ra
nc

s)

1986 1988 1990 1992 1994 1996

0
1

2
3

4
5

Figure 7-22: Monthly shipments of pollution equipment. Data from Table 7-5. The
data need transforming to stabilize the variance.
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Period Observation Period Observation Period Observation

1 122.640 44 459.024 87 2411.628
2 120.888 45 543.120 88 1510.224
3 164.688 46 567.648 89 1876.392
4 147.168 47 613.200 90 1792.296
5 171.696 48 791.904 91 1307.868
6 228.636 49 305.724 92 1705.572
7 124.392 50 713.064 93 1945.596
8 155.928 51 1156.320 94 2219.784
9 217.248 52 829.572 95 2528.136

10 176.076 53 865.488 96 3534.660
11 142.788 54 1318.380 97 1546.140
12 196.224 55 971.484 98 2246.064
13 228.636 56 817.308 99 2930.220
14 234.768 57 1079.232 100 2462.436
15 319.740 58 1013.532 101 2551.788
16 241.776 59 986.376 102 3140.460
17 151.548 60 1264.068 103 2437.032
18 352.152 61 997.764 104 2109.408
19 239.148 62 1415.616 105 3853.523
20 233.892 63 1709.952 106 2840.868
21 471.288 64 1443.648 107 3164.112
22 290.832 65 1619.724 108 3946.380
23 284.700 66 2120.796 109 3044.976
24 291.708 67 923.304 110 3957.768
25 287.328 68 860.232 111 4552.571
26 315.360 69 1639.872 112 3651.167
27 417.852 70 1106.388 113 3861.408
28 288.204 71 1161.576 114 5048.388
29 225.132 72 1034.556 115 2990.664
30 430.992 73 960.972 116 2677.056
31 229.512 74 1214.136 117 5566.103
32 296.964 75 1492.704 118 3661.680
33 355.656 76 991.632 119 2435.280
34 367.920 77 1025.796 120 3550.428
35 317.112 78 1399.848 121 2215.404
36 359.160 79 818.184 122 3312.156
37 249.660 80 865.488 123 4289.771
38 455.520 81 1547.892 124 3218.424
39 607.068 82 1003.020 125 3193.020
40 425.736 83 960.972 126 3542.544
41 494.064 84 1568.040 127 2169.852
42 486.180 85 1065.216 128 1536.504
43 494.064 86 1107.264 129 3454.944

130 2351.184

Table 7-5: Monthly shipments of pollution equipment from January 1986 through
October 1996 (in thousands of French francs).
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Figure 7-23: Logarithms of the data in Figure 7-22.

and fluctuations are largest. This variation in the magnitude of the
fluctuations with time is referred to as non-stationarity in the variancenon-stationarity in

variance of the data. It must be corrected (i.e., a stationary variance achieved)
before fitting an ARIMA model to the series.

The main approach for achieving stationarity in variance is through
a logarithmic or power transformation of the data (see Section 2/7/1).transformation

Figure 7-23 shows the logarithm of the data. It is clear that the
magnitude of the fluctuations in the logarithmic transformed data
does not vary with time. Even the fluctuations in the very beginning
of the series are not much different from those at the end. Thus
one can say that the logarithmic transformation has achieved a series
that is stationary in its variance. Once this stationarity in variance
is achieved, an ARIMA model can be fitted.

The logged data are clearly non-stationary and require differencing.
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Figure 7-24: First differences of the data in Figure 7-23.

In this case, there is no strong seasonality, and so we take a first
difference rather than a seasonal difference. The differenced and
logged series is shown in Figure 7-24. There are significant spikes
at lags 1 and 2 in the PACF indicating an AR(2) might be a feasible
non-seasonal component. The single spike at lag 12 in the PACF
indicates a seasonal AR(1) component. Therefore, for the logged
data, a tentative model would be

ARIMA(2, 1, 0)(1, 0, 0)12

or (1− φ1B − φ2B
2)︸ ︷︷ ︸ (1− Φ1B

12)︸ ︷︷ ︸ (1−B)︸ ︷︷ ︸ Yt = et.

↑ ↑ ↑
Non-seasonal Seasonal Non-seasonal

AR(2) AR(1) difference
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7/4/4 Recapitulation

The process of identifying a Box-Jenkins ARIMA model requires
experience and good judgment, but there are some helpful guiding
principles.

1. Make the series stationary. An initial analysis of the raw data
can quite readily show whether the time series is stationary in
the mean and the variance. Differencing, (non-seasonal and/or
seasonal) will usually take care of any non-stationarity in the
mean. Logarithmic or power transformations will often take
care of non-stationary variance.

2. Consider non-seasonal aspects. An examination of the ACF
and PACF of the stationary series obtained in Step 1 can reveal
whether a MA or AR model is feasible.

3. Consider seasonal aspects. An examination of the ACF and
PACF at the seasonal lags can help identify AR and MA models
for the seasonal aspects of the data, but the indications are by
no means as easy to find as in the case of the non-seasonal
aspects. For quarterly data, the forecaster should try to see the
pattern of r4, r8, r12, r16, and so on, in the ACF and PACF.
For monthly data, it is seldom possible to examine very many
autocorrelations for lags in multiples of 12. Thus r12, r24, and
possibly r36 may be available—but these are all that can be
used.

7/5 Estimating the parameters

Having made a tentative model identification (Section 7/4), the AR
and MA parameters, seasonal and non-seasonal, have to be deter-
mined in the best possible manner. For example, suppose the class
of model identified is ARIMA (0, 1, 1). This is a family of models
depending on one MA coefficient θ1:

(1−B)Yt = (1− θ1B)et .

We want the best estimate of θ1 to fit the time series that is being
modeled.
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The method of least squares can be used for ARIMA models, just asleast squares

with regression (see Sections 5/2/1 and 6/1/2). However, for models
involving an MA component (i.e., where q > 0), there is unfortunately
no simple formula that can be applied to obtain the estimates as
there is in regression. Instead an iterative method must be used. A
preliminary estimate is chosen and a computer program refines the
estimate iteratively until the sum of squared errors is minimized.

Another method which is frequently used is maximum likelihood. maximum likelihood

estimationThe likelihood of a set of data is denoted by L and is proportional
to the probability of obtaining the data given the model. Thus
it is a measure of the plausibility of observing our actual sample
of observations given a particular set of parameter values. The
method of maximum likelihood finds the values of the parameters
which maximize the likelihood L. Like least squares estimates, these
estimates must be found iteratively. Maximum likelihood estimation
is usually favored by statisticians because it has some desirable
statistical properties (see Box, Jenkins, and Reinsell, 1994, p. 225).

Computer programs for fitting ARIMA models will automatically
find appropriate initial estimates of the parameters and then succes-
sively refine them until the optimum values of the parameters are
found using either the least squares or maximum likelihood criterion.

The statistical assumptions underlying the general ARIMA model
allow some useful summary statistics to be computed after optimum
coefficient values have been estimated. For example, for each coef-
ficient there will be a standard error for that coefficient. From the standard error

parameter estimate and its standard error, a test for significance can
be computed.

For example 1 in Section 7/4/1, an ARIMA(3,1,0) model was
identified:

Y ′
t = φ1Y

′
t−1 + φ2Y

′
t−2 + φ3Y

′
t−3 + et

where Y ′
t = Yt − Yt−1. Using maximum likelihood estimation, the

following information was produced by the computer program.
Parameter Estimate Std. Error Z P

φ1 1.151 0.096 12.03 0.0000
φ2 -0.661 0.136 -4.87 0.0000
φ3 0.341 0.095 3.58 0.0003
σ2 9.66
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Hence, the estimated model is

(Yt − Yt−1) = 1.151(Yt−1 − Yt−2)− 0.661(Yt−2 − Yt−3)
+ 0.341(Yt−3 − Yt−4) + et. (7.24)



7/6 Identification revisited 361

The parameter σ2 is the variance of the residuals, et. The model
(7.24) can be rewritten

Yt = 2.151Yt−1 − 1.812Yt−2 + 1.002Yt−3 − 0.341Yt−4 + et. (7.25)

Note that this model now looks like an AR(4) model. However, the
parameters for (7.25) do not satisfy the conditions necessary to give
a stationary series.

The P -value in the above table gives a method of testing the P-value

significance of each parameter separately. The Z value gives the ratio
of the estimate to its standard error. The P -values are calculated
using a two-sided z-test from the normal probability table (Table A,
Appendix III). For example, the P -value for φ1 is obtained by finding
the probability of a normal variable being greater than 12.03 or less
than -12.03. The table shows that the probability is zero (to four
decimal places). As usual, we consider the test to be significant if
the P -value is small (less than 0.05). In this case, all parameters are
highly significant (all P -values are very small) showing each of the
three terms in the model is required. If any of these parameters had
not been significant, we may have been able to improve the model by
dropping the corresponding terms from the model.

7/6 Identification revisited

Having estimated an ARIMA model, it is necessary to revisit the
question of identification to see if the selected model can be improved.
There are three aspects of model identification that can arise at this
point in the modeling process.

1. Some of the estimated parameters may have been insignificant
(their P -values may have been larger than 0.05). If so, a revised
model with the insignificant terms omitted may be considered.

2. The ACF and PACF provide some guidance on how to select
pure AR or pure MA models. But mixture models are much
harder to identify. Therefore it is normal to begin with either a
pure AR or a pure MA model. Now it may be worth considering
extending the selected model to a mixed ARMA model. ARMA models

3. There may have been more than one plausible model identified,
and we need a method to determine which of them is preferred.
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Because of these considerations, it is common to have several
competing models for the series and we need a method for select-
ing the best of the models. A plausible criterion for choosing the
best ARIMA model might appear to be to choose the model which
gives the smallest sum of squared errors or the largest value for the
likelihood. Unfortunately, this approach will not always work—often
the MSE can be made smaller and the likelihood made larger simply
by increasing the number of terms in the model.

This is analogous to the problem of selecting a regression model by
maximizing the R2 value. The R2 value can always be increased by
adding another explanatory variable. In the regression context, the
solution to the problem was to adjust the value of R2 to include
a penalty for the number of terms in the regression model (see
Section 6/3/3). For ARIMA models, the solution is very similar:
the likelihood is penalized for each additional term in the model.penalized likelihood

If the extra term does not improve the likelihood more than the
penalty amount, it is not worth adding. The most common penalized
likelihood procedure is the AIC.

Let m = p + q + P + Q be the number of terms estimated in the
model. Then we can choose the values of p, q, P , and Q by minimizing
Akaike’s Information Criterion or AIC:Akaike’s Information

Criterion (AIC)
AIC = −2 log L + 2m (7.26)

where L denotes the likelihood. The AIC was proposed by Akaike
(1974).

There are several modifications to the AIC that are also used
including the Schwarz BIC (Bayesian Information Criterion) and FPESchwarz BIC

FPE (Final prediction error). See Brockwell and Davis (1996) for details.

Because not all computer programs produce the AIC or the likeli-
hood L, it is not always possible to find the AIC for a given model.
However, a useful approximation to the AIC is obtained via the
approximation

−2 log L ≈ n(1 + log(2π)) + n log σ2

where σ2 is the variance of the residuals and n is the number of
observations in the series. All computer programs will produce the
value of σ2 so the AIC can be found approximately using the formula

AIC ≈ n(1 + log(2π)) + n log σ2 + 2m . (7.27)
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Sometimes the first term above is omitted because it is the same
value for all models. Note that the AIC does not have much meaning
by itself. It is only useful in comparison to the AIC value for another
model fitted to the same data set.

You may wish to consider several models with AIC values close to
the minimum. A difference in AIC values of 2 or less is not regarded
as substantial and you may wish to choose a simpler model either for
simplicity, or for the sake of getting a better model fit.

7/6/1 Example 1: Internet usage

We previously identified that a first difference makes this non-seasonal
series stationary. Therefore, we need consider only ARIMA(p,1,q)
models. It is feasible to compute all such models for small values
of p and q. Table 7-6 shows the AIC values for these models.
The ARIMA(3,1,0) selected initially is still the best model since
it has the smallest AIC value. Note that some models were not
able to be estimated. The computer program used was unable to
find appropriate parameter estimates using the iterative maximum
likelihood algorithm. This probably means those models are not
suitable and so it is not a cause of much concern.

7/6/2 Example 2: Sales of printing/writing paper

The estimated model for this series is the ARIMA(0,1,1)(0,1,1)12:

(1−B)(1−B12)Yt = (1− 0.840B)(1− 0.636B12)et.

Both parameters are very significant with P -values less than 0.0001.

We considered a large number of other ARIMA models and com-
pared their performance using the AIC. Some of the models fitted
are shown in Table 7-7, including the best 10 models according to
their AIC values. The ARIMA(0,1,1)(0,1,1)12 model initially selected
has the lowest AIC value. But note that seven of the other top 10
models have a larger likelihood value than this model and that the
model with the largest likelihood value is the ARIMA(0,1,3)(0,1,1)12

model. However, the AIC shows that the gain by including the two
additional MA terms is not sufficient to justify their inclusion. In
this case, the model with the minimum MSE is also the model with
the minimum AIC.
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q = 0 q = 1 q = 2 q = 3 q = 4 q = 5
p = 0 628.99 547.81 517.87 518.27 517.38 516.86
p = 1 527.24 512.30 514.25 512.58 513.10 514.28
p = 2 520.18 514.29 – – – –
p = 3 509.99 511.94 513.92 515.14 – –
p = 4 511.93 510.87 – – – –
p = 5 513.86 – – – – 515.76

Table 7-6: AIC values for ARIMA(p,1,q) models fitted to the computer usage data
of Table 7-3.

Model log(L) m AIC MSE
ARIMA(0,1,1)(0,1,1)12 -556.914 2 1117.827 1916.2
ARIMA(1,1,1)(0,1,1)12 -556.423 3 1118.845 1920.4
ARIMA(0,1,2)(0,1,1)12 -556.441 3 1118.881 1921.0
ARIMA(0,1,1)(0,1,2)12 -556.902 3 1119.803 1933.1
ARIMA(0,1,1)(1,1,1)12 -556.906 3 1119.811 1933.5
ARIMA(0,1,3)(0,1,1)12 -556.381 4 1120.762 1937.4
ARIMA(1,1,1)(1,1,1)12 -556.417 4 1120.834 1938.2
ARIMA(0,1,1)(1,1,0)12 -561.968 2 1127.936 2126.6
ARIMA(1,0,1)(0,1,2)12 -556.415 4 1120.830 1962.2
ARIMA(1,1,1)(1,1,0)12 -561.481 3 1128.962 2129.5
ARIMA(1,1,0)(0,1,1)12 -569.463 2 1142.925 2439.1
ARIMA(0,1,1)(0,1,0)12 -572.632 1 1147.264 2608.8
ARIMA(1,1,0)(1,1,0)12 -574.552 2 1153.103 2703.5
ARIMA(1,1,0)(0,1,0)12 -584.846 1 1171.691 3296.9

Table 7-7: Some ARIMA models for the paper sales data of Table 7-4. The first
10 listed are the best models according to their AIC values. The last four are listed
for later comparisons.
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7/7 Diagnostic checking

Although our selected model may appear to be the best among those
models considered, it is also necessary to do diagnostic checking to
verify that the model is adequate. This is done by studying the
residuals to see if any pattern remains unaccounted for. It is not as residuals

straightforward to compute the residuals of an ARIMA model as it is
for a regression model. However, these are always produced as part
of the algorithm for estimating an ARIMA model.

For a good forecasting model, the residuals left over after fitting the
model should be simply white noise. Therefore, if the ACF and PACF
of the residuals are obtained, we would hope to find no significant
autocorrelations and no significant partial autocorrelations.

For example, in Example 2 (relating to the data in Table 7-4),
the residuals from the fitted ARIMA(0, 1, 1)(0, 1, 1)12 model are an-
alyzed in Figure 7-25. Since both a non-seasonal and a seasonal
difference were applied to the 120 original data points, there are only
107 residuals to examine. In general, the number of residuals will
be n − d − sD, where n = number of observations, d and D are
the degrees of non-seasonal and seasonal differencing, respectively,
and s is the number of observations per season. In Example 2,
107 = 120− 1− (12)1.

It is normal in such plots to standardize (or scale) the residuals so
they have variance equal to one. This makes it easier to spot outliers. outliers

Any residual smaller than -3 or greater than 3 is an outlier and may
be worth investigating. There are no outliers in Figure 7-25. None
of the ACF or PACF spikes is outside the limits, also suggesting the
residual series is white noise.

A portmanteau test (Section 7/1/4) can also be applied to the portmanteau test

residuals as an additional test of fit. In this case Q∗ = 12.86 for
h = 24. Because the model had two parameters, we compare this
value to the χ2 distribution with 24− 2 = 22 degrees of freedom (see
Table E of Appendix III). The value of Q∗ is not significant, showing
the residuals can be considered a white noise series.

So each of these tests suggest the model is adequate and there is
no need to consider further refinement of the model.

If the portmanteau test had been significant, then the model would
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Residuals from ARIMA model
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Figure 7-25: Analysis of the residuals after fitting an ARIMA(0,1,1)(0,1,1)12
model to the paper sales data shown in Table 7-4. These residuals have been
standardized to have variance equal to one.

have been inadequate. In this case, we would need to go back and
consider other ARIMA models. The pattern of significant spikes in
the ACF and PACF of the residuals may suggest how the model
can be improved. For example, significant spikes at the seasonal lags
suggest adding a seasonal component to the chosen model. Significant
spikes at small lags suggest increasing the non-seasonal AR or MA
components of the model.

Any new models will need their parameters estimated and their
AIC values computed and compared with other models. Usually the
model with the smallest AIC will have residuals which resemble white
noise. Occasionally, it might be necessary to adopt a model with not
quite the smallest AIC value, but with better behaved residuals.
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7/8 Forecasting with ARIMA models

7/8/1 Point forecasts

The notation used throughout this chapter is compact and conve-
nient. An ARIMA(0, 1, 1)(0, 1, 1)12 model is described as

(1−B)(1−B12)Yt = (1− θ1B)(1−Θ1B
12)et, (7.28)

for example. However, in order to use an identified model for
forecasting, it is necessary to expand the equation and make it look
like a more conventional regression equation. For the model above,
the form is

Yt = Yt−1 +Yt−12−Yt−13 +et−θ1et−1−Θ1et−12 +θ1Θ1et−13. (7.29)

In order to use this equation to forecast 1 period ahead—that is,
Yt+1—we increase the subscripts by one, throughout:

Yt+1 = Yt +Yt−11−Yt−12 +et+1−θ1et−Θ1et−11 +θ1Θ1et−12. (7.30)

The term et+1 will not be known because the expected value of future
random errors has to be taken as zero, but from the fitted model it
will be possible to replace the values et, et−11, and et−12 by their
empirically determined values—that is, the residuals for times t, t−
11, and t − 12 respectively. Of course, as we forecast further and
further ahead, there will be no empirical values for the e terms after
a while, and so their expected values will all be zero.

For the Y values, at the start of the forecasting process, we will
know the values Yt, Yt−11, and Yt−12. After a while, however, the Y
values in equation (7.30) will be forecasted values rather than known
past values.

By way of illustration, consider the ARIMA(0,1,1)(0,1,1)12 fitted
to the paper sales data of Example 2 (from Table 7-4). This model
will be used to forecast two years ahead. Recall the fitted model is

(1−B)(1−B12)Yt = (1− 0.840B)(1− 0.636B12)et

or

Yt = Yt−1 + Yt−12 − Yt−13 + et − 0.840et−1 − 0.636et−12 + 0.534et−13.
(7.31)
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Month Period Sales Error
t Yt et

...
...

...
...

Apr 71 100 875.000 41.14
May 71 101 835.088 8.28
Jun 71 102 934.595 61.85
Jul 71 103 832.500 112.83

Aug 71 104 300.000 -88.66
Sep 71 105 791.443 -5.91
Oct 71 106 900.000 14.80
Nov 71 107 781.729 -40.67
Dec 71 108 880.000 12.81
Jan 72 109 875.024 -12.85
Feb 72 110 992.968 98.03
Mar 72 111 976.804 0.98
Apr 72 112 968.697 67.20
May 72 113 871.675 -17.36
Jun 72 114 1006.852 55.98
Jul 72 115 832.037 13.01

Aug 72 116 345.587 -59.64
Sep 72 117 849.528 5.98
Oct 72 118 913.871 -26.62
Nov 72 119 868.746 17.02
Dec 72 120 993.733 70.88

Table 7-8: The industry paper sales data (from Table 7-4) and the residuals after
fitting an ARIMA(0,1,1)(0,1,1)12.

Now in order to forecast period 121, equation (7.31) would have to
be written as

Ŷ121 = Y120 + Y109 − Y108 + ê121 − 0.840e120 − 0.636e109 + 0.534e108.

The value of e121 is not known, so we have replaced it by ê121 = 0.
Table 7-8 shows some of the residuals for the paper sales data of
Example 2. The period number is given in Column 2, the known
observations are shown in Column 3, and the residual (or error, et)
is given in Column 4. Using values from this table, the forecast for
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Month Period Forecast Lower Upper
t Ŷt limit limit

Jan 1973 121 944.2212 860.8496 1027.593
Feb 1973 122 992.9713 908.5420 1077.401
Mar 1973 123 1028.5496 943.0757 1114.024
Apr 1973 124 978.2355 891.7295 1064.741
May 1973 125 928.1504 840.6246 1015.676
Jun 1973 126 1018.4610 929.9271 1106.995
Jul 1973 127 865.2814 775.7507 954.812

Aug 1973 128 423.7038 333.1873 514.220
Sep 1973 129 891.9768 800.4851 983.468
Oct 1973 130 976.4427 883.9862 1068.899
Nov 1973 131 906.2744 812.8630 999.686
Dec 1973 132 995.2867 900.9300 1089.643
Jan 1974 133 983.6404 879.6629 1087.618
Feb 1974 134 1032.3906 926.8370 1137.944
Mar 1974 135 1067.9689 960.8623 1175.076
Apr 1974 136 1017.6548 909.0174 1126.292
May 1974 137 967.5697 857.4229 1077.717
Jun 1974 138 1057.8803 946.2444 1169.516
Jul 1974 139 904.7006 791.5953 1017.806

Aug 1974 140 463.1230 348.5671 577.679
Sep 1974 141 931.3960 815.4076 1047.384
Oct 1974 142 1015.8619 898.4585 1133.265
Nov 1974 143 945.6936 826.8921 1064.495
Dec 1974 144 1034.7060 914.5225 1154.889

Table 7-9: Forecasts and 95% prediction intervals for the paper sales data of Table
7-4 using an ARIMA(0,1,1)(0,1,1)12 model.

period 121 can be calculated as follows:

Ŷ121 = 993.73 + 875.02− 880.00 + 0− 0.840(70.88)
− 0.636(−12.85) + 0.534(12.81)

= 944.22.

For period 122, the forecast is

Ŷ122 = Ŷ121 + Y110 − Y109

+ ê122 − 0.840ê121 − 0.636e110 + 0.534e109



370 Chapter 7. The Box-Jenkins methodology for ARIMA models

th
ou

sa
nd

s 
F

re
nc

h 
fr

an
cs

1969 1970 1971 1972 1973 1974 1975

20
0

40
0

60
0

80
0

10
00

12
00

Figure 7-26: Forecasts and prediction intervals for the paper sales data of Table
7-4. Both 80% and 95% prediction intervals are shown.

= 944.22 + 992.97− 875.02
+ 0− 0.840(0)− 0.636(98.03) + 0.534(−12.85)

= 992.97.

Table 7-9 shows forecasts for the next 24 months, along with a
95% prediction interval for each forecast. Figure 7-26 shows theseprediction intervals

forecasts and intervals along with 80% prediction intervals. As we
forecast with a longer and longer lead-time, the prediction intervals
increase steadily in size. These prediction intervals can be difficult to
calculate by hand, and are usually done using a computer package.
The calculations involved assume the residuals are uncorrelated and
normally distributed.
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7/8/2 Out-of-sample forecasting

There are several reasons why genuine out-of-sample forecasting may out-of-sample

forecastingnot be as accurate as the prediction intervals suggest. First, in
computing the prediction intervals, the uncertainty in the parameter
estimates has not been accounted for. Consequently, the intervals
are narrower than they should be. This is a problem peculiar to
ARIMA models as the mathematics becomes too difficult to allow
the additional uncertainty to be included. The prediction intervals
for regression models computed in Chapters 5 and 6 did allow for the
parameter estimation.

A second reason for forecast inaccuracy is that the ARIMA model
contains several assumptions which may not be met. One of the most assumptions

important assumptions is that the historical patterns of our data will
not change during the forecast period. If the model assumptions
are true, the forecasts obtained are optimal. However, for business
series, actual out-of-sample forecast accuracy from ARIMA models
is often worse than is indicated by the prediction limits, because the
patterns of real data series can and do change during the periods we
are forecasting.

A more realistic way of assessing a model’s accuracy is to use a
holdout set (Section 2/4/2). That is, some of the data at the end holdout set

of the series are omitted before the models are estimated. Then the
models are compared on the basis of how well they forecast the data
which have been withheld rather than how well they forecast the
same data which has been used for modeling. For example, if we
hold out the last 12 months of the paper sales data of Example 2
and refit the models using the remaining data, a different picture
emerges. Because we are comparing the models on their genuine
forecasting ability, we can simply compare their MSE performance
on the holdout set. There is no need to consider the likelihood or
AIC values.

Table 7-10 shows some of the ARIMA models from Table 7-7,
this time compared according to their ability to forecast the final 12
months of the series. Note that the previously selected model actually
performs rather worse than several other models in this comparison.
Also the best performing model is a simple MA(1) applied to the
differenced data. It is common for simpler models to perform best in
an out-of-sample comparison (see Chapter 11 for more details).
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Model MSE
ARIMA(0,1,1)(0,1,0)12 2691.5
ARIMA(1,1,0)(1,1,0)12 2704.7
ARIMA(1,1,0)(0,1,0)12 2826.0
ARIMA(0,1,1)(0,1,1)12 2837.1
ARIMA(1,1,0)(0,1,1)12 2878.5

Table 7-10: The best few ARIMA models for the paper sales data of Table 7-4
according to their MSE values based on a holdout sample of 12 months.

7/8/3 The effect of differencing on forecasts

Differencing a series can have a great effect on the forecasts. It is
important to understand how the forecasts will be affected by the
differencing as it may influence the decision as to how many differ-
ences to take. Although models with different degrees of differencing
may perform similarly over the historical data, the behavior of the
forecasts can vary greatly. The following comments summarize the
behavior of the forecasts under different model conditions as the
forecast horizon increases.

Undifferenced data
Forecasts from undifferenced data will converge to the mean
of the historical data if a constant term has been included in
the model. Otherwise, the forecasts will converge to zero. In
either case, the forecast variances will converge to the variance
of the historical data. Therefore prediction intervals will also
converge.

Data differenced once at lag 1
If a constant term has not been included, the forecasts will
converge to the value of the last observation. If a constant
term has been included, the long-range forecasts will follow alinear trend

linear trend where the slope of the trend is equal to the fitted
constant. In either case, the forecast variances will increase in
proportion to the forecast horizon. So prediction intervals will
diverge.
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Data differenced twice at lag 1
If a series has been differenced twice and no constant fitted,
the long-range forecasts will follow a linear trend extrapolating
the trend at the end of the data series. If a constant has been
fitted, the long-range forecasts will follow a quadratic trend. quadratic trend

In either case, the forecast variances will diverge very quickly
(faster than for single differencing). So prediction intervals will
also diverge quickly.

Seasonally differenced data
The effect of seasonal differencing is similar. In particular, if a
series has been seasonally differenced and first differenced, the
forecasts will behave in a similar manner to data which have
been differenced twice at lag 1, except that the forecasts will
also show seasonality.

Clearly, we do not want large prediction intervals and so differenc-
ing should be done as few times as necessary. If it is unreasonable to
assume the forecast variances diverge linearly or quadratically, then
differencing is probably inappropriate for the problem. An alternative
to differencing is to remove the trend and seasonality by estimating
them directly as described in Section 8/1.

7/8/4 ARIMA models used in time series decomposition

In the Census Bureau decomposition procedures (see Section 3/5), an
ARIMA model is often used to forecast the series before decomposi-
tion. This reduces bias at the ends of the series. The X-11-ARIMA
procedure and the X-12-ARIMA procedure both use an ARIMA
model in this way.

The user can specify an appropriate model or let the computer
program automatically select a model.

If automatic selection is used, one of five predetermined models will
be applied. These were chosen on the basis of testing a large number
of economic series (Dagum, 1988) and should provide reasonable
forecasts for most economic series. The five models are given in the
table below.
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ARIMA(0,1,1)(0,1,1)s with log transformation
ARIMA(0,1,2)(0,1,1)s with log transformation
ARIMA(2,1,0)(0,1,1)s with log transformation
ARIMA(0,2,2)(0,1,1)s with log transformation
ARIMA(2,1,2)(0,1,1)s with no transformation

7/8/5 Equivalances with exponential smoothing models

It is possible to show that the forecasts obtained from some expo-
nential smoothing models (Chapter 4) are identical with forecasts
from particular ARIMA models (see McKenzie, 1984, 1986; Yar and
Chatfield, 1990; Chatfield and Yar, 1991).

• The simple exponential smoothing forecasts are equivalent toSES forecasts

those from an ARIMA(0,1,1) model. The moving average
parameter, θ, is equivalent to 1 − α where α is the smoothing
parameter.

• Holt’s linear method is equivalent to an ARIMA(0,2,2) model.Holt’s method

The moving average parameters are θ1 = 2− α− αβ and θ2 =
α− 1 where α and β are the two smoothing parameters.

• Holt-Winters’ additive method gives forecasts equivalent to anHolt-Winters’ method

ARIMA(0, 1, s+1)(0, 1, 0)s model. There are several parameter
restrictions because the ARIMA model has s + 1 parameters
whereas the Holt-Winters’ method uses only three parameters.

• Holt-Winters’ multiplicative method has no equivalent ARIMA
model.

Many computer packages use these equivalences to produce prediction
intervals for exponential smoothing. However, see our comments on
this in Section 4/5/3.
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Exercises

7.1 Figure 7-3 shows the ACF for 36 random numbers, and Figure
7-27 shows the ACFs for 360 random numbers and for 1,000
random numbers.

(a) Explain the differences among these figures. Do they all
indicate the data are white noise?

(b) Why are the critical values at different distances from the
mean of zero? Why are the autocorrelations different in
each figure when they each refer to white noise?
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Figure 7-27: Left: ACF for a white noise series of 360 numbers. Right: ACF for
a white noise series of 1,000 numbers.

7.2 A classic example of a non-stationary series is the daily closing
IBM stock prices. Figure 7-28 shows the analysis of n = 369
daily closing prices for IBM stock. Explain how each plot
shows the series is non-stationary and should be differenced.

7.3 The data below are from a white noise series with a standard
normal distribution (mean zero and variance one). (Read left
to right.)
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Figure 7-28: Time series analysis of n = 369 daily closing IBM stock prices.
Source: Box, Jenkins, and Reinsell (1994).

0.01 1.38 0.53 1.58 1.32 1.04 0.33 -0.20 1.90 0.72
-0.27 -1.43 -1.15 -0.07 1.69 0.28 0.01 0.94 -2.10 0.09
0.91 1.76 0.84 -1.13 0.92 1.67 -1.03 -1.71 1.18 -0.59

(a) Using the normal random numbers of the table, generate
data from an AR(1) model with φ1 = 0.6. Start with
Y0 = 0.

(b) Generate data from an MA(1) model with θ1 = −0.6.
Start with Z0 = 0.

(c) Produce a time plot for each series. What can you say
about the differences between the two models?

(d) Generate data from an ARMA(1,1) model with φ1 = 0.6
and θ1 = −0.6. Start with Y0 = 0 and Z0 = 0.
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(e) Generate data from an AR(2) model with φ1 = −0.8 and
φ2 = 0.3. Start with Y0 = Y−1 = 0. Generate data from
an MA(2) model with θ1 = −0.8 and θ2 = 0.3. Start
with Z0 = Z−1 = 0. Graph the two series and compare
them.

4737 5117 5091 3468 4320 3825 3673 3694 3708 3333
3367 3614 3362 3655 3963 4405 4595 5045 5700 5716
5138 5010 5353 6074 5031 5648 5506 4230 4827 3885

Table 7-11: The number of strikes in the United States from 1951–1980. Read left
to right. Source: Brockwell and Davis (1996).

7.4 Consider Table 7-11 which gives the number of strikes in the
United States from 1951–1980.

(a) By studying appropriate graphs of the series, explain why
an ARIMA(0,1,1) model seems appropriate.

(b) Should you include a constant in the model? Explain.

(c) Write this model in terms of the backshift operator.

(d) Fit the model using a computer package and examine the
residuals. Is the model satisfactory?

(e) Forecast three times ahead by hand. Check your fore-
casts with forecasts generated by the computer package.

(f) Create a plot of the series with forecasts and prediction
intervals for the next three periods shown.

7.5 Figure 7-29 shows the data for Manufacturer’s stocks of Evap-
orated and Sweet Condensed Milk (case goods) for the period
January 1971 through December 1980.

(a) Describe the time plot.

(b) What can you learn from the ACF graph?

(c) What can you learn from the PACF graph?

(d) Figure 7-30 shows an analysis of the differenced data
(1 − B)(1 − B12)Yt—that is, a first-order non-seasonal
differencing (d = 1) and a first-order seasonal differencing
(D = 1). What model do these graphs suggest?
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Figure 7-29: Stocks of evaporated and sweetened condensed milk: raw data.
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Figure 7-30: Stocks of evaporated and sweetened condensed milk: data differenced
at lags 12 and 1.
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Sheep population of England and Wales
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Figure 7-31: Sheep population (in millions) of England and Wales from 1867–1939.
(Source: Kendall, 1976.)

(e) Write the model in terms of the backshift operator, and
then without using the backshift operator.
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Figure 7-32: ACF and PACF of differences for sheep data.

7.6 The sheep population of England and Wales from 1867–1939 is
graphed in Figure 7-31. Assume you decide to fit the following
model:

Yt = Yt−1 +φ1(Yt−1−Yt−2)+φ2(Yt−2−Yt−3)+φ3(Yt−3−Yt−4)+et

where et is a white noise series.

(a) What sort of ARIMA model is this (i.e., what are p, d,
and q)?

(b) By examining Figure 7-32, explain why this model is
appropriate.

(c) The last five values of the series are given below:

Year 1935 1936 1937 1938 1939
Millions of sheep 1648 1665 1627 1791 1797

Given the estimated parameters are φ1 = 0.42, φ2 =
−0.20, and φ3 = −0.30, give forecasts for the next three
years (1940–1942).
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7.7 Figure 7-33 shows the annual bituminous coal production in
the United States from 1920 to 1968. You decide to fit the
following model to the series:

Yt = c + φ1Yt−1 + φ2Yt−2 + φ3Yt−3 + φ4Yt−4 + et

where Yt is the coal production in year t and et is a white
noise series.
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Figure 7-33: Annual bituminous coal production in the United States from 1920–1968.

(a) What sort of ARIMA model is this (i.e., what are p, d,
and q)?

(b) Explain why this model was chosen.

(c) The last five values of the series are given below:

t (year) 1964 1965 1966 1967 1968
Yt (million tons net) 467 512 534 552 545
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1985 227.86 198.24 194.97 184.88 196.79 205.36 226.72 226.05 202.50 194.79 192.43 219.25
1986 217.47 192.34 196.83 186.07 197.31 215.02 242.67 225.17 206.69 197.75 196.43 213.55
1987 222.75 194.03 201.85 189.50 206.07 225.59 247.91 247.64 213.01 203.01 200.26 220.50
1988 237.90 216.94 214.01 196.00 208.37 232.75 257.46 267.69 220.18 210.61 209.59 232.75
1989 232.75 219.82 226.74 208.04 220.12 235.69 257.05 258.69 227.15 219.91 219.30 259.04
1990 237.29 212.88 226.03 211.07 222.91 249.18 266.38 268.53 238.02 224.69 213.75 237.43
1991 248.46 210.82 221.40 209.00 234.37 248.43 271.98 268.11 233.88 223.43 221.38 233.76
1992 243.97 217.76 224.66 210.84 220.35 236.84 266.15 255.20 234.76 221.29 221.26 244.13
1993 245.78 224.62 234.80 211.37 222.39 249.63 282.29 279.13 236.60 223.62 225.86 246.41
1994 261.70 225.01 231.54 214.82 227.70 263.86 278.15 274.64 237.66 227.97 224.75 242.91
1995 253.08 228.13 233.68 217.38 236.38 256.08 292.83 304.71 245.57 234.41 234.12 258.17
1996 268.66 245.31 247.47 226.25 251.67 268.79 288.94 290.16 250.69 240.80

Table 7-12: Total net generation of electricity by the U.S. electric industry (monthly
data for the period January 1985–October 1996). Read left to right. Source:
National Energy Information Center.

The estimated parameters are c = 146.1, φ1 = 0.891,
φ2 = −0.257, φ3 = 0.392, φ4 = −0.333. Give forecasts
for the next three years (1969–1971).

7.8 Table 7-12 shows the total net generation of electricity (in
billion kilowatt hours) by the U.S. electric industry (monthly
for the period 1985–1996). In general there are two peaks per
year: in mid-summer and mid-winter.

(a) Examine the 12-month moving average of this series to
see what kind of trend is involved.

(b) Do the data need transforming? If so, find a suitable
transformation.

(c) Are the data stationary? If not, find an appropriate
differencing which yields stationary data.

(d) Identify a couple of ARIMA models that might be useful
in describing the time series. Which of your models is
the best according to their AIC values?

(e) Estimate the parameters of your best model and do
diagnostic testing on the residuals. Do the residuals
resemble white noise? If not, try to find another ARIMA
model which fits better.
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t Yt t Yt t Yt t Yt

1 218.20 49 183.70 97 167.20 145 179.50
2 217.90 50 184.90 98 165.00 146 179.90
3 224.70 51 188.40 99 168.80 147 181.70
4 236.40 52 197.00 100 175.00 148 191.70
5 238.70 53 199.20 101 177.90 149 199.10
6 240.80 54 201.60 102 183.70 150 205.50
7 241.90 55 204.30 103 187.20 151 212.00
8 241.30 56 206.80 104 189.30 152 213.10
9 240.40 57 203.20 105 183.40 153 203.30
10 233.40 58 195.90 106 177.30 154 193.40
11 226.60 59 190.90 107 172.30 155 190.30
12 219.40 60 185.30 108 171.40 156 181.50
13 215.80 61 184.00 109 164.90 157 176.00
14 213.80 62 183.40 110 164.40 158 176.80
15 220.80 63 181.70 111 166.90 159 182.20
16 234.50 64 188.40 112 174.20 160 191.20
17 236.00 65 191.60 113 177.50 161 197.60
18 232.50 66 194.50 114 183.60 162 201.40
19 233.80 67 198.10 115 189.50 163 208.00
20 233.20 68 200.40 116 191.60 164 210.20
21 232.60 69 196.30 117 185.10 165 206.30
22 226.90 70 189.10 118 181.90 166 200.50
23 217.90 71 185.10 119 175.40 167 202.20
24 212.30 72 182.60 120 174.20 168 200.10
25 208.80 73 179.70 121 172.70 169 194.80
26 209.30 74 178.50 122 168.20 170 192.30
27 212.80 75 181.50 123 171.40 171 192.60
28 208.80 76 190.10 124 177.00 172 199.00
29 211.70 77 190.50 125 182.60 173 207.70
30 214.10 78 193.70 126 191.40 174 215.80
31 214.70 79 195.70 127 200.80 175 219.90
32 216.20 80 195.10 128 201.20 176 221.70
33 218.50 81 192.40 129 195.60 177 214.30
34 213.60 82 185.90 130 188.40 178 211.50
35 206.00 83 178.80 131 184.80 179 206.40
36 198.90 84 175.80 132 187.30 180 204.60
37 194.70 85 169.70 133 182.40 181 196.80
38 193.60 86 169.30 134 176.20 182 190.80
39 195.40 87 172.30 135 178.90 183 188.50
40 203.00 88 180.80 136 182.20 184 196.50
41 204.30 89 183.10 137 184.90 185 204.70
42 203.80 90 182.90 138 195.30 186 211.70
43 205.90 91 186.10 139 198.50 187 216.80
44 207.60 92 189.30 140 200.90 188 217.30
45 205.90 93 183.80 141 195.60 189 212.80
46 198.70 94 179.00 142 187.60 190 206.60
47 189.70 95 172.50 143 183.70 191 203.90
48 186.70 96 171.10 144 184.20 192 202.90

Table 7-13: Employment figures in the motion picture industry (SIC Code 78) for
the period Jan. 1955 through Dec. 1970. Source: “Employment and Earnings, U.S.
1909–1978,” published by the Department of Labor, 1979.
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(f) Forecast the next 24 months of generation of electric-
ity by the U.S. electric industry. See if you can get
the latest figures from your library (or on the web at
www.eia.doe.gov) to check on the accuracy of your fore-
casts.

7.9 Table 7-13 shows monthly employment figures for the motion
picture industry (SIC Code 78) for 192 months from Jan. 1955
through Dec. 1970. This period covers the declining months
due to the advent of TV and then a recovery.

(a) How consistent is the seasonal pattern? Examine this
question using several different techniques, including de-
composition methods (Chapter 4) and autocorrelations
for lags up to 36 or 48.

(b) Split the data set into two parts, the first eight years
(96 months) and the second eight years (96 months) and
do Box-Jenkins identification, estimation, and diagnostic
testing for each part separately. Is there any difference
between the two identified models?

(c) For the first 96 months (1955 through 1962) use the
ARIMA model obtained in (b) above to forecast the next
12 months ahead. How do these forecasts relate to the
actuals?

(d) For the last 96 months (1963 through 1970) use the model
obtained in (b) above to forecast the next 12 months
ahead. Compare your forecast with the actual figures
given below.

Year J F M A M J J A S O N D
1971 194.5 187.9 187.7 198.3 202.7 204.2 211.7 213.4 212.0 203.4 199.5 199.3

(e) In general, when there is a reasonably long time series
such as this one, and there is a clear long-term cycle
(shown by plotting a 12-month moving average, for in-
stance) what should the forecaster do? Use all the data?
Use only the last so-many years? If the object is to
forecast the next 12 months ahead?

7.10 Figure 7-34 shows the analysis of 107 months of U.S. sales of
new one-family houses for the period Jan. 1987 through Nov.
1995. (A longer version of this series was also analyzed in
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Figure 7-34: Sales of new one-family houses, United States, from Jan. 1987 through
Nov. 1995

Chapter 4.) Figure 7-35 shows the analysis of the seasonal
differences of these data.

(a) What can you say about seasonality of the data?

(b) What can you say about trend in the time series?

(c) What does the one large partial autocorrelation in Figure
7-35 suggest?

(d) What would your next step be if you were trying to
develop an ARIMA model for this time series? Can you
identify a model on the basis of Figures 7-34 and 7-35?
Would you want to do some more analyses, and if so,
what would they be?
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Figure 7-35: Seasonal differences of the data shown in Figure 7-34.
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The ARIMA models examined in the previous chapter dealt with
single time series and did not allow the inclusion of other information
in the models and forecasts. But very often there is other information
which can assist in forecasting the series of interest. There may
be information about holidays, or strikes, or changes in the law, or
some other external variables which would assist in developing more
accurate forecasts. In this chapter we extend the ARIMA models of
Chapter 7 to allow other series and other external information to be
included in the models.

The first approach to this problem is given in Section 8/1 where we
combine a multiple regression model from Chapter 6 with an ARIMA
model from Chapter 7. The resulting model is a regression with regression with

ARIMA errorsARIMA errors and provides all the advantages of regression with the
powerful time series features of an ARIMA model.

Section 8/2 extends the regression model with ARIMA errors to
allow the explanatory variables to be included in the model using a
more general and powerful method. These are dynamic regression dynamic regression

modelsmodels (or transfer function models).

A special case of the dynamic regression model occurs when the
explanatory variable represents an intervention. That is, a one-off intervention analysis

event which impacts the time series of interest (e.g., a strike or a war
or the introduction of new legislation). This is such an important
case that it deserves separate study and is discussed in Section 8/3.

For each of the models discussed in Sections 8/1 through 8/3, it is
assumed that the explanatory variable affects the forecast variable,
but that it is not affected itself by the forecast variable. That is,
there is no feedback between the variables. When this assumption
is invalid, a multivariate time series model is required. Multivariate multivariate

autoregressive modelsautoregressive models are covered in Section 8/4.

All of the above models may be written in the form of a “state state space models

space” model. This general formulation provides a unified way
of handling computations as well as providing a vehicle for some
new forecasting methods. State space models are introduced in
Section 8/5.

Sections 8/6 and 8/7 introduce two relatively recent developments
in forecasting methodology. Section 8/6 describes some non-linear non-linear time series

time series models, and neural network forecasting is introduced in neural networks

Section 8/7.
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Some of the models discussed here require a considerable amount of
computation in going through the stages of identification, estimation,
diagnostic checking, and finally, forecasting. Forecasters using these
methods should not fall into the same trap as econometricians who,
during the 1960s, seemed to think that the more complex their
forecasting models, the more accurate they would be. It is important
to assess forecast accuracy for all models used, by applying the
techniques discussed in Chapter 2. Often, simpler models will per-
form better than the more complicated models when out-of-sample
predictions are made.

8/1 Regression with ARIMA errors

In Chapter 6 we considered regression models of the form

Yt = b0 + b1X1,t + · · ·+ bkXk,t + Nt . (8.1)

That is, Yt is modeled as a function of the k explanatory variables
X1,t, . . . , Xk,t. The error term in equation (8.1) is Nt. One of the key
assumptions in Chapter 6 was that Nt was an uncorrelated series,
that is, it was “white noise.” We looked at methods for determining
if Nt was uncorrelated in Section 6/2/1. In this section we consider
fitting models of the form (8.1) where Nt contains autocorrelations.autocorrelated errors

The method we will adopt is to combine the ARIMA models of
Chapter 7 to handle the autocorrelations with the regression models
of Chapter 6 to describe the explanatory relationship. The resulting
model is a regression model with ARIMA errors. Equation (8.1) still
holds but Nt is modeled as an ARIMA process.

For example, if Nt is an ARIMA(1,1,1) model, (8.1) may be written

Yt = b0 + b1X1,t + · · ·+ bkXk,t + Nt (8.2)
where (1− φ1B)(1−B)Nt = (1− θ1B)et (8.3)

and et is a white noise series.

We need to be careful here in distinguishing Nt from et. We
will refer to Nt as the errors and et as the residuals. In ordinaryerrors

residuals regression, Nt is assumed to be white noise and so Nt = et. Therefore
we have tended to use “errors” and “residuals” interchangeably.
However, in this chapter they will, in general, be different.
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Note that if we difference all the variables in (8.2) we obtain

Y ′
t = b1X

′
1,t + · · ·+ bkX

′
k,t + N ′

t .

This is now a regression with an ARMA(1,1) error since N ′
t = (1 −

B)Nt is modeled as an ARMA(1,1) process. In general, any regression
with an ARIMA error can be rewritten as a regression with an ARMA
error by differencing all variables with the same differencing operator
as in the ARIMA model.

8/1/1 Modeling procedure

There are two main problems with applying ordinary least squares least squares

estimationestimation to a regression problem with autocorrelated errors.

1. The resulting estimates are no longer the best way to com-
pute the coefficients as they do not take account of the time-
relationships in the data.

2. The standard errors of the coefficients are incorrect when there
are autocorrelations in the errors. They are most likely too
small. This also invalidates the t-tests and F -test and predic-
tion intervals.

The second problem is more serious than the first because it can lead
to misleading results. If the standard errors obtained using the usual
ordinary least squares estimation are smaller than they should be,
some explanatory variables may appear to be significant when, in
fact, they are not. This is known as “spurious regression.” spurious regression

So regression with autocorrelated errors needs a different approach
from that described in Chapter 6. Instead of ordinary least squares
estimation we can use either generalized least squares estimation or generalized least

squares estimationmaximum likelihood estimation. Generalized least squares estimates
are obtained by minimizing

G =
n∑

i=1

n∑

j=1

wiwjNiNj

where wi and wj are weights based on the pattern of autocorrelations.
Note that instead of only summing the squared errors, we also sum
the cross-products of the errors. Maximum likelihood estimation is
more complicated but results in very similar estimates.

maximum likelihood

estimation
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Generalized least squares estimation only works for stationary er-
rors. That is, Nt must follow an ARMA model. Computer programs
which fit regression models with ARMA errors will calculate the
weights automatically, provided one first specifies the ARMA model
for the error series, Nt. The difficulty is that until the model is
fitted there is no way of examining the Nt series to determine an
appropriate ARMA model. However, an approximate ARMA model
may be chosen first as a proxy model and the errors examined. Then
a more appropriate ARMA model can be selected and the whole
regression model refitted. One approach is to first specify a proxyproxy model

low-order AR model for the errors—an AR(1) or AR(2) for example.
This will capture most autocorrelations in the data so that a more
appropriate ARMA model may be chosen later.

If a non-stationary model is required for the errors, then the model
can be estimated by first differencing all the variables and then fitting
a regression with an ARMA model for the errors.

Therefore we have the following modeling procedure (based on
Pankratz, 1991).

1. Fit the regression model with a proxy AR(1) or AR(2)
model for errors.

2. If the errors from the regression appear to be non-
stationary, and differencing appears appropriate, then
difference the forecast variable and all explanatory vari-
ables. Then fit the model using the same proxy model
for errors, this time using differenced variables.

3. If the errors now appear stationary, identify an appro-
priate ARMA model for the error series, Nt.

4. Refit the entire model using the new ARMA model for
the errors.

5. Check that the et residual series looks like white noise.

This procedure is demonstrated in the following two examples.
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1964 1702 1971 5811 1978 9269 1985 12271
1965 1876 1972 6294 1979 9636 1986 12260
1966 2286 1973 7083 1980 11043 1987 12249
1967 3146 1974 6552 1981 11180 1988 12700
1968 4086 1975 6942 1982 10732 1989 13026
1969 4675 1976 7842 1983 11112
1970 5289 1977 8514 1984 11465

Japanese motor vehicle production
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Figure 8-1: Japanese annual motor vehicle production, 1964–1989. Source: World
motor vehicle data, Motor Vehicle Manufacturers Association of U.S. Inc., Detroit,
1991.

8/1/2 Example: Japanese motor vehicle production

One common application of the regression with ARIMA errors model
is where the explanatory variable represents time. This is sometimes time trend

used as an alternative to eliminating a trend by differencing.

For example, consider the Japanese annual motor vehicle produc-
tion (1964–1989) given in Figure 8-1. We will fit a linear trend model
to these data:

Yt = a + bXt + Nt
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Regression errors
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Figure 8-2: Regression errors from the linear trend model fitted to the data plotted
in Figure 8-1. An AR(1) model is a clear choice for these errors.

where Xt = t − 1963. The fitted line is shown on the graph. In
estimating these coefficients we used a proxy AR(1) model for the
errors, Nt.

The regression errors, Nt = Yt − a− bXt, are shown in Figure 8-2.
These appear stationary and so we proceed to Step 3. The single
spike in the PACF and exponential decay in the ACF show that an
AR(1) will be the best model. So the full model is

Yt = a + bXt + Nt where Nt = φ1Nt−1 + et

and et is a white noise series.

Because the model for Nt happened to be the same as the proxy
used in Step 2, there is no need to reestimate the model in Step 4.The
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parameter estimates are shown below along with statistics to test
their significance.

Parameter Estimate Standard Z P -value
Error

AR(1) φ1 0.736 0.152 4.84 0.000
Intercept a 1662. 504.1 3.30 0.010
Slope b 463.6 32.31 14.35 0.000

Finally, we need to check that the residuals (et) from our model
look like a white noise series; the tools introduced in Section 7/1 may
be used. In this case, all tests are passed (details not shown).

Sales: Petroleum and coal products
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Figure 8-3: Time plots of U.S. monthly sales of petroleum and related products from
January 1971 through December 1991. Source: Business Statistics, U.S. Bureau of
Economic Analysis.
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Figure 8-4: Time plots of the logarithms of the series shown in Figure 8-3.

8/1/3 Example: Sales of petroleum and coal products

Figure 8-3 shows four time series concerning U.S. monthly sales of
petroleum and related products from January 1971 through Decem-
ber 1991. It is clear that the variation in at least three of the series
increases with the level of the series. Therefore, we transform the data
using logarithms to stabilize the variance. The transformed data are
in Figure 8-4. The variances now appear to be roughly constant.

We begin by studying the relationship between the four variables.
Figure 8-5 shows a scatterplot matrix of the four transformed series.
Clearly there is much interdependence between the four series. We
are interested here in predicting petroleum sales using the other three
series. Therefore we fit a multiple regression model

Yt = b0 + b1X1,t + b2X2,t + b3X3,t + Nt
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Figure 8-5: A scatterplot matrix of the four series shown in Figure 8-4.

where Yt denotes the log of petroleum sales, X1,t denotes the log
of chemical sales, X2,t denotes the log of coal production and X3,t

denotes the log of motor vehicle and parts sales. Following the proce-
dure outlined above, we assume Nt is a low-order AR process for now.
Because the data are seasonal, we will use an ARIMA(1,0,0)(1,0,0)12

model as a proxy for the errors. Having estimated the coefficients,
we compute the errors as

Nt = Yt − b0 − b1X1,t − b2X2,t − b3X3,t.

The series was clearly non-stationary and so we differenced the
four data series and refitted the model. Our regression model is now

Y ′
t = b1X

′
1,t + b2X

′
2,t + b3X

′
3,t + N ′

t

where Y ′
t = Yt − Yt−1, X ′

1,t = X1,t − X1,t−1 and so on. In fitting
this model we assumed N ′

t was an ARIMA(1,0,0)(1,0,0)12 process.
Note that we have now dropped the constant term. This could have
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Regression errors
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Figure 8-6: Graphs of errors obtained after fitting a regression model with
ARIMA(1,0,0)(1,0,0)12 errors to the differenced and logged data from Figure 8-3.

been included but would have resulted in forecasts with a linear trend
which was felt to be inappropriate.

This new error series is
N ′

t = Y ′
t − b1X

′
1,t − b2X

′
2,t − b3X

′
3,t

which is shown in Figure 8-6. This time the errors appear to be sta-
tionary and we can attempt to identify an appropriate model for the
error series. The large spikes at lags 1 and 12 in the ACF and PACF
suggest that an ARIMA(0,0,1)(0,0,1)12 or an ARIMA(1,0,0)(1,0,0)12

model may be appropriate. These and several other models were
tried. According to the AIC values, the best model for N ′

t is an
ARIMA(1,0,0)(1,0,0)12. So our full model is

Y ′
t = b1X

′
1,t + b2X

′
2,t + b3X

′
3,t + N ′

t

where (1− Φ1B
12)(1− φ1B)N ′

t = et.
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Again, by coincidence, the model for N ′
t happened to be the same

as the proxy used in Step 2, and there is no need to reestimate the
model in Step 4. The parameter estimates are shown below along
with statistics to test their significance.

Parameter Estimate Standard Z P -value
Error

AR(1) φ1 0.362 0.060 6.03 0.000
Seasonal AR(1) Φ1 0.289 0.064 4.53 0.000
Log Chemicals b1 0.258 0.054 4.79 0.000
Log Coal b2 -0.026 0.012 -2.12 0.034
Log Vehicles b3 -0.015 0.020 -0.75 0.453

This shows that the motor vehicles and parts variable is not having
a significant effect and can be dropped from the model. We refit the
model with this variable omitted to obtain the following results.

Parameter Estimate Standard Z P -value
Error

AR(1) φ1 0.366 0.059 6.16 0.000
Seasonal AR(1) Φ1 0.286 0.064 4.50 0.000
Log Chemicals b1 0.235 0.044 5.31 0.000
Log Coal b2 -0.027 0.012 -2.17 0.030

Finally, we need to check that the residuals from our model look
like a white noise series. Figure 8-7 shows the residuals (et) from
the final model. With no spikes outside the limits in the ACF and
PACF figures, the model does appear to have adequately described
the data. Plots of the residuals against the explanatory variables
and fitted values can also be useful in assessing the model as with
ordinary regression models (see Section 6/1/6).

We can rewrite the final model in terms of the undifferenced (but
logged) data as

Yt = b1X1,t + b2X2,t + Nt

where (1− Φ1B
12)(1− φ1B)(1−B)Nt = et.

That is, a regression with an ARIMA(1,1,0)(1,0,0)12 error series. In
terms of the untransformed data, our model is

Petrolt = Chemicalsb1
t Coalb2t eNt .
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Residuals from regression with ARIMA errors
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Figure 8-7: Graphs of final residuals obtained after fitting a regression model with
ARIMA(1,1,0)(1,0,0)12 errors to the logged data from Figure 8-3.

8/1/4 Forecasting

To forecast a regression model with ARIMA errors, we need to
forecast the regression part of the model and the ARIMA part of
the model and combine the results. So for the petroleum example,
our forecast of Yt+h is

Ŷt+h = b1X̂1,t+h + b2X̂2,t+h + N̂t+h. (8.4)

To compute this equation we require future values of all explanatory
variables and a forecast of the ARIMA error. The ARIMA error can
be forecast using the methods discussed in Chapter 7.

When future values of the explanatory variables are unknown (asforecasting

explanatory variables in the Petroleum example), they need to be forecast themselves
and the forecasts fed into (8.4) to obtain forecasts of Ŷt+h. Where
macroeconomic variables are used as explanatory variables, forecasts
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may be obtained from specialist bureaus, trade or government orga-
nizations. In other cases, separate forecasting models may need to
be developed for predicting the explanatory variables.

Where an explanatory variable is known into the future, we have
no need to develop a separate forecasting model. This occurs most
frequently when a dummy variable (or indicator variable) is used or
when time is used as an explanatory variable. For example, in the
Japanese motor vehicle example we know the value of Xt into the
future, so we can plug the values into (8.4) to obtain forecasts of Y .
Figure 8-8 shows forecasts along with 95% prediction intervals for
this example.

It is interesting to compare the forecasts obtained in this way with
those obtained after removing the linear trend by first-differencing. differencing

After differencing, the resulting data looked like white noise. So
an alternative model for these data is an ARIMA(0,1,0): Yt = a +
Yt−1 + et. The forecasts from this model are shown at the bottom of
Figure 8-8. Notice that the forecasts are almost identical, but that
the prediction intervals increase in width more rapidly. Prediction prediction intervals

intervals will usually be narrower for models with an explicit linear
trend rather than first differencing. However, the forecasts assume
that the linear trend will continue into the future, at least as far
as the longest forecast horizon. In the case of the Japanese motor
vehicle production, this is not an unreasonable assumption. But in
many data sets, the historical trend may not be expected to continue,
in which case differencing is to be preferred.

These prediction intervals are calculated by combining the effects
of the regression and ARIMA parts to the model. There are four
sources of variation which ought to be accounted for in the prediction sources of variation

intervals:

1. the variation due to the error series Nt;
2. the variation due to the error in forecasting the explanatory

variables (where necessary);
3. the variation due to estimating the regression part of the model;
4. the variation due to estimating the ARIMA part of the model.

Unfortunately, calculating the prediction intervals to allow for all
four sources of variation would involve tedious and time-consuming
calculations and so this is rarely done. Usually one of two approaches
is implemented, both of which ignore two of the sources of variation.
The “regression approach” is to ignore the error from points 2. and 4.
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Figure 8-8: Forecasts of Japanese annual motor vehicle production using the linear
trend with AR(1) errors (top) and an ARIMA(0,1,0) model (bottom).

above (see Judge et al., 1988). Alternatively, if ARIMA models are
used to forecast the explanatory variables, then dynamic regression
modeling provides prediction intervals which allow for the error from
points 1. and 2. but not 3. and 4. (see Section 8/2/5). Whichever
approach is followed, the prediction intervals for Ŷt+h will, in general,
be too narrow.
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8/2 Dynamic regression models

Sometimes the effect of a change in an explanatory variable (Xt)
does not show up in the forecast variable (Yt) instantaneously, but
is distributed across several time periods. Consider the following
examples.

1. The effect of rainfall on stream flow is not instantaneous; it
takes some time for the rain to find its way into the stream. So
we would model the daily stream flow (Yt) as a function of the
past few days rainfall (Xt, Xt−1, Xt−2, . . . ).

2. The effect of an advertising campaign lasts for some time
beyond the end of the campaign. Monthly sales figures (Yt)
may be modeled as a function of the advertising expenditure in
each of the past few months, that is Xt, Xt−1, Xt−2, . . . .

3. Let the number of letters mailed at a post office on day t be Xt

and the number of letters delivered by the post office on day t
be Yt. Clearly Yt will be a function of Xt, Xt−1, Xt−2, . . . .

4. The impact of new breeding stock (Xt) on the size of the herd
(Yt) will be distributed over several time periods.

In each of these cases, there is an output time series, called Yt,
which is influenced by an input time series, called Xt. The whole
system is a dynamic system. In other words, the input series Xt exerts
its influence on the output series over several future time periods.
The objective of dynamic regression modeling is to determine a
parsimonious model relating Yt to Xt and Nt. Note that the main
objective in this kind of modeling is to identify the role of a leading
indicator (the input series) in determining the variable of interest

leading indicator

(the output series).

8/2/1 Lagged explanatory variables

The model should include not only the explanatory variable Xt, but
also previous values of the explanatory variable, Xt−1, Xt−2, . . ..
Thus, we write the model as

Yt = a + ν0Xt + ν1Xt−1 + ν2Xt−2 + · · ·+ νkXt−k + Nt (8.5)

where Nt is an ARIMA process.
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t Y X t Y X t Y X t Y X

1 12.0 15 10 28.0 36 19 30.5 33 28 30.6 40
2 20.5 16 11 24.0 40 20 28.0 62 29 32.3 49
3 21.0 18 12 15.5 3 21 26.0 22 30 29.5 7
4 15.5 27 13 17.3 21 22 21.5 12 31 28.3 52
5 15.3 21 14 25.3 29 23 19.7 24 32 31.3 65
6 23.5 49 15 25.0 62 24 19.0 3 33 32.2 17
7 24.5 21 16 36.5 65 25 16.0 5 34 26.4 5
8 21.3 22 17 36.5 46 26 20.7 14 35 23.4 17
9 23.5 28 18 29.6 44 27 26.5 36 36 16.4 1

Table 8-1: Sales volume (Y ) and advertising expenditure (X) for a dietary weight
control product. Sales are measured in equivalent serving units, advertising is
measured in dollars. Source: Blattberg and Jeuland (1981).
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Figure 8-9: Sales and advertising expenditure data from Table 8-1.
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For example, consider the two time series in Table 8-1 which are
plotted in Figure 8-9. These data were reported in Blattberg and
Jeuland (1981) and concern the sales volume (Y ) and advertising
expenditure (X) for a dietary weight control product.

We will model the sales series as a regression against the advertising
expenditure from the current month and the past few months. The
resulting equation is

Yt = 13.7+0.13Xt+0.15Xt−1+0.05Xt−2+0.04Xt−3−0.0007Xt−4+Nt.

Notice how the effect of advertising on sales is positive and drops off
over time as one would expect. Because the error series Nt may be
correlated, we used a low-order autoregressive model for the errors
when estimating this equation.

The values of ν0 through ν4 are called the impulse response weights impulse response

weights(or transfer function weights). The coefficient νi is a measure of how
Yt responds to a change in Xt−i. However, the lagged explanatory
variables are usually collinear so that caution is needed in attributing
much meaning to each coefficient. It is important to also note that
after some time, the effect of advertising will become so small that it
will be swamped by the random error. Hence, the negative sign for ν4

does not mean that advertising has a reverse effect after four months.
Instead, the effect is so small that it is indistinguishable from zero
and the coefficient came out negative by chance.

Equation (8.5) can be written as follows:

Yt = a + ν0Xt + ν1Xt−1 + ν2Xt−2 + · · ·+ νkXt−k + Nt

= a + (ν0 + ν1B + ν2B
2 + · · ·+ νkB

k)Xt + Nt

= a + ν(B)Xt + Nt. (8.6)

Note the various ways in which this equation can be written, the last
being the shorthand notation. ν(B) is called the transfer function transfer function

since it describes how a change in Xt is transferred to Yt.

We will call models of the form (8.6) dynamic regression models dynamic regression

modelbecause they involve a dynamic relationship between the response
and explanatory variables. This term was applied to these models
by Pankratz (1991) and it has since been used by others and some
software packages. Earlier writers call the model a transfer function transfer function

modelmodel following the terminology of Box and Jenkins (1970). In the
case that Nt is a white noise process, economists refer to the model distributed lag model

as a distributed lag model.
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Dynamic regression models allow current and past values of the
explanatory variable, X, to influence the forecast variable, Y . How-
ever, Y is not allowed to influence X. If this is not appropriate, a
more general multivariate model may be better (see Section 8/4).

8/2/2 Koyck model

An important dynamic regression model is the Koyck model, devel-
oped by Koyck (1954). We suppose that the effect of X decreases
exponentially over time. Therefore, let

Yt = a + ω(Xt + δXt−1 + δ2Xt−2 + · · ·+ δkXt−k) + Nt

where |δ| < 1. The coefficient of Xt−k is νk = ωδk which will be
close to zero for large k because δ is smaller than one in absolute
value. This model is sometimes used in modeling the response of sales
to advertising expenditure since advertising in month t will have a
decreasing effect over future months.

The transfer function has the special form

ν(B) = ω(1 + δB + δ2B2 + · · ·+ δkBk).

Notice that

(1− δB)ν(B) = ω(1− δB)(1 + δB + δ2B2 + · · ·+ δmBm)
= ω(1 + δB + δ2B2 + · · ·+ δkBk

− δB − δ2B2 − · · · − δkBk − δk+1Bk+1)
= ω(1− δk+1Bk+1)
≈ ω if k is large.

So we can write
ν(B) ≈ ω

1− δB
.

Thus we have replaced the transfer function by a more parsimonious
form.
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8/2/3 The basic forms of the dynamic regression model

The dynamic regression model is written in two general forms. The
first form is as follows:

Yt = a + ν(B)Xt + Nt, (8.7)
where Yt = the forecast variable or output series;

Xt = the explanatory variable or input series;
Nt = the combined effects of all other factors influencing

Yt (called the “noise”); and
ν(B) = (ν0 +ν1B+ν2B

2 + · · ·+νkB
k), where k is the order

of the transfer function.

The input and output series should be appropriately transformed
(to take care of non-stationary variance), differenced (to take care of
non-stationary means), and possibly seasonally adjusted (to make for
simpler models).

The order of the transfer function is k (being the longest lag of
X used) and this can sometimes be rather large (and therefore not
parsimonious). For this reason, the dynamic regression model is also
written in a more parsimonious form in the same way as we wrote
the Koyck model in a simpler form:

Yt = a +
ω(B)
δ(B)

Xt−b + Nt (8.8)

where ω(B) = ω0 − ω1B − ω2B
2 − · · · − ωsB

s,

δ(B) = 1− δ1B − δ2B
2 − · · · − δrB

r,

Yt = the forecast variable,
Xt = the explanatory variable

and r, s, and b are constants.

The two expressions, ω(B) and δ(B), replace the ν(B) expression
in equation (8.7). The purpose of rewriting the model in this way
is to find a simpler, more parsimonious, way of writing the transfer
function. This reduces the number of parameters to estimate, making
more efficient use of the data (reducing the degrees of freedom) and
so producing more accurate forecasts.
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Why is equation (8.8) considered to be more parsimonious? The
reason is that the values of r and s are usually going to be much
smaller than the value k in equation (8.7). For example, in the Koyck
model, r = 1 and s = 0 so that there are fewer parameters than for
(8.7) where we would have needed a large value of k to capture the
decaying effect of advertising.

As a second example, suppose ω(B) = (1.2 − 0.5B) and δ(B) =
(1− 0.8B). Then

ω(B)
δ(B)

=
(1.2− 0.5B)
(1− 0.8B)

= (1.2− 0.5B)(1− 0.8B)−1

= (1.2− 0.5B)(1 + 0.8B + 0.82B2 + 0.83B3 + · · ·)
= 1.2 + 0.46B + 0.368B2 + 0.294B3 + 0.236B4 + · · ·
= ν(B).

In other words, the ν(B) function, corresponding to the ratio of ω(B)
to δ(B), would have an infinite number of terms, and therefore an
infinite number of ν-weights. This is a case where r = 1 (the order
of the δ function), s = 1 (the order of the ω function), and k is very
large. So equation (8.8) is a more parsimonious representation.

In equation (8.8), note that the subscript for X is (t − b). What
this means is that there is a delay of b periods before X begins todelay

influence Y . So Xt influences Yt+b first, or Xt−b influences Yt first.
When b > 0, X is often called a “leading indicator” since Xt is leadingleading indicator

Yt by b time periods.

It is straightforward to extend the dynamic regression model to
include several explanatory variables:

Yt = a +
m∑

i=1

Bbiωi(B)
δi(B)

Xi,t + Nt (8.9)

where ωi(B) = ωi,0 − ωi,1B − · · · − ωi,siB
si (8.10)

δi(B) = 1− δi,1B − · · · − δi,riB
ri (8.11)

and Nt is an ARIMA process. The dynamic regression model (8.9)
is a general model which includes many simpler models as special
cases including multiple regression, regression with ARIMA errors,
and ARIMA models.
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8/2/4 Selecting the model order

We wil keep things simple by assuming there is just one explanatory
variable. So our full model is

Yt = a +
ω(B)
δ(B)

Xt−b + Nt (8.12)

where ω(B) = ω0 − ω1B − ω2B
2 − · · · − ωsB

s,

δ(B) = 1− δ1B − δ2B
2 − · · · − δrB

r,

and Nt is an ARIMA process.

In selecting the form of the model, we need to determine the values
of r, s, and b, and the values of p, d, and q in the ARIMA(p, d, q)
model for Nt. If the data are seasonal, we may need to also find the
order of the seasonal part of the ARIMA model.

There are two methods which are used to select r, s, and b. The
older and more complicated method is due to Box and Jenkins (1970)
and uses prewhitening and cross-correlations. It is a difficult method
to use, particularly with more than one explanatory variable. The
method used in this book is known as the “linear transfer function”
or LTF method and is described in detail by Pankratz (1991). LTF identification

methodThe LTF method follows a similar approach to that described in
Section 8/1 for fitting a regression model with ARIMA errors. The
general procedure is as follows.

Step 1 The first step in identifying the appropriate dynamic regres-
sion model is to fit a multiple regression model of the form

Yt = a + ν0Xt + ν1Xt−1 + ν2Xt−2 + · · ·+ νkXt−k + Nt

where k is sufficiently large so the model captures the longest
time-lagged response that is likely to be important. Since the
form of the noise is relatively unimportant at this stage, it is
convenient to use a low-order proxy AR model for Nt.

Step 2 If the errors from the regression appear to be non-stationary,
and differencing appears appropriate, then difference Y and X.
Fit the model again using a low-order autoregressive model for
the errors, this time using differenced variables.
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Step 3 If the errors now appear stationary, identify an appropriate
transfer function for ν(B). That is, the values of b, r, and s
must be selected. The value of b is the number of periods before
Xt influences Yt. The value of s (the order of ω(B)) controls
the number of transfer function coefficients before they begin
to decay. The value of r (the order of δ(B)) controls the decay
pattern.

The following rules may be used to select values for b, r, and s.

1. The dead time, b, is equal to the number of ν-weights that
are not significantly different from zero. That is, we look
for a set of approximately zero-valued ν-weights (ν0, ν1,
νb−1).

2. The value of r determines the decay pattern in the remain-
ing ν-weights.
• If there is no decay pattern at all, but a group of spikesno decay

followed by a cutoff to zero, then choose r = 0.
• If there is simple exponential decay (perhaps afterexponential decay

some ν-weights that do not decay), then r = 1.
• If the ν-weights show a more complex decay patterncomplex decay

(e.g., damped sine-wave decay), then r = 2.
3. The value of s is the number of non-zero ν-weights before

the decay.

Step 4 The next step is to calculate the errors from the regression
model

Nt = Yt − a− ν0Xt − ν1Xt−1 − · · · − νkXt−k

and identify an appropriate ARMA model for the error series.
The techniques of Chapter 7 may be used.

Step 5 Refit the entire model using the new ARMA model for the
errors and the transfer function model for X.

Step 6 Finally, we need to check that the fitted model is adequate
by analyzing the residuals et to see if they are significantly
different from a white noise series. The usual diagnostic testsdiagnostic tests

can be used. Note that a wrong dynamic regression model may
induce significant autocorrelations in the residual series. If the
residuals show any problems, it is good practice to reconsider
the appropriateness of the transfer function as well as the error
model.
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The only new part of this procedure is identifying an appropriate
transfer function model for ν(B) in Step 3. Also, the estimation in
Step 5 is only available in software with facilities for handling dynamic
regression models (see Appendix I).

Example: Sales and advertising

The data in Table 8-1 will be used to illustrate the process. We have
already completed Step 1 by fitting a multiple regression model to
these data with lagged values of Xt in Section 8/2/1. The fitted
model was

Yt = 13.7+0.13Xt+0.15Xt−1+0.05Xt−2+0.04Xt−3−0.0007Xt−4+Nt.
(8.13)

In fitting this model, it was assumed that Nt was an AR(1) process.
Figure 8-10 shows some information which was also produced by the
computer program used to fit the model. The model yields an MSE
of 11.47 and an AIC value of 84.16. It is of interest to query whether
the dynamic regression methodology can improve upon this result.

Parameter Estimate s.e. Z P -value
a 13.715 3.010 4.56 0.0000
ν0 0.1311 0.033 4.00 0.0001
ν1 0.1508 0.034 4.90 0.0002
ν2 0.0497 0.034 1.31 0.1888
ν3 0.0371 0.034 0.53 0.5933
ν4 -0.0007 0.035 -0.02 0.9848
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Figure 8-10: Estimates of the transfer function coefficients in (8.13) and their
significance. The coefficients are plotted and the decay shown by the dashed line.
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The errors from this model do appear to be stationary (graphs
not shown) and so we can proceed to Step 3 of the modeling pro-
cedure. The dynamic regression model that we will study for these
observations is

Yt = a +
ω(B)
δ(B)

Xt−b + Nt.

From the P -values in Figure 8-10, it is clear that there is no delay—
the first significant coefficient is at lag 0. So we set b = 0. This is
to be expected with an advertising/sales relationship. Figure 8-10
shows that the coefficients begin to decay at lag 1. So we set s = 1.
They appear to decay exponentially as shown by the dashed line in
Figure 8-10. Hence we also set r = 1.

Moving to Step 4, Figure 8-11 shows the error series, Nt, from
the fitted regression model. The single significant spikes in the ACF
and PACF suggest either an AR(1) or an MA(1) model. The MA(1)
model has a smaller AIC value and so we will adopt that as the model
for the errors.

Now the full model is

Yt = a +
ω0 − ω1B

1− δ1B
Xt + Nt

where Nt = et − θet−1.

We proceed to Step 5 and estimate the parameters. This is normally
done using a maximum likelihood procedure. In this case we obtain
the following values:

a = 14.19, ω0 = 0.12, ω1 = −0.13, δ1 = 0.30, θ = −0.73.

The model can now be written as

Yt = 14.19 +
0.12 + 0.13B
1− 0.30B

Xt + (1 + 0.73B)et. (8.14)

The final task is to check the residuals in Step 6. This is identical
to what is done in ARIMA modeling as described in Section 7/7 and
so we omit the details here. In this example, the residuals pass all
tests for white noise.

The dynamic regression model (8.14) has an MSE of 9.5 and an
AIC of 82.08. On both counts it is a superior model to (8.13).
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Figure 8-11: The error series, Nt, after fitting the regression model (8.13). The
spikes at lag 1 in the ACF and PACF suggest either an MA(1) or an AR(1) model
will be appropriate.

8/2/5 Forecasting

Once the model has been identified, and all the parameters have
been estimated, the forecasting version of the equation needs to be
determined. We first write the model (8.8) in a single line by replacing
Nt by its operator form:

Yt = a +
ω(B)
δ(B)

Xt−b +
θ(B)
φ(B)

et (8.15)

where et is white noise. (We have assumed that Nt has a stationary
ARMA model here. If this is not the case, all variables can be differ-
enced first.) Then (8.15) is multiplied throughout by the product of
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δ(B) and φ(B), and we get

δ(B)φ(B)Yt = δ(B)φ(B)a + φ(B)ω(B)Xt−b + δ(B)θ(B)et. (8.16)

The various difference operators are then multiplied together, terms
are collected, and all terms except Yt are moved to the right-hand
side of the equation. For example, with (8.14) we obtain:

Yt = a +
ω0 − ω1B

1− δ1B
Xt + (1− θB)et

(1− δ1B)Yt = a(1− δ1) + (ω0 − ω1B)Xt + (1− δ1B)(1− θB)et

Yt = a(1− δ1) + δ1Yt−1 + ω0Xt − ω1Xt−1 (8.17)
+ et − (δ1 + θ1)et−1 + δ1θet−2.

Knowing the values of the parameters, past values of Y , X, and e,
and future values of X, this equation can be used to determine Y
values for future periods.

In the advertising/sales example, X is advertising and therefore
not random but under the control of the company. Therefore the
effects of various future advertising strategies on sales could be
examined by feeding the planned future advertising expenditure into
the forecasting equation.

Where X is random, it is common to forecast X as an ARIMAforecasting

explanatory variables process and to feed the forecasts of X obtained in this way into the
forecasting equation. In the advertising/sales example, if we treat
advertising as random then it may be modeled using an MA(1).
Figure 8-12 shows forecasts of the sales series using (8.17) with the
values of X forecast using an MA(1) model.

Computer packages which have facilities for dynamic regression
modeling will produce prediction intervals for forecasts automatically.prediction intervals

The computational details are too complicated to be covered here, but
are explained in Pankratz (1991). Note that the prediction intervals
will not allow for the uncertainty in estimation of the transfer function
or ARIMA error model. However, if the explanatory variable is
forecast using an ARIMA model, the additional variation associated
with this forecast (but not the estimation of the ARIMA model) can
be included in the prediction intervals.
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Figure 8-12: Forecasts of the sales data given in Table 8-1 using a dynamic
regression model. 95% prediction intervals are shown by the shaded region.

8/2/6 Example: Housing starts

The data shown in the top plot of Figure 8-13 are the number of
housing starts in the United States from January 1983 to October
1989. We wish to develop a forecasting model for these data using
construction contracts and mortgage interest rates as possible dy-
namic regression variables. These variables are also shown in Figure
8-13. Both housing starts and construction contracts are seasonal
because construction declines in the wet and cold weather. The
plot of construction contracts appears to increase steadily over time,
whereas the plot of housing starts shows a steady pattern for several
years and then declines slightly after 1986. This could be because the
construction contracts data have not been adjusted for inflation. It
may also reflect a tendency for new houses to be increasing in size.

Because private housing starts make up one component of total
construction contracts, it is expected that these two series are posi-
tively related. It is also reasonable to expect that interest rates are
negatively related to housing starts as lower mortgage rates might
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Figure 8-13: Monthly housing starts (thousands of units), construction contracts
(millions of dollars), and average new home mortgage rates from January 1983 to
October 1989. Source: Survey of Current Business, U.S. Department of Commerce,
1990.
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foster investment in building. There may be some months of delay
after a change in construction or mortgage rates before we would see
a consequential change in housing starts. We will allow up to nine
months lag for interest rates and up to six months for construction.

So in Step 1 we fit the model

Yt = a+ν0Xt+ν1Xt−1+· · ·+ν6Xt−6+b0Zt+b1Zt−1+· · ·+b9Zt−9+Nt

(8.18)
where X denotes construction and Z denotes the interest rate. An
AR(1) proxy model was used for Nt.

We will use the last 12 months of data as a holdout set on which
to evaluate the forecasting ability of models. Therefore only data
up to October 1988 was used in fitting the model. The estimated
parameters for the initial model are given in Table 8-2. The errors
for the fitted model appear stationary, so we proceed to Step 3 in
identifying an appropriate dynamic regression model for the data.

Parameter Value s.e. Z P

a 163.94 54.75 2.99 0.003
ν0 –6.27 0.71 –8.81 0.000
ν1 3.74 0.74 5.07 0.000
ν2 –1.60 0.74 –2.16 0.031
ν3 –1.30 0.70 –1.85 0.064
ν4 –1.02 0.77 –1.33 0.184
ν5 1.85 0.74 2.50 0.013
ν6 –0.42 0.73 –0.58 0.562
b0 –6.96 9.81 –0.71 0.478
b1 –2.32 11.70 –0.20 0.843
b2 6.68 11.84 0.56 0.573
b3 –19.26 12.13 –1.59 0.112
b4 –2.94 12.11 –0.24 0.808
b5 27.58 12.99 2.12 0.034
b6 –28.26 12.28 –2.30 0.021
b7 4.49 10.05 0.45 0.655
b8 16.45 8.64 1.90 0.057
b9 5.14 7.66 0.67 0.502

Table 8-2: Estimated parameters for the initial model for the housing starts data
given in (8.18).
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The P -values in Table 8-2 suggest that the construction figures up
to a lag of five months may be useful explanatory variables and the in-
terest rates between five and eight months may be useful explanatory
variables. There is no evidence of exponential or sinusoidal decay in
the coefficients. The ACF and PACF of the disturbance term, Nt,
suggest an AR(1) model might be appropriate. Therefore we fit the
model

Yt = a+(ν0+ν1B+· · ·+ν5B
5)Xt+B5(b0+b1B+b2B

2+b3B
3)Zt+Nt

where Nt = φNt−1 + et. The mean absolute error (MAE) for the
holdout set was 11.87 compared to 12.67 for model (8.18). Further
exploration of related models showed that the model

Yt = a + (ν0 + ν1B + ν2B
2)Xt + B3(b0 + b1B + · · ·+ b5B

5)Zt + Nt

is better, giving a MAE of 9.84 on the holdout set.

A common mistake is to think that sophisticated models with
explanatory variables produce better forecasts than some simpleforecast accuracy

models. In this example, an ARIMA(2,0,0)(1,0,0)12 gives a MAE of
9.10 and Winters additive method gives a MAE of 9.22, yet neither
of these models takes construction or interest rates into account.
However, sophisticated models allow us to better explain the variation
in the variable we want to predict.

8/3 Intervention analysis

Figure 8-14 shows the monthly total number of deaths and serious
injuries on roads in the United Kingdom from January 1975 to
December 1984. In February 1983, new legislation came into force
requiring seat belts to be worn. It appears from the graph that this
had an immediate and successful impact on reducing fatalities and
serious injuries.

The new legislation is an example of an intervention—a one-offintervention

event which has an impact on the forecast variable. We can model the
effect of the intervention using a special case of a dynamic regression
model. The impact may be instantaneous or it may be spread over a
period of time. However, the intervention is assumed to occur at one
time period only.
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Figure 8-14: Monthly total deaths and serious injuries on UK roads. January
1975–December 1984. Source: Harvey (1989).

Intervention analysis is useful if we wish to measure the precise im-
pact of the intervention, or if we wish to forecast the series allowing for
the effect of the intervention. It was made widely known through an
article entitled “Intervention analysis with applications to economic
and environmental problems,” in which Box and Tiao (1975) suggest
an approach for handling this problem in a dynamic regression frame-
work. Their approach is aimed at answering questions such as “How
will sales be affected if the price is increased by 20%?” or “How
will sales be affected if a promotional campaign is started on July
1?” These types of questions are concerned not only with the time
at which the change occurred, but also with the transition period
between the old equilibrium level and the new equilibrium level.

8/3/1 Step-based interventions

The simplest forms of interventions are step functions. That is where
we expect the intervention to result in a sudden and lasting drop or
rise in the forecast variable.
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Step Delayed response

Pulse Decayed response

Figure 8-15: Four simple intervention variables.

Suppose the intervention occurred at time u. Then we can define
the dummy variable as

Xt =

{
0 t < u
1 t ≥ u

(8.19)

which is zero before the intervention and one after the intervention.

step function

This is called a “step intervention” because the graph of Xt against
t resembles a step. It is shown at the top left of Figure 8-15.

For example, we can model the effect of the new seat belt law on the
series in Figure 8-14 using this dummy variable with u corresponding
to February 1983. The model is then

Yt = a + ωXt + Nt (8.20)

where Nt is an ARIMA model. The value of ω represents the size of
the drop in the monthly total number of deaths and serious injuries.
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The approach to fitting an intervention model is identical to that
for regression with ARIMA errors. We use a low-order autoregressive
proxy model for Nt and fit equation (8.20). The errors were non-
stationary and so we seasonally difference both Yt and Xt and refit
the model (without the constant). After examining the resulting
errors, N ′

t , we select an ARIMA(1,0,1)(0,0,1)12 model. So our full
model is

Yt = ωXt + Nt

where Nt is an ARIMA(1,0,1)(0,1,1)12 process. We expect ω to be
negative since the number of deaths and injuries should fall with the
introduction of seat belts. The estimated value of ω is −306.2 with
standard error 41.4. That is, seat belts have reduced the number of
deaths and serious injuries by about 306 people per month. A 95%
confidence interval for ω is

ω ± 1.96× s.e.(ω) = −306.2± 1.96(41.4) = [−387.3,−225.1].

In some circumstances an intervention will yield a rise or fall in the
forecast variable, but not instantaneously. To model a delayed rise or
drop in the forecast variable we use the following transfer function:

delayed responseν(B) =
ω

1− δB
Xt

where Xt is the step variable (8.19). The shape of the resulting
intervention response is shown at the top right of Figure 8-15. The
value of δ determines the rate at which the level shift occurs. The
ultimate size of the level shift is ω/(1− δ).

Other models can also be defined using the step variable with
different transfer functions. So the general form of the model is

Yt = a +
ω(B)
δ(B)

Xt + Nt. (8.21)

Intervention models which are based on the step function assume that
the effect of the intervention is lasting.

8/3/2 Pulse-based interventions

Some interventions have a temporary effect on the series and the
series will eventually return to a “steady state.” In these cases, we
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use intervention models based on a pulse function rather than a step
function. Again assuming the intervention occurred at time u, we
define the pulse variable

pulse functions Xt =

{
0 t 6= u
1 t = u.

(8.22)

That is, Xt is zero everywhere, except at the point of intervention
where it takes the value one.

A simple pulse intervention is obtained by

Yt = a + ωXt + Nt.

That is, the intervention affects the response at the point of inter-
vention but nowhere else. The shape of the intervention response in
this case is shown at the bottom left of Figure 8-15. This might be
useful to model unusual one-off events such as industrial strikes, or
outliers due to other causes.

For an intervention which has an immediate impact but then
decays away slowly, we can define the model

decayed response Yt = a +
ω

1− δB
Xt + Nt.

The shape of this intervention is given at the bottom right of Figure
8-15. The value of ω gives the size of the immediate increase in Yt

and δ determines the rate of decay.

Again, other intervention models can be defined using using the
pulse variable and the general form of the model is the same as (8.21)
but with Xt representing the pulse variable (8.22).

8/3/3 Further reading

Mixtures of step- and pulse-based interventions allow more compli-
cated response functions to be modeled. See Box and Tiao (1975),
McCleary and Hay (1980), and Pankratz (1991) for details of these
more complicated intervention models. Other interesting applications
of intervention analysis may be found in the following papers.

• Montgomery and Weatherby (1980) considered the effect of the
Arab oil embargo using a delayed response model.
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• Wichern and Jones (1977) analyzed the impact of the American
Dental Association’s endorsement of Crest toothpaste on the
market share of Crest and Colgate dentrifice.

• Atkins (1979) considered the number of traffic accidents on the
freeways in British Columbia, and used intervention analysis
to tease out the influence of three changes—compulsory auto
insurance, a company strike, and a change in insurance compa-
nies’ policies—on the number of accidents.

• Ledolter and Chan (1996) also looked at traffic accidents and
focused on the effect of a change in the speed limit on the rural
interstate highway system in Iowa.

8/3/4 Intervention models and forecasting

Intervention models are useful in explaining the effect of an interven-
tion and so they help improve forecast accuracy after an intervention.
However, they are of limited value in forecasting the effect of an
intervention before it occurs as we cannot estimate (because of the
lack of data) the parameters of the intervention model.

8/4 Multivariate autoregressive models

The data in Figure 8-16 concern quarterly capital expenditures and
capital appropriations for U.S. manufacturing between 1953 and 1974.
Both series have been seasonally adjusted. It is expected that appro-
priations might lead expenditures since funds must be appropriated
before expenditures occur, and since capital construction projects
take time to complete. On the other hand, after large expenditure,
appropriations will often be reduced for a few months. So we might
expect both variables to be influencing each other. This is known
as feedback. In these circumstances, a dynamic regression model is feedback

not appropriate because it only allows the explanatory variable to
influence the forecast variable, not vice-versa.

Before introducing an appropriate model for these data, we will
make the variables stationary. Figure 8-16 shows both non-stationary
mean and variance. We can stabilize the variance with a logarithmic
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Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2

1953 2072 1767 2140 2201 1964 3136 4123 6631 7595
2077 2061 2012 2233 3299 4656 6828 7436
2078 2289 1959 2071 2690 3514 4906 1970 6645 6679
2043 2047 2192 2940 3815 4344 6703 6475

1954 2062 1856 2240 3127 1965 4040 5080 6659 6319
2067 1842 2421 3131 4274 5539 6337 5860
1964 1866 1960 2639 2872 4565 5583 1971 6165 5705
1981 2279 2733 2515 4838 6147 5875 5521

1955 1914 2688 2721 2271 1966 5222 6545 5798 5920
1991 3264 2640 2711 5406 6770 5921 5937
2129 3896 1961 2513 2394 5705 5955 1972 5772 6570
2309 4014 2448 2457 5871 6015 5874 7087

1956 2614 4041 2429 2720 1967 5953 6029 5872 7206
2896 3710 2516 2703 5868 5975 6159 8431
3058 3383 1962 2534 2992 5573 5894 1973 6583 9718
3309 3431 2494 2516 5672 5951 6961 10921

1957 3446 3613 2596 2817 1968 5543 5952 7449 11672
3466 3205 2572 3153 5526 5723 8093 12199
3435 2426 1963 2601 2756 5750 6351 1974 9013 12865
3183 2330 2648 3269 5761 6636 9752 14985

1958 2697 1954 2840 3657 1969 5943 6799 10704 16378
2338 1936 2937 3941 6212 7753 11597 12680

Table 8-3: Seasonally adjusted quarterly capital expenditure (Y1) and appropria-
tions (Y2) in U.S. manufacturing, 1953–1974. (Millions of current dollars.) Source:
Judge et al. (1988).

transformation, and create stationary data by differencing. The
resulting data are shown in Figure 8-17.

Let Et denote the expenditure and At denote the appropriations
at time t. These are the series in Figure 8-16. Then we define the
series in Figure 8-17 as

Y1,t = log(Et)− log(Et−1) = log(Et/Et−1)
Y2,t = log(At)− log(At−1) = log(At/At−1).

We suppose each series is a function of its own past and the past of
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Figure 8-16: Time plots of data given in Table 8-3. Quarterly capital expenditures
and appropriations for U.S. manufacturing (1953–1974).
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Figure 8-17: The two series in Figure 8-16 after taking logarithms to stabilize the
variance and differencing to give a stationary mean.
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the other series:

Y1,t = φ111Y1,t−1 + φ112Y1,t−2 + · · ·+ φ11pY1,t−p

+ φ121Y2,t−1 + φ122Y2,t−2 + · · ·+ φ11pY2,t−p + e1,t

Y2,t = φ211Y1,t−1 + φ212Y1,t−2 + · · ·+ φ21pY1,t−p

+ φ221Y2,t−1 + φ222Y2,t−2 + · · ·+ φ21pY2,t−p + e2,t

The coefficients here need three subscripts: the first tells which
variable is on the left-hand side; the second tells which variable the
coefficient is attached to on the right-hand side; the third refers to
the lag-length.

In general, we have K series and each one is related to its own
past and the past of each of the other K−1 series in the group. This
model is known as a multivariate (or vector) autoregressive model. Itmultivariate

autoregressive model is possible to also introduce lagged error terms on the right-hand side
of the model to give a multivariate ARMA model. However, we will
restrict our discussion to the simpler AR model.

It is easier to write the model using matrices. For K = 2, we define
vectors of observations and errors

Y t =

[
Y1,t

Y2,t

]
, et =

[
e1,t

e2,t

]
,

and group the coefficients into matrices

Φ1 =

[
φ111 φ121

φ211 φ221

]
, Φ2 =

[
φ112 φ122

φ212 φ222

]
, . . . ,Φp =

[
φ11p φ12p

φ21p φ22p

]
.

Then the model can be written as

Y t = Φ1Y t−1 + Φ2Y t−2 + · · ·+ ΦpY t−p + et. (8.23)

The appropriate order of the model can be chosen using Akaike’sAIC

Information Criterion (AIC) as for univariate models (see Section
7/6). Recall the formula

AIC = −2 log L + 2m

where L is the likelihood of the model and m is the number of
parameters estimated. In this case, m = pK2.
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For the capital expenditure and appropriation data, the following
AIC values are obtained.

Model order (p) 0 1 2 3 4 5
AIC -911.2 -992.6 -1011.8 -1018.8 -1019.7 -1014.5

Model order (p) 6 7 8 9 10
AIC -1010.8 -1016.3 -1013.1 -1011.4 -1007.7

Since the smallest of these is for p = 4, we select the multivariate
AR(4) model for these data. The estimated model is

Y t =

[
Y1,t

Y2,t

]
=

[
0.260 0.097
0.434 0.144

] [
Y1,t−1

Y2,t−1

]

+

[
0.101 0.138

−0.807 0.026

] [
Y1,t−2

Y2,t−2

]

+

[
0.207 0.143
0.196 0.152

] [
Y1,t−3

Y2,t−3

]
(8.24)

+

[
−0.124 0.675
−0.284 0.126

] [
Y1,t−4

Y2,t−4

]
+

[
e1,t

e2,t

]
.

Suppose there was no feedback so the relationship between the feedback

variables was only one-way. For example, suppose Y2,t did not depend
on past values of Y1,t but Y1,t did depend on past values of Y2,t. Then
we would expect the lower left corner of each of these matrices to
be close to zero. (For the alternative one-way relationship, it would
be the upper right corner of the matrices which would show small
values.) This provides a method for testing if the full multivariate
model is worth using. If a one-way relationship is discovered, a
dynamic regression model could be used instead. In this case, there
are some large values in both the upper right and lower left corners
of the matrices, showing we need the full multivariate model.

Forecasts are obtained easily by dropping the error term. Then
the next few values of both series can be predicted using (8.24) in
exactly the same way as for univariate AR models. Figure 8-18
shows forecasts for the next 12 periods for the capital expenditure
and appropriation data, along with 90% prediction intervals.
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Figure 8-18: Forecasts for the data in Table 8-3 for the next 12 periods, based on
a multivariate AR(4) model. Also shown are 90% prediction intervals.
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8/5 State space models

The state space formulation assumes that the forecast variable Yt can
be expressed as a linear function of some random variables X1,t, X2,t,
. . . , Xd,t. So we write

Yt = h1X1,t + h2X2,t + · · ·+ hdXd,t + zt.

The variables X1,t, . . . , Xd,t are called the state variables. These are state variables

not necessarily observed. We can write this equation in matrix form:

observation equationYt = HXt + zt (8.25)

where Xt is a multivariate time series with the state variables as
components and H is a matrix consisting of one row with elements
h1, . . . , hd. Equation (8.25) is known as the “observation equation.”

It is assumed that the state Xt depends on the previous state:

state equationXt = FXt−1 + Get (8.26)

where et consists of white noise components and the matrices F and
G consist of parameters for the model. Equation (8.26) is called the
“state equation.” Notice that it is almost the same as a multivariate
AR(1) model except that it is for the state variable rather than the
observed time series, and there is an additional matrix G.

Together, equations (8.25) and (8.26) form a state space model.
The state space model for a multivariate time series Y t is written in
exactly the same way except both Yt and zt are replaced by vectors.

8/5/1 Some forecasting models in state space form

Although this formulation may not look similar to any model we have
previously looked at, all of the time series and regression models we
have considered can be expressed in “state space form.” Even the
most complex dynamic regression model with ARIMA errors has a
state space counterpart which gives exactly the same forecasts. We
will look at three examples to demonstrate how general the state
space formulation is.
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An AR(2) model would normally be written as

AR(2) model Yt = φ1Yt−1 + φ2Yt−2 + at

where at represents white noise. If we define X1,t = Yt and X2,t =
Yt−1, then we can write

Xt =

[
φ1 φ2

1 0

]
Xt−1 +

[
at

0

]

and Yt = [1 0]Xt.

This is now in state space form with

F =

[
φ1 φ2

1 0

]
, G =

[
1 0
0 1

]
, H = [1 0], et =

[
at

0

]
and zt = 0.

In this case, the state consists of consecutive observations of the Yt

series.

Any ARIMA model can be written in state space form. See
Brockwell and Davis (1996) for details.

As a second example, we define a random walk observed with error:

Xt = Xt−1 + et (8.27)
Yt = Xt + zt.

The first equation is a random walk while the second shows the
observed time series is equal to the random walk series with some
additional random error. This model is already in state space form
with F = G = H = 1. In this example, the state is not observed. The
forecasts obtained using this state space model are almost identical
with those obtained using single exponential smoothing (see Harvey,
1989). In Section 7/8/5 we noted that single exponential smoothing
was equivalent to forecasting with an ARIMA(0,1,1) model. So this
random walk with error model is also equivalent to an ARIMA(0,1,1)
model.

Finally, consider a regression model with one explanatory variable
and AR(1) errors. Normally we would write this as

Yt = a + bWt + Nt, where Nt = φNt−1 + at

where Wt denotes the explanatory variable and at denotes white
noise. To express this in state space form, we define the state Xt
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to consist of the three elements a, b, and Nt− zt. (Note that none of
these is observable.) Then we can write

Yt =
[

1 Wt 1
]
Xt + zt

Xt =




1 0 0
0 1 0
0 0 φ


 Xt−1 +




0
0

φzt−1


 .

Check that this state space model gives the required equations when
expanded.

8/5/2 State space forecasting

Writing time series models in state space form allows their properties
to be studied in a common mathematical framework. It also means
computer programs can use the same code for fitting a number of
different models. But it does not help us forecast any better because
the range of models available is not extended by the new framework.

However, there are some useful automatic forecasting algorithms automatic forecasting

which are based on the state space formulations. The most widely
used procedure is due to Akaike (1976) and can handle either uni-
variate or multivariate data. It performs the following five steps.

1. It fits a sequence of multivariate autoregressive models for lags multivariate

autoregression0 to 10. For each model, the AIC is calculated and the model
with the smallest AIC value is selected for use in subsequent
steps.

2. It tries to improve the fit of the selected AR model by adding
moving average terms and removing some of the autoregressive
terms.

3. The best of the revised models is then approximated by a state
space model with fewer parameters.

4. The parameters of the state space model are estimated.

5. Forecasts for the model are produced.

Note that this procedure assumes that the variables are stationary.
If this is not the case, they must first be transformed and differenced
until they are stationary.
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This procedure was applied to the data in Table 8-3. The best
multivariate AR model found in Step 1 was that given in (8.24). The
final model computed in Step 4 is given below.

Y t =
[

1 0 0 0
0 1 0 0

]
Xt

H

Xt =




0 0 1 0
0 0 0 1

−0.195 0.090 0.984 0.163
−1.110 0.016 0.837 0.332


 Xt−1 +




1 0
0 1

0.270 0.095
0.259 0.100


 et

F G

Note that this state space model involves a bivariate observation Y t.
The state vector Xt consists of four elements: the first two elements
are the observations of expenditure and appropriations for time t;
the second two elements are one-step forecasts of expenditure and
appropriations at time t + 1. The forecasts obtained by this model
are very similar to those given in Figure 8-18 and so are not plotted
here.

State space forecasting is not widely used because of the complexity
of the mathematical theory underlying the model. However, it is
useful and easy to use and probably deserves to be more widely
applied than it is. One need not understand the mathematical
theory of state space methodology to use it productively. Where
state space methods have been used in forecasting competitions, they
have produced mixed results (see Granger and McCollister, 1978;
Makridakis et al., 1982). See also Chapter 11.

Apart from the Akaike approach to state space modeling there are
several other approaches which are used. Structural models (Harvey,
1989) are a general class of models handling trend and seasonality
which can be represented in state space form. In fact, the random
walk with error model (8.27) is the simplest of Harvey’s structural
models. An advantage of structural models is that they are easily
interpretable, unlike most state space models and ARIMA mod-
els. Janacek and Swift (1993) provide an introduction to structural
models and Andrews (1994) explores their forecasting performance
compared to other approaches.
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Dynamic linear models are another model family based on the
state space form. For these models, the state comprises components
for trend and seasonal terms and so they are more interpretable
than the general state space model. They rely on Bayesian ideas
for their interpretation. Pole, West, and Harrison (1994) provide an
introduction and discuss their application.

8/5/3 The value of state space models

There are several reasons why state space models are useful.

1. Kalman (1960) and Kalman and Bucy (1961) developed a
general set of recursive equations to handle the forecasting.
These are usually called the “Kalman recursion equations” or Kalman recursion

equationsthe “Kalman filter.” The equations also enable easy calculation
of the one-step forecast errors and the likelihood. So provided a
model can be written in state space form, the calculations can
all be carried out using the Kalman recursion equations. This
unified framework for computation simplifies the development
of forecasting packages because a wide range of models can be
handled within the same code.

2. State space models are easy to generalize. For example, we
generalized simple exponential smoothing to allow the param-
eters to be changing over time (the adaptive response model).
This can also be handled in the state space framework and
can be done for any state space model. So, for example, it
would be possible to use a dynamic regression model where the
parameters of the ARIMA error changed over time.

3. The state space formulation makes it easier to handle missing
values within a time series.

8/6 Non-linear models

Almost all of the models considered so far in this book have been
linear. That is, the forecast models can all be expressed as a linear
combination of past observations, errors, and explanatory variables.
However, there are some features which occur in real data that cannot
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be captured by linear models. For example, linear models cannot
model asymmetric cycles where the average number of observationsasymmetric cycles

on the up-cycle is different from the average number of observations
on the down-cycle. Nor can they model series containing occasional
bursts of outlying observations.outliers

The only non-linear forecasting methods which we have covered
so far are the adaptive response exponential smoothing method and
state space models where the parameters are allowed to change over
time. But neither of these is designed to cope with the features
usually associated with non-linear time series.

Non-linear modeling became popular in the 1980s with the intro-
duction of several non-linear equations of the form

Yt = f(Yt−1, Yt−2, . . . , Yt−p) + g(Yt−1, Yt−2, . . . , Yt−p)et (8.28)

where Yt denotes the observed (stationary) time series, et is a white
noise series, and f and g are functions of past observations in the
series. If g = 1 and f is a linear function, (8.28) gives an ordinary
linear AR(p) model. With f and g non-linear functions, a wide variety
of models can be obtained. For example, threshold models (Tong,threshold models

1983, 1990), exponential autoregressive models (Ozaki, 1980), andexponential

autoregressive models ARCH models (Engle, 1982) are all of this form.
ARCH models We will consider just one example given by Tiao and Tsay (1994).

They apply a threshold autoregressive model to quarterly U.S. GNP
data from 1947 to 1991. The data are first transformed using
logarithms and then differenced. They model the resulting series
by four separate autoregressive models depending on the values of
the previous two observations. The full model is

Yt =





−0.015− 1.076Yt−1 + 0.0062et regime 1
−0.006 + 0.630Yt−1 − 0.756Yt−2 + 0.0132et regime 2

0.006 + 0.438Yt−1 + 0.0094et regime 3
0.004 + 0.443Yt−1 + 0.0082et regime 4

where the regimes are defined as follows:
regime 1: Yt−1 ≤ Yt−2 ≤ 0;
regime 2: Yt−1 > Yt−2 but Yt−2 ≤ 0;
regime 3: Yt−1 ≤ Yt−2 but Yt−2 > 0;
regime 4: Yt−1 > Yt−2 > 0.

These four regimes represent four different stages in the economic
cycle. The first regime denotes a recession period in which the
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economy changes from contraction to an even worse recession; the
second regime is where the economy is in contraction but improving;
the third regime is where the economy is expanding but declining;
and the fourth regime denotes an expansion period in which the
economy is expanding and becoming stronger. Within each regime is
a simple linear AR(1) or AR(2) model. The combination of models
allows us to fit more complicated patterns than is possible with linear
autoregressive models.

De Gooijer and Kumar (1992) highlight several practical difficulties
in using non-linear models for forecasting including the calculation
of multi-step ahead forecasts and prediction intervals. However, the
approach given by Hyndman (1995) has now largely overcome this
problem.

The big problem which has not been resolved so far is when do non-
linear models forecast more accurately than simple linear ones. Non-
linear models (and other statistically sophisticated models) clearly fit
past data better, but empirical research has shown (see Chapter 11)
that they often do not predict the future more accurately.

One of the interesting features of non-linear models is they can give
rise to chaotic behavior. Chaos is the characteristic of time series chaos

where values may appear to be random and non-periodic, but are
actually the result of a completely deterministic process. Typically,
a small change in an observation will affect future observations with
exponentially increasing magnitude. (With linear time series, a small
change in an observation will die out quickly.) This has serious
consequences for the forecastability of the time series.

For further reading on non-linear forecasting, see Tong (1990),
De Gooijer and Kumar (1992), Casdagli and Eubank (1992), and
Granger and Teräsvirta (1993).

8/7 Neural network forecasting

Artificial neural networks are based on simple mathematical models of
the way brains are thought to work. When applied to time series, they
provide a non-linear forecasting method. Neural network forecasting
generally requires a much larger number of observations than the
other methods discussed in this book, but it also allows more flexible
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and complicated models to be fitted.

Forecasters using neural network methods have adopted terminol-
ogy quite different from that used with other methods, which has
led to some confusion. For example, instead of a “model,” we have
a “network.” Instead of “parameters,” networks have “weights.”network

weights Instead of talking about “estimating parameters,” neural network
forecasters talk about “training the network.”training

A neural network can be thought of as a network of neuron-like
units organized in layers. The bottom layer consists of a set of input
units and the top layer consists of a set of output units. The units in
each layer are linked to units in higher layers.

A number of ingredients are needed to specify a neural network:

• its “architechure” (the number of layers and units in the net-network architecture

work and the way units are connected);

• its “activation functions” (that describe how each unit combinesactivation functions

inputs to give an output);

• the “cost function” (a measure of forecast accuracy such ascost function

MSE);

• a “training” algorithm to find parameter values which minimizetraining algorithm

the cost function.

To explain this notation, consider a simple linear AR(p) model
which can be described using a neural network. Figure 8-19 shows
a typical neural network diagram for the linear AR(p) model. The
input layer gives the variables which act as inputs to the network,
in this case the past p observations. The output layer (forecasts) is
obtained by a linear function of the inputs, shown by the connect-
ing lines. The weights attached to each input are the parameters
φ1, . . . , φp. These are selected in the neural network framework by a
“learning” or “training algorithm” which minimizes a cost function
such as MSE.

The power of neural networks comes about with the inclusion of
additional intermediate layers consisting of non-linear hidden unitshidden units

between the inputs and outputs. A simple example is shown in Figure
8-20 which shows a network containing only one hidden layer. Here
the inputs are connected to a layer of non-linear hidden units which
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Figure 8-19: Schematic representation of the neural network which is equivalent
to a linear AR(p) model.

are connected to one linear output unit. It is also possible to define
a network with non-linear inputs and outputs.

The response of a unit is called its “activation value.” A common
choice for a non-linear activation function is a combination of a linear
function of the inputs followed by a non-linear “squashing” function
known as a “sigmoid.” For example, the inputs into a hidden unit in
Figure 8-20 can be linearly combined to give

Z = b +
p∑

i=1

wiYt−i

which, in turn, is an input into the non-linear function

sigmoidS(Z) =
1

1 + e−aZ
.

One benefit of the sigmoid function is that it reduces the effect of
extreme input values, thus providing some degree of robustness to
the network. In this example, the parameters are a, b and w1, . . . , wp.
The resulting values of S(Z) for each of the hidden units in Figure
8-20 are then combined using a linear function to give an output (or
forecast).
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Figure 8-20: Schematic representation of a neural network with one hidden layer

This neural network is equivalent to a non-linear autoregression
model

Yt = f(Yt−1, . . . , Yt−p) + et.

However, the form of the non-linear function f is not apparent from
the neural network.

The input layer of a network usually consists of as many reasonable
explanatory variables as possible in addition to lagged values of the
time series. For seasonal data, the general practice is to have as
many lagged inputs as there are periods in the season. The number
of units in the output layer corresponds to the number of variables
to be forecast.

Many forecasting networks have only one hidden layer. However,
more complicated networks have also been used. For details, see
Weigend and Gershenfeld (1994), Weigend, Huberman, and Remul-
hart (1990), and Vemuri and Rogers (1994).
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A disadvantage of neural network methods is that they do not allow
much understanding of the data because there is no explicit model.
They provide a “black box” approach to forecasting. On the other black box forecasting

hand, they may work in situations where an explicit model-based
approach fails. In fact, much of their promise comes from the hope
that they can adapt to irregularities and unusual features in the time
series of interest.

The practical application of artificial neural networks in forecasting
has been marked by great hope and hype. It is too early to say
whether neural network methods will live up to their alleged potential
as a powerful and largely automatic approach to non-linear forecast-
ing. There has been some research in comparing neural network
techniques with more conventional forecasting methods. See Tang,
de Almeida, and Fishwick (1991) and Hill et al. (1994) for details.
The indications so far are that neural network techniques sometimes
perform better than competing methods, but not always.
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Exercises

8.1 Consider the problem in Exercise 6.7. We fitted a regression
model

Yt = a + bXt + Nt

where Yt denotes sales, Xt denotes advertising and showed
that Nt had significant autocorrelation.

(a) Refit the regression model with an AR(1) model for the
errors. How much difference does the error model make
to the estimated parameters?

(b) Plot the ACF and PACF of the errors to verify that an
AR(1) model for the errors is appropriate.

8.2 (a) Fit a linear regression model with an AR(1) proxy model
for error to the Lake Huron data given in Table 8-4 using
the year as the explanatory variable.

(b) Using the ACF and PACF of the errors, identify and
estimate an appropriate ARMA model for the error.
Write down the full regression model and explain how
you arrived at this model.

10.38 11.86 10.97 10.80 9.79 10.39 10.42 10.82 11.40 11.32
11.44 11.68 11.17 10.53 10.01 9.91 9.14 9.16 9.55 9.67
8.44 8.24 9.10 9.09 9.35 8.82 9.32 9.01 9.00 9.80
9.83 9.72 9.89 10.01 9.37 8.69 8.19 8.67 9.55 8.92
8.09 9.37 10.13 10.14 9.51 9.24 8.66 8.86 8.05 7.79
6.75 6.75 7.82 8.64 10.58 9.48 7.38 6.90 6.94 6.24
6.84 6.85 6.90 7.79 8.18 7.51 7.23 8.42 9.61 9.05
9.26 9.22 9.38 9.10 7.95 8.12 9.75 10.85 10.41 9.96
9.61 8.76 8.18 7.21 7.13 9.10 8.25 7.91 6.89 5.96
6.80 7.68 8.38 8.52 9.74 9.31 9.89 9.96

Table 8-4: Level of Lake Huron in feet, 1875–1972. Read from left to right.
Data reduced by 570 feet, so that the true levels were 580.38, 581.86, etc. Source:
Brockwell and Davis (1996).
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8.3 Electricity consumption is often modeled as a function of
temperature. Temperature is measured by daily heating de-
grees and cooling degrees. Heating degrees is 65◦F minus the
average daily temperature when the daily average is below
65◦F; otherwise it is zero. This provides a measure of our
need to heat ourselves as temperature falls. Cooling degrees
measures our need to cool ourselves as the temperature rises.
It is defined as the average daily temperature minus 65◦F when
the daily average is above 65◦F; otherwise it is zero. Let Yt

denote the monthly total of kilowatt-hours of electricity used,
let X1,t denote the monthly total of heating degrees, and let
X2,t denote the monthly total of cooling degrees.

Pankratz (1991) fits the following model to a set of such data:

Y ′
t = b0 + b1X

′
1,t + b2X

′
2,t + Nt

where (1−B)(1−B12)Nt =
1− θ1B

1− φ12B12 − φ24B24
et

and Y ′
t = log(Yt), X ′

1,t =
√

X1,t and X ′
2,t =

√
X2,t.

(a) What sort of ARIMA model is identified for Nt? Explain
how the statistician would have arrived at this model.

(b) The estimated coefficients are

Parameter Estimate s.e. Z P -value
b1 0.0077 0.0015 4.98 0.000
b2 0.0208 0.0023 9.23 0.000
θ1 0.5830 0.0720 8.10 0.000
φ12 −0.5373 0.0856 -6.27 0.000
φ24 −0.4667 0.0862 -5.41 0.000

Explain what the estimates of b1 and b2 tell us about
electricity consumption.

(c) Describe how this model could be used to forecast elec-
tricity demand for the next 12 months.

(d) Explain why the Nt term should be modeled with an
ARIMA model rather than modeling the data using a
standard regression package. In your discussion, com-
ment on the properties of the estimates, the validity of
the standard regression results, and the importance of
the Nt model in producing forecasts.
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8.4 Box, Jenkins, and Reinsell (1994) fit a dynamic regression
model to data from a gas combustion chamber. The two
variables of interest are the volume of methane entering the
chamber (Xt in cubic feet per minute) and the percentage
concentration of carbon dioxide emitted (Yt). Each variable
is measured once every 9 seconds. Their model is

Yt =
(−0.53 + 0.37B + 0.51B2)B3

1− 0.57B
Xt +

1
1− 1.53B + 0.63B2

et.

(a) What are the values of b, r, and s for the transfer
function?

(b) What sort of ARIMA model is used for the errors?

(c) What are the values of the coefficients ω0, ω1, ω2, δ1, δ2,
θ1, θ2, φ1, and φ2?

(d) If the methane input was increased, how long would it
take before the carbon dioxide emission is affected?

8.5 Sketch the graph of the impulse response weights for the
following transfer functions:

(a) Yt = 2(1− 0.5B)B2Xt

(b) Yt =
3B

1− 0.7B
Xt

(c) Yt =
1− 0.5B

1.2− 0.8B
Xt

(d) Yt =
1

1− 1.1B + 0.5B2
Xt.

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Xt 50 90 50 30 80 80 30 70 60 10 40 20 40 20 10
t 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Xt 30 60 70 40 70 10 30 30 40 30 100 60 90 60 100

Table 8-5: An input series, Xt, for Exercise 8.6.



Exercises 447

8.6 An input (explanatory) time series Xt is shown in Table 8-5.

(a) Using equation (8.5), generate three output time series
Yt corresponding to the three sets of transfer function
weights below.

v1 v2 v3 v4 v5 v6 v7

Set 1 0.2 0.4 0.3 0.1 0.0 0.0 0.0
Set 2 0.0 0.2 0.4 0.3 0.1 0.0 0.0
Set 3 0.0 0.0 0.2 0.5 0.4 0.2 0.1

Assume that Nt is normally distributed white noise with
mean 0 and standard deviation 1. Values for Nt may
be generated by a computer program or obtained from
Table G in Appendix III. How many Yt values can you
calculate for each set?

(b) Now generate data with the same input data from Table
8-5 and the following transfer functions.
4. r = 1, s = 0, b = 1 with ω0 = 2.0 and δ1 = 0.7.
5. r = 0, s = 2, b = 0 with ω0 = 1.2, ω1 = −2.0,

ω2 = 0.8.
Again, assume Nt is white noise with mean 0 and stan-
dard deviation 1.

8.7 Table 8-6 gives the total monthly takings from accommodation
and the total room nights occupied at hotels, motels, and
guest houses in Victoria, Australia, between January 1980 and
June 1995. Table 8-7 gives quarterly CPI values for the same
period and the same region.

(a) Use the data in Table 8-6 to calculate the average cost
of a night’s accommodation in Victoria each month.

(b) Estimate the monthly CPI using the data in Table 8-7.
(c) Produce time series plots of both variables and explain

why logarithms of both variables need to be taken before
fitting any models.

(d) Follow the modeling procedure in Section 8/2 to fit a
dynamic regression model. Explain your reasoning in
arriving at the final model.

(e) Forecast the average price per room for the next twelve
months using your fitted model. (Hint: You will need to
find forecasts of the CPI figures first.)
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Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1980 R 277.0 260.6 291.6 275.4 275.3 231.7 238.8 274.2 277.8 299.1 286.6 232.3

C 7.7 7.5 8.3 7.8 7.9 6.6 7.0 8.2 8.2 9.1 9.0 7.1
1981 R 294.1 267.5 309.7 280.7 287.3 235.7 256.4 289.0 290.8 321.9 291.8 241.4

C 8.9 8.5 9.8 8.8 9.2 7.4 8.3 9.7 9.7 10.8 9.8 7.9
1982 R 295.5 258.2 306.1 281.5 283.1 237.4 274.8 299.3 300.4 340.9 318.8 265.7

C 9.8 9.0 10.5 9.5 9.7 8.1 10.1 11.1 11.2 12.6 12.2 9.9
1983 R 322.7 281.6 323.5 312.6 310.8 262.8 273.8 320.0 310.3 342.2 320.1 265.6

C 11.8 11.1 12.6 11.9 11.9 10.0 10.8 12.9 12.5 13.8 13.1 10.5
1984 R 327.0 300.7 346.4 317.3 326.2 270.7 278.2 324.6 321.8 343.5 354.0 278.2

C 12.9 12.9 14.4 12.7 13.3 11.0 11.9 14.1 14.4 14.9 15.7 12.0
1985 R 330.2 307.3 375.9 335.3 339.3 280.3 293.7 341.2 345.1 368.7 369.4 288.4

C 14.3 14.2 17.4 15.1 15.3 12.6 14.0 16.6 16.7 17.6 18.3 13.6
1986 R 341.0 319.1 374.2 344.5 337.3 281.0 282.2 321.0 325.4 366.3 380.3 300.7

C 15.8 16.1 18.6 17.3 17.0 13.9 15.2 17.8 18.0 19.4 21.8 16.2
1987 R 359.3 327.6 383.6 352.4 329.4 294.5 333.5 334.3 358.0 396.1 387.0 307.2

C 19.2 19.5 22.0 20.0 19.2 16.9 20.0 20.4 21.8 25.0 25.8 19.4
1988 R 363.9 344.7 397.6 376.8 337.1 299.3 323.1 329.1 347.0 462.0 436.5 360.4

C 22.6 24.1 26.9 24.9 23.3 20.3 22.3 23.7 24.3 31.7 32.2 25.4
1989 R 415.5 382.1 432.2 424.3 386.7 354.5 375.8 368.0 402.4 426.5 433.3 338.5

C 28.6 28.7 30.9 31.4 29.1 26.3 28.9 28.9 31.0 33.4 35.9 25.8
1990 R 416.8 381.1 445.7 412.4 394.0 348.2 380.1 373.7 393.6 434.2 430.7 344.5

C 31.2 31.7 36.2 32.0 32.1 28.1 31.1 31.9 32.0 36.6 38.1 28.1
1991 R 411.9 370.5 437.3 411.3 385.5 341.3 384.2 373.2 415.8 448.6 454.3 350.3

C 32.9 30.7 35.4 33.7 31.6 27.9 32.2 32.3 35.3 37.2 39.6 28.4
1992 R 419.1 398.0 456.1 430.1 399.8 362.7 384.9 385.3 432.3 468.9 442.7 370.2

C 33.9 33.7 38.3 34.6 32.7 29.5 32.0 33.2 36.7 38.6 38.1 29.8
1993 R 439.4 393.9 468.7 438.8 430.1 366.3 391.0 380.9 431.4 465.4 471.5 387.5

C 35.6 33.2 38.9 34.8 37.2 29.7 32.2 32.1 36.3 38.4 40.8 31.3
1994 R 446.4 421.5 504.8 492.1 421.3 396.7 428.0 421.9 465.6 525.8 499.9 435.3

C 36.2 35.1 44.1 39.3 34.1 32.4 36.3 36.8 40.5 46.0 43.9 37.2
1995 R 479.5 473.0 554.4 489.6 462.2 420.3

C 40.7 42.0 49.2 42.3 40.8 37.6

Table 8-6: Total monthly takings (C in thousands of Australian dollars) and total
room nights occupied (R in thousands) from accommodation at hotels, motels, and
guest houses in Victoria from January 1980 through June 1995. Source: Australian
Bureau of Statistics.
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45.2 46.6 47.5 48.5 49.6 50.7 51.8 54.1 54.8 56.1 58.1 59.6
60.9 62.6 63.6 65.5 65.1 65.3 66.3 67.1 67.9 69.9 71.4 72.6
74.6 75.7 77.7 80.0 81.5 82.8 84.3 85.7 87.0 88.6 89.9 91.5
92.7 95.2 97.3 99.2 100.7 102.7 103.5 106.6 106.1 106.8 107.6 108.4

108.3 108.2 107.9 108.2 109.5 110.1 110.5 110.8 111.2 112.0 112.2 113.1
115.0 116.2

Table 8-7: Quarterly CPI (consumer price index) for Victoria, Q1 1980–Q2 1995.
Read from left to right. Source: Australian Bureau of Statistics.

55 56 48 46 56 46 59 60 53 58 73 69 72 51 72 69 68 69 79 77
53 63 80 65 78 64 72 77 82 77 35 79 71 73 77 76 83 73 78 91
70 88 88 85 77 63 91 94 72 83 88 78 84 78 75 75 86 79 76 87
66 73 62 27 52 47 65 59 77 47 51 47 49 54 58 56 50 54 45 66
39 51 39 27 39 37 43 41 27 29 27 26 29 31 28 38 37 26 31 45
38 33 33 25 24 29 37 35 32 31 28 40 31 37 34 43 38 33 28 35

Table 8-8: Daily perceptual speed scores for a schizophrenic patient. A new drug
was introduced on day 61. Read left to right. Source: McCleary and Hay (1980)

8.8 The data in Table 8-8 are the daily scores achieved by a
schizophrenic patient on a test of perceptual speed. The pa-
tient began receiving a powerful tranquilizer (chlorpromazine)
on the sixty-first day and continued receiving the drug for the
rest of the sample period. It is expected that this drug would
reduce perceptual speed.
(a) Produce a time plot of the data showing where the

intervention occurred.
(b) Fit an intervention model with a step function interven-

tion to the series. Write out the model including the
ARIMA model for the errors.

(c) What does the model say about the effect of the drug?
(d) Fit a new intervention model with a delayed response to

the drug. Which model fits the data better? Are the
forecasts from the two models very different?

(e) Construct an ARIMA model ignoring the intervention
and compare the forecasts with those obtained from
your preferred intervention model. How much does the
intervention affect the forecasts?

(f) If the level of drug given varied from day-to-day, how
could you modify your model to allow for this?
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8.9 Consider the regression model fitted in Exercise 8.7 concern-
ing the cost of tourist accommodation and the CPI.

(a) Let Yt denote the log of the average room rate and Xt

denote the log of the CPI. Suppose these form a bivariate
time series. Both series were differenced and a bivariate
AR(12) model was fitted to the differenced data. The
order of the model was chosen by minimizing the AIC
statistic. Write down the form of the fitted model.

(b) The first three coefficient matrices were

Φ1 =

[
−0.38 0.15
0.04 −0.07

]
, Φ2 =

[
−0.37 0.13
0.04 −0.05

]

and Φ3 =

[
−0.20 0.15
0.06 0.12

]
.

Writing Yt as a function of Yt−1, Yt−2, . . . and Xt−1, Xt−2,
. . ., what are the coefficients of Yt−1, Yt−2, Xt−1, and
Xt−2?

(c) In no more than half a page, discuss the differences
between this model and that considered in Exercise 8.7.
You should include mention of the assumptions in each
model and explain which approach you think is most
appropriate for these data.

8.10 (a) Write an AR(3) model in state space form.

(b) Write an MA(1) model in state space form. (Hint: Set
F = 0.)

(c) Show that Holt’s method (Section 4/3/3) can be written
in the following “error feedback form”:

Lt = Lt−1 + bt−1 + αet

bt = bt−1 + βαet

where et = Yt−Lt−1−bt−1. Use this result to find a state
space form of Holt’s method with state vector containing
Lt and bt.

(d) Give two reasons why you might want to use the state
space form of these models rather than the usual form.
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Forecasting the long-term requires a different approach from that
described in the previous six chapters, since in the long run many
things can and do happen that substantially change established
patterns and/or existing relationships. This renders our forecasts
both inaccurate and misleading and is why, in the past, a specialized
area called “technological forecasting” existed. Technology is nottechnological

forecasting the only factor affecting the long run, however. And many of the
tools and techniques advocated in technological forecasting did not
provide more accurate predictions about the long-term and have been,
in consequence, abandoned. Today, we prefer to simply talk about
“forecasting the long-term.” In this chapter, such forecasting will
be based on three aspects: (a) identifying and extrapolating mega
trends going back in time as far as necessary; (b) using analogies;
and (c) constructing scenarios to consider future possibilities, par-
ticularly their affect on the business environment and on businesses
themselves. We begin by showing the dangers of mere extrapolation
when the real mega trend is not properly identified.

9/1 Cycles versus long-term trends: forecasting
copper prices

Figure 9-1 shows monthly copper prices (in constant 1997 dollars) for
28 consecutive months. The downward trend is obvious. Constant
prices were about $5.5 at the beginning of the graph and $2.5 at the
end, a decrease of around 50%. Moreover, as the R2 (a measure of howR-squared

well the downward sloping exponential curve fits the historical data—
the monthly copper prices) of the model (the negative exponential
curve shown in Figure 9-1) is 0.974, we may feel fairly comfortable
about extrapolating such a downward trend to future periods. Inextrapolation

addition, our uncertainty, based on these 28 data points, is very low
as R2 is close to 1 and the variance of the model fitting errors is small.
For instance, by extrapolating the trend of Figure 9-1, we arrive at
a forecast for Month 36 of $2 per kg while a pessimistic/optimistic
(i.e., 95%) prediction interval around such a forecast is in the $1.8
to $2.2 range. Similarly, for Month 49 the forecast is $1.42 with
a pessimistic/optimistic prediction interval in the range of $1.28 to
$1.57 per kg.
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Figure 9-1: Monthly copper prices for 28 consecutive months (in constant 1997 dollars).

Figure 9-2 shows real copper prices for 14 years and indicates that
they are constant, not declining. Which of the two figures is correct?
Comparing their R2 values would lead one to think Figure 9-1 is to be
preferred to Figure 9-2 since its R2 is 0.974, versus 0.007 for Figure
9-2. Moreover, the model implied in Figure 9-1 is based on 28 points
while Figure 9-2 uses 14 points only. However, the prices shown
in Figure 9-1 are monthly, and consist of a small part (the shaded
region) of the yearly data displayed in Figure 9-2. Logic dictates,
therefore, that measures of accuracy should be set aside, concluding
instead that real copper prices are constant.

Figure 9-3, which contains 43 years of data, suggests a different
picture: increasing copper prices (the 14 yearly data of Figure 9-2
are simply the part shown in the shaded region of Figure 9-3). The
R2 of the data shown in Figure 9-3 is 0.743.

What can a copper firm conclude from these graphs? As the
highest R2 is found in Figure 9-1, the model that best fits past data is
the one shown in Figure 9-1. Logic dictates, however, that yearly data
should be trusted more than monthly ones, irrespective of the value
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Figure 9-2: Yearly copper prices for 14 consecutive years (in constant 1997 dollars).

of R2—meaning that the model of Figure 9-3 should be preferred.
But even if we assume that the best model is that related to Figure
9-3, can its increasing trend be used to make an important strategic
investment decision for opening, say, a new copper mine that will
cost more than $1 billion? After all, 43 years is a very long period
(most executives complain that their data do not go back more than
5 to 10 years) and the fit of the model shown in Figure 9-3 is pretty
good—its R2 is 0.743. Our confidence, therefore, about extrapolating
the exponential trend of copper prices to future years should be pretty
good. (For example, its forecast for 10 years later is $5.66 per kg,
with a pessimistic/optimistic prediction interval of between $4.12 and
$7.80 per kg.)

In real life, however, 43 years of data may not represent a long
enough period to draw any conclusions about the long-term trend
in copper prices. Long-wave (Kondradieff) cycles—often observed inLong-wave cycle

economic data series—can last for more than 60 years. It is possible,
therefore, that what seems to be an upward trend for 43 years is, in
effect, the rising part of a Kondradieff cycle. This is the case for theKondradieff cycle
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Figure 9-3: Yearly copper prices for 43 consecutive years (in constant 1997 dollars).

data shown in Figure 9-3, which includes the upward increase of the
long-wave cycle that started in 1932 and ended in 1974. The full cycle
that started in 1932 can be seen in Figure 9-4, which shows copper
prices since 1800 (an appropriate starting time since the effects of
the Industrial Revolution started at about this time) and displays
both an exponentially decreasing trend and many cycles of various
durations and lengths. (The 43 years of Figure 9-3 are simply the
part of Figure 9-4 shown in the shaded region, from 1932 to 1974; it
is not clear that the downward decline of such a cycle that started in
1974 has ended as yet.)

Even though the R2 relating to Figure 9-4 is 0.618, smaller than
the 0.743 of Figure 9-3 and even smaller than the 0.974 of Figure 9-1,
we will have to conclude that real copper prices are not increasing in
the long run, as Figure 9-3 suggests, or decreasing at the rate implied
in Figure 9-1. Instead, they are decreasing in the exponential fashion
and the rate shown in Figure 9-4. This means that Figures 9-1,
9-2, and 9-3 have little value for strategists apart from illustrating,
beyond the slightest doubt, the dangers of making long-term forecasts
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Figure 9-4: Yearly copper prices since 1800 (in constant 1997 dollars).

without selecting an appropriate starting data set for the problemstarting period

being analyzed. In fact, any conclusion drawn from Figures 9-1, 9-2,
or 9-3 can be highly misleading and must not be used for basing
strategic or other long-term decisions that require accurate prediction
of long-term copper prices on which, for instance, capital expansion
plans would be based. This conclusion implies a fundamental change
in our approach to forecasting as well as its use for long-term planning
and strategic decisions. Unless we are certain that we use a plausible
starting period (as with Figure 9-4), we cannot be confident about
our extrapolations or our ability to distinguish long-wave cycles from
long-term trends.

Successful strategy and effective long-term planning (e.g., capitallong-term planning

budgeting) require figuring out the implication of long trends and
distinguishing such trends from the various cycles associated with
them. In fact, the farther the copper prices move away from the
long-term trend, as is the case in Figure 9-3, the greater the chance
that there will be a regression toward, and possibly below, the long-
term trend. This has happened in Figure 9-4, which shows that
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copper prices, well above the long-term declining trend in 1974, have
fallen below such a trend in the past several years. Based on Figure
9-4 we can forecast the long-term copper prices (in constant 1997
dollars) as $2.48 in the year 2000 and $2.40 in the year 2005, with
pessimistic/optimistic ranges of $1.41 to $4.35 and $1.37 to $4.22,
respectively.

9/1/1 Forecasting IBM’s sales

Extrapolating long-term trends is dangerous even when shorter peri-
ods are involved and micro series are utilized. For instance, in 1984
John Opel, IBM’s chairman, announced that the sales of his firm, $50
billion at the time, would double to $100 billion by 1990, while its
profits would continue their exponential growth. Figure 9-5(a) shows
IBM’s sales between 1954 and 1984, while Figure 9-5(b) displays
its profits. Extrapolating the historical growth of IBM’s sales for
1990 results in $110 billion sales, $10 billion more than Opel’s 1984
forecast—which could, therefore, be considered conservative since it
underestimated the straightforward extrapolation of IBM’s past sales.

Based on such forecasts IBM hired more than 100,000 new per-
sonnel in order to provide its existing and new customers with the
high-quality service it was much acclaimed for and which constituted
the foundations for its strong competitive advantage. Things did
not turn out as expected, however. Figures 9-5(c) and (d) show, in
addition to the 1954 to 1984 era, IBM’s sales and profits since 1984.
In 1996, its sales were only $72 billion ($28 billion below the $100
billion predicted for 1990) while it incurred losses of more than $13
billion in 1991, 1992, and 1993. Moreover, its work force was, by the
end of 1996, at about half its 1986/87 peak of 430,000.

IBM’s management assumed that the business environment and
IBM itself would not change in the following six years and felt
justified, therefore, in extrapolating historical patterns and basing
its overall strategy and expansion plans on forecasts from such ex-
trapolation. The belief that the best model fitting the past data
guarantees the most accurate forecast for the future, however, is not
correct for three reasons. First, if nothing changes, the future will be
deterministic, as straightforward extrapolation is trivial and can be
done by everyone—including IBM’s existing as well as new competi-
tors, who would also make plans to expand and take for themselves
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Figure 9-5: (a) IBM’s actual sales: 1954–1984; (b) IBM’s profits: 1954–1984; (c)
IBM: sales and 1984 forecasts; (d) IBM: profits and 1984 forecasts.

as large a part of the growing pie as possible. But inevitably, thechanging

environment lure of high growth and big profits creates overcapacity, intensifies
competition, and results in price wars that diminish profits or even
bring losses. Second, yearly growth rates in the 15 to 20% range
may be possible for a small or medium sized company but become
exceedingly difficult for a $50 billion giant (the size of IBM in 1984),
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since 16% growth meant an $8 billion yearly increase, more than the
revenues of all but a few dozen of 1984’s largest firms. Finally, even
if IBM’s revenues had managed to grow, it is highly unlikely that its
profits would have grown equally well. John Opel and IBM ignored
these simple forecasting principles that apply to long-term predictions
and instead extrapolated established trends, not wanting to believe
that such trends could change in the future.

9/2 Long-term mega economic trends

Although long-term economic trends can also change, it is not likely
that they will do so because, by definition, they have lasted for a
very long time, being the outcome of the economic system of free
competition. Such trends can, therefore, be extrapolated with a
reasonable degree of certainty unless we have reasons to believe that
the present economic system will change in some fundamental manner
during the future.
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Figure 9-6: Wheat prices in constant 1996 pounds.
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In the long run, the price, excluding inflation, of most standardized
(commodity type) products or services decreases. The decrease,decrease in real prices

first observed for agricultural products, has continued for practically
all standardized products and services (Makridakis, 1990). Figure
9-6 displays real wheat prices since 1264, and clearly shows their
considerable decrease since around 1800, when the effects of the
Industrial Revolution began to impact the agriculture economy. Since
then, real wheat prices have behaved very much like the copper prices
shown in Figure 9-4. Both have been declining exponentially, in
real terms, because supply has increased above demand (although
the population increased sixfold between 1800 and 1997, increasing
demand considerably), thus forcing real prices to drop. The same is
true with virtually all standardized products/services. See Figures
9-7(a) to (d).

The long-term decrease in real prices implies that firms must con-
tinuously improve their productivity, through technological and/or
organizational innovation, in order to be capable of decreasing their
costs and real prices continuously; this is at least true for firms
producing standardized products/services. Moreover, there is little
doubt that such a decline will continue in the future. It may even
accelerate through the impact of the Information Revolution (see
below) now underway.

Since the beginning of the Industrial Revolution real income hasreal income

increasing been increasing, although its increase is characterized by cyclical
fluctuations. Figure 9-8 shows real wages in England since 1264 and
clearly indicates that real income has been increasing exponentially
(the scale of Figure 9-8(b) is exponential), first from around 1625 until
1725 under the impact of the Agricultural Revolution, and second
since about 1800 under the impact of the Industrial Revolution. As
real wages increase, so does real GNP or wealth, which has been
growing exponentially since at least 1800.

9/2/1 Cycles of various durations and depths

The prices, income, and buying power graphs displayed in Figures
9-4, and 9-6 to 9-7 exhibit strong deviations, some more than others,
around the long-term trend; these deviations, or cycles, can present acycles

considerable challenge for both forecasters and planners/strategists.
Unfortunately, however, cycles cannot be predicted quantitatively,
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Figure 9-7: (a) Nail prices in constant 1994 $; (b) Constant price of chicken:
United States; (c) Constant price of a dozen eggs: United States; (d) Telephone
cost: New York-San Francisco.

as their length and depth are not constant. As Slutsky (1937) has
pointed out, cycles are the outcome of cumulative random errors of
the following form:

Yt =
∑

et (9.1)

where the errors et are independent and normally distributed (i.e., white noise

white noise) terms, with a mean of zero and a constant variance.
That is, expression (9.1) represents the summation of random hap-
penings, or errors, over time and considering their cumulative impact.
Expression (9.1) is often referred to as a random walk (see Section random walk

7/2/2).
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Figure 9-8: Real daily wages in pounds: England

Figure 9-9 shows four graphs generated by expression (9.1). Figure
9-9(a) includes two graphs. One displays the cycles of copper prices
(the difference between the actual copper prices and their long-term
trend from Figure 9-4); the other displays the series, among 10
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Figure 9-9: (a) Cycles in copper prices and in cumulative random numbers; (b)
Cycles in cumulative random numbers “0-200”; (c) Cycles in the S&P 500 and in
cumulative random numbers; (d) Cycles in cumulative random numbers “0-400.”

generated by expression (9.1), that has the highest correlation to the
copper price cycles found (after the trend has been removed) from
Figure 9-4. The obvious resemblance (see Figure 9-9(a)) between
the copper price cycles and the series generated through expression
(9.1) in Figure 9-9(d) is striking, suggesting that copper cycles can be
thought of as the outcome of random forces whose influence is being
accumulated over time. The curve in Figure 9-9(b) suggests that the
cumulative effect of random fluctuations can result in strong cyclical
patterns; these can make us believe, in an illusory manner (Langer,
1975), that there are underlying factors behind them when there is
nothing more than chance happenings whose effect cumulates over
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time. Figure 9-9(c) shows the cycles in the quarterly values (in real
terms) of the S&P 500 index as well as the best (the one with the
highest correlation to the S&P 500 index) of the 10 series generated by
expression (9.1). Finally, Figure 9-9(d) shows another series (selected
also among 10 trials) that illustrates a strong cyclical pattern.

Yt, as presented by expression (9.1), is a random walk and is
characterized by our inability to predict its next turning point. Many
economic and business series behave like random walks, making the
most appropriate forecast, for any future value of Yt, the most recent
actual value available (the “näıve forecast”) or,Näıve forecast

Ŷt+i = Yt. (9.2)

Expression (9.2) suggests that the best forecast for the future is the
current value of the series.

Figure 9-9(a) and 9-9(c) suggest that copper prices, and the quar-
terly S&P 500 index, once the long-term trend has been excluded,
are random walks, which cannot be predicted unless additional non-
quantitative information is available (e.g., inside information about
the market or capacity utilization rates, the power of cartels to
limit production, etc.). The random walk character of economic and
business series explains why sophisticated models, which identify and
extrapolate short- and medium-term trends, are not more accurate
(Fildes and Makridakis, 1995; see Chapter 11) than methods that
assume no trend (e.g., single exponential smoothing) or that slow
down its continuation (e.g, damped exponential smoothing). It is
highly unlikely that such cycles, and the uncertainty associated with
them, will disappear in the future. Hence, long-term forecasting must
accept both the great consistency of long-term trends and the high
extent of uncertainty (because we cannot predict their turning points
statistically) involved given the considerable fluctuations (cycles)
around such trends.

9/2/2 Implications of extrapolating long-term trends

Table 9-1 shows the effects of a 1% decline in real prices, a 2.8%
increase in the index of industrial production (IIP), a 1.8% increase
in the per capita GNP, and the corresponding improvement in buying
power. These percentages are close to the historical averages that
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1890 1990 2000 2015 2050 2090
IIP (index of industrial production) 6 100 132 200 524 1582
Real GNP 17 100 120 156 292 595
Real prices 270 100 90 78 55 37
Buying power 6 100 133 200 530 1608
Earth population 30 100 120 145 240 250

Over 65: developed 4% 12% 14% 17% 24% 24%
Over 65: developing 2% 4% 5% 6% 14% 21%

Table 9-1: The cumulative effect of growth rates: prices = −1%, per capita IIP
= 2.8%, GNP = 1.8% (assuming that developing countries’ population growth will
follow the same pattern as that of developed ones)

1890 1990 2000 2015 2050 2090
IIP (index of industrial production) 6 100 132 200 524 1582
Real GNP 17 100 120 156 292 595
Real prices 725 100 82 60 30 13
Buying power 2 100 146 260 973 4577
Earth population 30 100 120 145 240 250

Over 65: developed 4% 12% 14% 17% 24% 24%
Over 65: developing 2% 4% 5% 6% 14% 21%

Table 9-2: The cumulative effect of growth rates: prices = −2%, per capita IIP
= 2.8%, GNP = 1.8% (assuming that developing countries’ population growth will
follow the same pattern as that of developed ones)

have prevailed in developed countries since around 1800. The table
also shows the population of the earth, assuming that its growth in
developing countries will follow the same pattern as that of developed
ones. Table 9-2 shows the same variables except for prices, which are
assumed to decline by an average of 2% per year (it is more difficult to
estimate the price declines as they will be affected by the forthcoming
technologies of the Information Revolution) instead of the 1% used
in Table 9-1.

The effects of cumulative growth are phenomenal. Buying power,
6 in 1890, becomes 100 in 1990, 133 in 2000, 200 in 2015, and 1608
in 2090; that is 16 times higher than in 1990 and 260 higher than in
1890. When average price decreases are assumed to be 2% (see Table
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9-2), the effects are even more spectacular: buying power will be 146
in 2000, 260 in 2015, and 4577 in 2090—more than a 45-fold increase
in a mere 100 years.

If the trends shown in Table 9-1 or 9-2 continue, excluding un-
foreseen disasters, we are about to enter into an era of full material
abundance, first for Western countries and later for developing ones,
where the buying of goods and services, at least standardized ones,
will be done with a very small percentage of our income. The obvious
implications are that people will easily own everything they need and
will seek new products and in particular additional services on which
to spend their increasing real income. In such an environment the
biggest challenge will be to identify and quickly bring to market novel
products and provide extra services to satisfy the needs of consumers
who will already own practically everything available they may want.

Furthermore, this challenge will have to be met in the expec-
tation of falling prices, which will require continuous productivity
improvements so that firms will be able to survive. Success and high
profits will then have to come from technological or other innovations,
and from using these innovations to open new markets and satisfy
new customer needs, as nearly all existing ones will have already
been saturated. Success will therefore require forecasting to identify
emerging future technologies and/or needs and/or markets rather
than from past success or imitating what others have been doing
well in the past.

Tables 9-1 and 9-2 highlight the opportunities (high buying power,
big increases in demand in developing nations), concerns (need for
continuous productivity improvements, innovation and creativity),
and problems (pollution, potential social conflict between the rich and
poor, a graying population in developed countries), which could be
turned into business opportunities. Businesspeople will have to study
these and similar trends carefully and debate alternative scenarios of
how they will affect their specific country, industry, and firms. It is
through such a debate that collective organizational foresight can be
developed; this suggests a critical role for forecasting and forecasters.
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9/3 Analogies

Extrapolating long-term trends is limited by the fact that in many
instances no, or little, historical information is available, much less lack of data

data series going back to 1800. In such cases analogies can be used,
allowing forecasters to make predictions based on similar situations
for which past data, or accumulated experience, are available.

Analogies are used in the short-term for forecasting the implica-
tions of special events or competitive actions based on similar past
examples. They are used in the medium-term for assessing the length
and depth of, say, recessions by relating the current recession to
all those post World War II. Similarly, they are utilized in the
longer-term to predict the sales of new products or services based
upon past demand for similar ones.

In this section the approach of analogies will be applied to fore-
casting or, more correctly, assessing the impact of computers and
tele-communications (C&T), the engines behind what is referred to
as the Information Revolution. In addition, the analogy between five
important inventions of the Industrial Revolution and corresponding
ones of the Information Revolution is explored.

9/3/1 The Information versus the Industrial Revolution

The arrival of the Information Revolution has been heralded since the Information

Revolutionlate 1960s, although all predictions about its profound changes have
not materialized as yet. Even today there are widespread complaints
that white-collar productivity has not improved (Roach, 1988; 1991)
despite huge advancements and substantial investments in computers
and tele-communications. The critical question is whether or not the
Information Revolution is on target and when precisely it will lead to
significant benefits and far-reaching changes similar to those of the
Industrial Revolution.

Experience with long-term forecasts has demonstrated the exis-
tence of three phases. First, predictions over the very long-term are
often accurate, even though they do not have much value since the
timing of their arrival is not specified. Back in 1260, for instance,
Roger Bacon predicted:

“Machines may be made by which the largest ships, with only
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one man steering them, will be moved faster than if they
were filled with rowers; wagons may be built which move with
incredible speed and without the aid of beasts; flying machines
can be constructed in which a man . . .may beat the air with
wings like a bird . . . machines will make it possible to go to the
bottom of the seas.”

Similarly, Leonardo da Vinci, Francis Bacon, Jules Verne, H.G.
Wells, Aldous Huxley, and Arthur Clarke have made some quite
astonishingly accurate predictions but without specifying the time
of their occurrence (invention) or when they could be exploited for
economically useful results.

In the second phase, when a new invention first appears, few people
are capable of believing its value and the extent to which it can
and will affect us. For example, at the beginning of the century
few could predict the potential importance and widespread usage
of cars, electrical appliances, telephones, radios, televisions, and so
forth. Even in the early 1950s, the chairman of IBM was predicting
a maximum demand for computers of no more than 100 (there are
more than 100 million today) while the president of Intel was, in
the early 1980s, forecasting a maximum demand for 50,000 personal
computers.

Mechanical Power Computer Power
1712 Newcomen’s steam engine 1946 ENIAC computer
1784 Watt’s double action steam engine 1950s IBM’s business computers
1830 Electricity 1971 Time sharing
1876 Otto’s internal combustion engine 1973 Microprocessor
1890 Cars 1970s Electronic data processing (EDP)
1901 Electricity in homes 1977 Apple’s computer
1914 Continuous production lines 1980s Computers with modems
1919 Electricity in 1/3 of homes 1993 Personal computer in 1/3 of homes

Widespread use of:
1950s Electrical appliances 200? Computers/communications
1960s Cars 200? Tele-services/shopping
1970s Long distance telephones 200? Tele-work
200? Unattended factories 200? Expert systems

Table 9-3: From steam engines to unattended factories and from the ENIAC
computer to expert systems
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Finally, euphoria prevails once the new technology has started
spreading; scientists associated with the new technology, firms or
individuals attempting to sell it, and technology zealots overpredict
the timing and the benefits that the new technology will bring.
Proponents of robots predicted, for instance, that these would be
used to do all repetitive and routine tasks by the end of this century.
It is important, therefore, not to be unduly influenced by the over-
pessimism of disbelievers or the overoptimism of proponents. This overpessimism

overoptimismis where analogies can play a significant role in helping us assess
forthcoming technologies and predict when their value and benefits
will start becoming practical and economical. Table 9-3 shows some
analogous events of the Industrial and Information Revolutions (for
more information, see Makridakis, 1995) in an attempt to increase
our ability to more accurately predict the changes brought by the
latter.

Newcomen developed the first workable steam engine in the early
eighteenth century. It took more than 200 years before Henry Ford
used such an invention for building a practical and useful car that the
majority of people could afford to buy, and another half a century
before cars would substantially change our mode of life. Similarly, it
took more than 90 years between the time electricity was invented and
its widespread use by firms to substantially improve productivity. It
has been estimated that it took more than 20 years at the beginning
of our century before the considerable investments in electricity paid
off (David, 1993).

Therefore, if technological developments in computers and tele-
communications continue, and if the analogies displayed in Table 9-3
are valid, we will be entering, by the end of this century or the be-
ginning of the next, a period when major productivity improvements
from C&T will be achieved. By 2015 the Information Revolution
should have provided firms with as much productivity improvement
as those of the Industrial Revolution today (Makridakis, 1990). The
implications are obviously far-reaching, although it may take some
time before their full impact becomes widespread (see Section 9/4).



470 Chapter 9. Forecasting the long-term

Automobiles Trains, trucks, tractors, boats, airplanes
Electricity Batteries
Electrical appliances Programmable, rechargeable
Telephones Cordless, mobile
Television VCR, cable, remote control

Table 9-4: Five inventions that have contributed significant changes to our lives

9/3/2 Five major inventions of the Industrial Revolution
and their analogs

Table 9-4 shows five important technologies of the Industrial Revo-Industrial Revolution

lution. Contributing significantly to changing the way people lived
and the organization, management, and running of firms, each has
achieved virtually 100% penetration in most developed countries.
The obvious reason is that people want them and are willing to
pay to obtain them; once luxuries, they have become necessities. It
is interesting to consider analogous technologies of the Information
Revolution once it will have come into full swing.

Electricity: Computer networks will be able to deliver computer
power everywhere; increasingly, smaller sized computers can be
connected to these networks allowing unlimited access to a great
variety of services. Information can, therefore, become instantly
available whenever and wherever it is needed, as electricity is
today.

Electrical appliances: Software and groupware will become easy to use,
providing high value in ways that are not yet clear. Much as
the importance of electrical appliances was not obvious in the
past, software likely will find whole new areas of application.
As electrical appliances permit us to do a great variety of
manual tasks much more easily and efficiently, so will software
and groupware, for all aspects relating to information and its
processing.

Automobiles: Instead of the physical freedom of choice that cars allow
us because they let us go anywhere at any time, computers
and tele-communications will permit us to achieve similar re-
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sults but without having to be physically present. They will
allow us to have person-to-person interaction (e.g., through
tele-conferencing or tele-work/shopping) “virtually.” Our free-
dom of choice will, therefore, increase considerably beyond that
provided by cars.

Telephones: Computers and modern tele-communications augment
the voice transmission capabilities of telephones in many ways.
As all information can be digitized, computers will provide
unheralded possibilities for all sorts of communications. “In-
formation superhighways” will permit, for example, cheap tele-
conferencing via personal computers; that will allow the cus-
tomized buying of products directly from any manufacturer
anywhere in the world, the obtaining of any kind of service,
or the completion of work by people far away. The Internet,
intranets, extranets, and similar types of networks will permit
unlimited access to any information and/or person, any place
in the world at any convenient time for those involved, for the
mere cost of a local telephone connection.

Television: As information superhighways allow the carrying of im-
ages, music, sound, data, and any other type of information
to any household, the possibilities grow limitless, not only for
entertainment but also for all kinds of related leisure activities,
from reading a rare book to viewing the entire work of Picasso,
touring the Acropolis in Athens, or seeing any concert or theater
play, current or old, anywhere in the world. In addition, the
integration of communications and computers will permit a high
degree of interactivity and customization of exactly what one
wants when it is wanted.

The analogy of the Industrial and the Information Revolutions
as well as the analyses of the development of electricity, appliances,
automobiles, telephones, or television can provide useful starting
points for predicting changes to come, while avoiding the bias of
under-estimating the extent of such forthcoming changes—as did the
famous French economist Jean-Baptiste Say, who wrote in 1843:

“No machine will ever be able to perform what even the worst
of horses can—the service of carrying people and goods through
the bustle and throng of a great city.” (Say, 1843, p. 170.)
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Long-term forecasting requires, therefore, an open mind so that
a realistic and accurate picture of what is to come can be formed,
debated, and once crystallized, used to develop foresight. This
foresight is, in turn, indispensable for planning the long-term and for-
mulating realistic strategies to anticipate forthcoming major changes
and prepare organizations to adapt to such changes as painlessly and
successfully as possible.

9/4 Scenario building

As the future is not predetermined, scenarios are attempts to visu-
alize a number of possible futures and consider their implications.
Scenarios are based in part on objective information (such as by
extrapolating mega trends or by drawing analogies like the one
between the Industrial and Information Revolutions), and in part
on subjective interpretations and specific assumptions about critical
aspects of the future. A major purpose of scenarios is to challenge
conventional thinking and avoid extrapolating into the future in a
linear fashion; they represent tools around which careful thinking
can be centered and major issues debated so a consensus of those
involved emerges.

In the remainder of this chapter several likely scenarios are pre-
sented and their implications discussed. They all build on the
extrapolation of mega trends and the analogy that the Information
Revolution will bring changes of about equal magnitude and conse-
quence to the industrial one.

9/4/1 Businesses: gaining and/or maintaining competitive
advantages

At present, overcapacity prevails in nearly all industries except thoseovercapacity

producing luxury or some high tech products or offering personalized,
high quality services. Such overcapacity drives real prices down and
provides consumers with a large choice of products and services. As
it is highly likely that present trends will continue, overcapacity will
also prevail in the future, in particular when population growth slows
down or stops. Moreover, computers and tele-communications (C&T)
will continue to make the dissemination of information instant and
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practically free no matter where on earth such information or the
person needing it is located.

In this open environment competition will be fierce, further exag- competition

gerating the consequences of overcapacity. The question that cannot
be answered at present is the extent to which prices will keep falling.
Scenarios will even have to consider zero prices (as in commercial
TV) or well-below costs (as when buying magazines or newspapers),
along with the cost and pricing structure of C&T products. In that
structure, the marginal cost of additional units is insignificant in
comparison to R&D expenditures—for example, the cost of selling a
computer program can be practically zero if sales are made through
the Internet, yet development costs can be huge. Will C&T products
be given away to “hook” customers to whom firms can sell new
versions of the programs and additional services—including adver-
tising for new products/services? Who will determine and/or control
the standards? What will be the extent of integrating various C&T
technologies and equipment? These questions cannot be answered at
present, making future predictions difficult and raising the need for
scenarios. Clearly, new challenges, problems, opportunities, dangers,
players, and rules will continuously emerge.

As all routine, repetitive, and standard tasks and decisions will
be automated, gaining and/or maintaining competitive advantages
will require innovative and motivated employees. Will firms become creativity

like advertising agencies, where the critical factor is the creative
talent of key people? Alternatively, will innovative/creative think-
ing be bought or subcontracted? But if creative talent can be
bought/subcontracted, where would a firm’s competitive advantages
come from if everything, including creative talent, could be bought on
the outside? Perhaps creativity will become the scarce resource—the
major, if not single, factor determining success. In such a scenario
only firms that can best map the creative potential of their employees
will be capable of gaining and/or maintaining competitive advantage.

The role and value of creativity

A $5,000 top-of-the line multimedia notebook computer weighing
less than 3 kg is worth today about the same as 10,000 kg of
potatoes. Producing potatoes requires few skills and can be achieved
at quantities greater than the demand for all the potatoes people can
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eat. Competition is, therefore, fierce, forcing prices downward and
reducing farmers’ profit margins. Designing, producing, and selling
top-line notebook computers, on the other hand, require considerable
skills and creativity, which are not readily available except at a dozen
firms in a few developed countries, while potatoes can be grown
practically everywhere. The inability to produce as many top-line
notebook computers as demanded permits firms to charge high prices
and realize big profit margins. High value added always comes from
products or services whose demand is greater than their supply, and
laptops/potatoes are no exception.

Since the Industrial Revolution the widespread use of machines hasautomation

brought dramatic improvements in productivity and huge increases
in the production of both agricultural and industrial goods. Simul-
taneously, it resulted in considerable cost and, consequently, price
reductions, which increased the demand for these goods. As the
pace of technological innovation has accelerated, so has automation,
further increasing productivity and production and slashing costs and
prices at an exponential rate. Finally, as technology has become
relatively cheaper and more readily available, it is being employed
to a great extent throughout the world, creating overcapacity in
practically all industries producing or offering standardized goods
or services.

By extrapolating established trends, there is little doubt that in
10 to 15 years down the road superautomation will be widespread
and the production of all standardized goods and the rendering of
all standardized services will be done with few or no people, at
quantities as high above demand as agricultural products stand today.
At that time the only products/services that will not be in great
oversupply will be new or unique ones. The ability to supply such
products/services is bound, therefore, to become the single most
important factor determining success and creating wealth to nations,
firms, and/or individuals. In such an environment the most critical
concerns will be (a) how firms become “creative” and (b) how to culti-
vate and best exploit their creative potential to gain and/or maintain
competitive advantages. However, as benchmarking will be practiced
on a grand scale and as information will be instantly disseminated
on a global basis, it will be relatively easy for competitors to quickly
identify and imitate successful, creative ideas, making it difficult to
prolong success unless creativity can be continuously maintained.
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Creativity requires novel thinking that can produce useful results. creative thinking

If creativity, or the thinking process needed to achieve it, could be
standardized, it would become mundane, and “creativity” would be
raised to a higher level that would still demand originality. A major
challenge for organizations will therefore be how to enter this above-
average category and stay there, knowing that their competitors will
also strive to be as creative as possible. Another challenge will be
how to change the present mentality in organizations, which rewards
conformity and encourages traditional thinking, to one that values
originality. If firms do not prepare themselves to become creative they
will have no choice but to remain in markets/industries characterized
by overcapacity and diminishing profit margins. Scenarios taking
into consideration the role and value of creativity will need to be
considered so that firms can debate the consequences involved and
be proactive in changing themselves to better prepare for the future.

9/4/2 Jobs, work, and leisure time

Because automation will eliminate nearly all repetitive and routine
tasks (both manual and mental), the type of jobs available will be
fundamentally changed. On the one hand, there will be jobs requiring jobs

a high level of mental skills, both personal and interpersonal, and/or
talents. On the other hand, there will be jobs that provide personal
services but which require few or no special skills/talents—cleaning
the streets or collecting the garbage, for instance. The former type of
jobs are at present much higher paid and provide more satisfaction
than the latter. This raises two questions. Will there be enough
jobs of the first type to satisfy the demand of the majority of the
working population? And who does the dull, uninteresting jobs—
particularly if we consider a full-abundance society where food and
basic necessities could be available to almost everyone? The supply
and demand in the job market may shift considerably if the pool
of skillful/talented workers becomes global, while the great majority
of low skill/talent jobs require physical presence and will have to
be, therefore, local. Scenarios built around these issues need to be
constructed so that their implications can be debated.

A related question is the division between work and leisure time. work and leisure

If we assume that a great number of people will only work when their
job is interesting and satisfying, then work itself may become a hobby,
indistinguishable from leisure activities. Great artists and scientists
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as well as highly successful professionals work long hours not because
they are obliged to do so but because they enjoy their work and
gain significant pleasure from the accomplishments it brings. At the
same time, those doing boring, uninteresting jobs will wish to work
as little as possible, having a lot of free time for leisure activities.
How precisely the job market and the nature of work will evolve and
what the implications will be for businesses, and society in general,
is not obvious; thus, again, the need for debate and scenarios.

9/4/3 Physical versus tele-interactions: extent and speed
of acceptance

There is no doubt that tele-communications and multimedia comput-
ers will open brand-new possibilities that will fundamentally change
(as the Industrial Revolution did) all aspects of our societies (work,
education, shopping, and entertainment), especially as the cost of
C&T becomes increasingly lower. The hotly debated question is
whether or not people will opt for using multimedia technologies
(including tele-conferencing) on a grand scale, choosing to shop
and obtain services, work, entertain themselves, and communicate
through “tele-means” rather than physically. The answer depends
upon the value and cost as well as the inconvenience of each alter-
native, where the social pleasure of physical interaction is one of the
factors added to “value.”

If tele-shopping is done directly from the manufacturer, prices cantele-shopping

be substantially lower since all intermediaries are avoided. Moreover,
if buying can be done through the manufacturer of one’s choice, no
matter where in the world it may be located, the choices available
will be practically infinite.

Whatever is true for products is even more so for services. Oncetele-services

a multimedia computer terminal is connected to a network that pro-
vides access to service firms around the world, there are no constraints
or limits to tele-services—which can extend beyond traditional ones
to include education and even medical diagnosis. In the realm of
entertainment, C&T networks will allow for essentially unlimited
choices and a high degree of interactivity and personalization of what
one chooses to watch or play, individually or with others. Moreover,
entertainment can move into directions neither fully understood nor
explored. Interactive games played by people located far away,



9/4 Scenario building 477

gambling at home, and virtual reality simulations will be possible
in the future, for example.

Tele-work is less straightforward. It is clear, however, that with tele-work

tele-conferencing and computer-conducted meetings, efficiency can be
greatly improved without the need of participants being co-located;
data and information can be displayed, minutes kept, action steps
verified, and various decisions and their implications viewed and
debated. Moreover, as the cost of such tele-work lessens, firms
using these new technologies will be at a competitive advantage over
traditional ones relying on extensive office space to conduct their
business.

Although it is not possible to predict the exact percentage of
people who will work, shop/obtain services, educate, and entertain
themselves mostly at home, we can safely assume that the penetration
of multimedia computers connected to at least one national and
probably one global network in the year 2015 will extend to nearly
all households in advanced countries. Moreover, buying standardized
products and obtaining standardized services as well as getting all
types of entertainment through the computer network will be com-
monplace, as the cost of using C&T will have become insignificant
and the prices of tele-shopping/services and tele-entertainment will
be lower than those of alternatives.

What is unknown is how quickly people will adopt the available
technology and whether or not by the year 2015 there will be one-third
or five-sixths of the population that use tele-means to shop/obtain
services, work, and entertain themselves. Similarly it is not known
whether one-third or five-sixths of knowledge transfer will be done
through multimedia programs versus through a teacher talking in
front of his or her students. However, if the use of tele-means has
not become widespread by 2015, it will be so by 2025 or 2035. It
is a matter of time, making it necessary for individuals, firms, and
governments to start considering the implications involved and build
alternative scenarios of how a future of practically free computers and
tele-communications would look like.
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Exercises

9.1 Build a scenario about the future implications of the following
new inventions:

(a) There have been several computer programs developed
recently that recognize continuous speech and turn it into
written text in a computer word processing program.

(b) In 1997, an IBM computer program (Deep Blue) beat
the world chess champion (Kasparov).

(c) Today one can buy a PC running at 266Mhz and having
32 megabytes of RAM memory and 3 gigabytes of disk
memory, plus many other powerful characteristics, for
under $1,500. (In 1968 an electrical calculator which
would only perform the four basic arithmetic functions
used to cost $1,000–$4,000 in 1997 prices.)

9.2 Today one can buy a color photocopier which can also be used
as a color computer printer, as a plain paper color fax machine
and as a scanner. The price of this all-inclusive machine is
under $1,000. Such a machine together with the powerful
$3,000 computer mentioned above are all that one needs to
work from home, in particular since the computer also includes
a modem and can connect to the Internet.

Comment on the implication of this for the future of tele-work.

9.3 Consider the price trends in computers and office equipment.
A computer whose speed was a fraction of a Mhz and which
had only 8,000 words of RAM memory cost $10,000 in 1968
($40,000 in 1997 prices). Similarly, a thermo-paper fax ma-
chine, or black-and-white photocopier cost more than $1,000
a decade ago.

Comment on the implication of these price trends for the
future of tele-work.
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9.4 In Johnson (1991), the following quote is said to have been
made by Samuel Taylor in 1801. Comment on this quote.

Samuel Taylor, of Fox & Taylor, flatly refused to believe
that machinery could replace skilled craftsmen. He in-
sisted that the existing method was perfect: “I have no
hope of anything better ever being discovered, and I am
convinced there cannot be.”

Comment also on the following two quotes:

“There is no reason for any individual to have a computer
in their home.”

Ken Olson, 1977. Chairman and CEO, DEC.

“Digital Television defies the laws of physics.”

Senior CBS Executive, 1991.
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The statistical forecasting methods presented in Chapters 3 to
8 allow us to extrapolate established patterns and/or existing re- extrapolation

lationships in order to predict their continuation, assuming that such
patterns/relationships will not change during the forecasting phase.
At the same time, because changes can and do occur, these must be
detected as early as possible to avoid large, usually costly, forecasting detecting changes

errors.

However, when changes are detected, or if we can know when they
are about to occur, human judgment is the only viable alternative human judgment

for predicting both their extent and their implications on forecasting.
Human judgment is also needed to incorporate inside information and
knowledge, as well as managers’ experience, about the future. Before
using our judgment for improving forecasting accurately, however,
we must understand its biases and limitations along with its major
advantages. Doing so allows us to combine the information from our
statistical predictions with those of our judgment (Clemen, 1989) by
exploiting the advantages of both while avoiding their drawbacks.

10/1 The accuracy of judgmental forecasts

Although we make innumerable forecasts every day (for both our
organizations and our personal lives), we expend little effort in
evaluating them to find ways of improving their accuracy. The reason
is simple: we do not want to be held responsible if our forecasts go
wrong. However, unless we get feedback about the accuracy of our
predictions, it is not likely that we can improve our performance when
making similar forecasts in the future. Because judgmental forecasts
are much more common than statistical ones (see Chapter 11), not
only can we not ignore them, but we must also be willing to accept
that judgmental forecasting errors cannot be entirely avoided; we will
be better off if we can accept such errors while learning as much as
possible from them so we can improve our ability to forecast more
accurately in the future.

The accuracy of judgmental forecasts is, on average, inferior to
statistical ones. This is because our judgment is often characterized
by considerable biases and limitations. In the following sections the
available evidence that compares judgmental to statistical forecasts is
presented (see also the bibliography for this and subsequent chapters).
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We will also see that the accuracy of our judgmental predictions can
be improved by using some generally simple statistical models; the
cost of such models is, moreover, significantly less than that of the
people making the forecasts. The challenge for forecasters, therefore,
is to avoid the limitations posed by their judgment by combining the
best aspects of statistical methods with those of their judgment while
avoiding its biases. This chapter explores that challenge and suggests
specific steps for dealing with it.

10/1/1 The accuracy of forecasts in financial and other
markets

A large number of forecasts are made virtually every day on the
stock, bond, interest, foreign exchange, and futures markets. As the
purpose of buying and selling in these markets is to maximize profits,
it is straightforward to evaluate the accuracy of these market forecasts
either directly (as in the case of investment newsletters, which provide
advice about the market and/or specific stocks), or indirectly, that
is, when investment managers and analysts buy and/or sell stocks,
bonds, etc., for themselves or their clients.

The advice of newsletters for investments
In a comprehensive study of 237 investment strategies recom-newsletters

mended by newsletters over a period of 13 years (1980 to 1992),
Graham and Harvey (1995) conclude the following about the
accuracy of these strategies:

1. Only 22.8% of newsletters have average returns higher
than a passive portfolio of equity and cash with the same
volatility. Indeed, some recommendations are remarkably
poor. For example, the (once) high profile Granville Mar-
ket Letter-Traders has produced an average annual loss of
0.4% over the past 13 years. This compares to a 21.1%
average annual gain on the Standard and Poor’s 500 price
index.

2. Consistent with mutual funds studies, we find that poor
performance is far more persistent than good performance.

3. Most of our tests focus on the ability of newsletters to
call the direction of the market, that is, market timing.
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We find little evidence that equity weights increase before
future positive market returns or decrease before negative
ones. We find no evidence that the investment letters as
a group have any knowledge over and above the common
level of predictability.

4. The bottom line is that very few newsletters can “beat”
the S&P 500. In addition, few can beat the market fore-
casts derived from a statistical representation of publicly
available information. There is no evidence that the letters
can time the market (forecast direction). Consistent with
mutual funds studies, “winners” rarely win again and
“losers” often lose again.

Investment newsletters have, therefore, no value for those seek-
ing an accurate forecast of financial markets (or better, their
advice produces consistent losses). A random selection of stocks
outperforms the advice of more than three-quarters of the
investment newsletters written by supposedly knowledgeable
professionals.

Professionally managed investment funds
If investment newsletters provide only “advice” for investment investment funds

decisions, professional managers of investment funds make ac-
tual ones by investing many billions in the stock, bond, and
other markets. Their performance is not satisfactory. Figure
10-1 shows the percentage of professional managers who, over
a period of three, five, and ten years, have beaten the S&P
500 index, or the benchmark master bond index. This per-
centage is always below 50%, indicating that these managers
have not done better than someone selecting stocks and bonds
randomly—that is, if the managers had used the random walk random walk

model in Chapter 7:
Ŷt+h = Yt . (10.1)

The random walk approach uses the most recent actual value
as the forecast for the next period. It captures the notion that
the next observation is equally likely to be greater than or less
than the most recent actual value.

The same conclusion can be drawn from Figure 10-2, which
shows the average return of professionally managed funds versus
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Figure 10-1: Money managers: percentage who beat the S&P 500 or the Master
Bond Index.
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Figure 10-2: The median returns of professional managers vs the returns of the
S&P 500 index.
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those of the S&P index. The median of professional managers
consistently underperforms this index by a significant amount.
Investors would have been better off (richer), on average, there-
fore, had they chosen their stocks and bonds randomly, using
(10.1), rather than paying the “experts” to do so.

Finally, Table 10-1 shows the performance of various types
of mutual funds in 1994 and over the 1984–1994 period. No
mutual fund did better than the market average in 1994 or over
the 1984–1994 period, with the one exception in 1994, when the
losses of municipal bond mutual funds were smaller (−5.18%
versus −5.6%) than those of the municipal bond index. Glass-
man (1997) provides several reasons why professional managers
do not outperform random selections of various investment
instruments. One of the most important reasons is that the

Type of fund 1994 1984–1994
total return average annual return

Aggressive growth stocks −3.1% 13.4%
Growth stock −2.1% 12.8%
Growth and income stock −1.5% 11.8%
S&P 500 index 1.3% 14.4%

International stock −2.9% 15.7%
Morgan Stanley 7.8% 17.6%

foreign stock index

Government bond −3.6% 8.3%
Treasury bond −4.1% 8.2%
Lehman Bros. −3.4% 9.6%

government bond index

Municipal bond −5.2% 8.4%
Lehman Bros. −5.6% 9.4%

municipal bond index

Table 10-1: The performance of mutual funds. Do mutual funds with their
professional managers beat the market?: Their 1994 and 1984–1994 performance.



488 Chapter 10. Judgmental forecasting and adjustments

Returns
1988 1989 1990 1991 1992 1993 Total

Garzarelli −13.1 22.5 −7.2 31.5 7.7 5.0 41.9
Ave. fund 15.7 25.1 −6.1 36.7 9.1 4.8 85.3
S&P 500 16.6 31.7 −3.1 30.5 7.6 4.9 88.2

Table 10-2: Superstar (guru) Elaine Garzarelli predicted the 1987 stock market
crash. She was extremely bullish on stocks early in 1994. She was fired by Lehman
Brothers on October 27, 1994, for poor performance.

managers’ objective is not to maximize investors’ returns but
rather their own bonuses, which are related to how much better
they do than the market average. This objective encourages
them to take too many risks and buy and sell stocks with timing
that shows above-average returns.

Talented forecasters and investment gurus
In October 1987, one week before the stock market collapsegurus

stock market crash that sunk the S&P index by 40%, Elaine Garzarelli, a stock
market analyst, gained considerable fame by having advised
her clients to sell their stocks. Doing so saved them millions
of dollars and made Garzarelli a celebrity. Subsequently, she
started an investment fund whose performance, until she was
fired in July 1994, can be seen in Table 10-2. Garzarelli’s fund
underperformed the market consistently and by a large factor.
It also did worse than the average investment fund by less than
half. Her “foresight”in predicting the October 1987 crash did
not extend beyond this single event, since she obviously missed
the subsequent ups and downs of the market (see Table 10-2).
The performance of her fund lost many millions of dollars for
her clients, who would have been much better off had they
selected their stocks at random. Her past success was not a
good predictor of her future performance.

Some investment gurus have consistently outperformed the
market. But they represent a tiny exception, confirming the
rule that past above-average performance does not indicate
such performance will continue in the future. Obviously, if
there are many investors, some will do better than average
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Figure 10-3: Dow Jones Industrial Average: the forecast errors of 42 top strategists
(made in late December 1995 for 30 June 1996 and 31 December 1996).

because of pure chance. However, even top forecasters make
huge mistakes, as can be seen in Figure 10-3, which lists
forecast errors in predicting the Dow Jones Industrial Average.
The forecasts of these top strategists for major Wall Street
investment firms were made in late December 1995 for June
30, 1996 and December 31, 1996. Strategists underestimated
the DJIA at the end of 1996: six of them by over 1500 points,
one by close to 2300 points; and the majority did so for June
30, though by smaller amounts.

Other evidence points to the same conclusion. All markets
where information is widely disseminated and that cannot be
influenced by a few players behave like random walks, making
it impossible to predict them more accurately than by using
today’s price as the best possible forecast—that is, expression
(10.1) (the näıve forecast). This conclusion has serious impli- näıve forecast

cations for investing, yet the majority of investors are unwilling
to accept either the conclusion or its implications.

Understanding the reasons for such unwillingness helps us eval-
uate the role and value of judgmental forecasting. We do not
want to accept the considerable empirical evidence telling us
that the most profitable way of investing in the various markets
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is to select stocks, bonds, futures contracts, etc., randomly be-
cause we do not like the uncertainty implied by the näıve model
(10.1). In addition, we tend to be convinced that some “expert”
can do better than a random selection, and that belief will
both reduce our uncertainty and generate a better-than-average
return. This belief, or bias, is, however, without merit, and if
we manage to avoid it we can improve the profits from our
investments, or at least reduce our losses, while not having to
pay anyone for providing us a service of negative value.

10/1/2 Non-investment type forecasts

Although empirical evidence concerning judgmental forecasts for
areas other than investments is not as plentiful, the conclusion is
similar: the accuracy of these forecasts is, on average, inferior to
statistical ones. In this section the evidence from salespeople, man-
agement, and “expert” predictions are presented.

Salespeople forecasts
“Salesmen” forecasts were once very popular, since salespeople,salespeople forecasts

being close to customers, are presumably in a position to know
about forthcoming changes in the marketplace. Empirical evi-
dence (Walker and McClelland, 1991; Winklhofer et al., 1996)
has shown, however, that salespeople’s forecasts are notoriously
inaccurate. Worse, they fluctuate considerably depending upon
the mood of the moment and whether the last few sales calls
were successful or not. In addition, salespeople are often re-
warded when they sell above some target, which is itself usually
determined by some type of “forecasting.” Thus, they have
an interest in setting low targets that can be easily achieved
or exceeded, thereby receiving a bonus. At the same time,
sales managers want to set high sales targets to motivate their
salespeople. So they adjust the sales force estimates upward,
thereby confusing objective forecasts with the attainment of
desired targets. Finally, salespeople determine how sales are
doing at present in their own territory rather than how they
will do in the future when conditions may be different. For all
these reasons, their judgmental predictions are not the most
appropriate means to decide about the overall future sales of
firms.
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Management forecasts
Managers, unlike salespeople, have a more global picture of management

forecaststhe firm, its market(s), and the economy. However, they are
often overoptimistic about the firm’s future or the products
they are responsible for (see the example of Elco Electronics
below); managers rarely forecast decreasing sales or predict
that products will fail, for instance. Managers are also not
the appropriate forecasters to assess competitive threats or the
impact of new technologies that might make their products
obsolete. Hence, their forecasts are usually no more accurate
than those of statistical methods, whose major advantage is
objectivity. This does not mean that managers or salespeople
cannot make accurate predictions (see Walker and McClelland,
1991) or that they do not possess valuable information that
could greatly improve a firm’s ability to predict the future
correctly. Rather, they are overoptimistic and do not separate
personal or political interests from the best way for achieving
the most accurate predictions, as was shown to be true in the
Walker and McClelland (1991) study, which also illustrated
the inferiority of management forecasts when compared with
statistical models.

Eurotunnel forecasts
The actual cost of building the Eurotunnel was more than twice big project forecasts

the original estimate while its intended date of opening was
missed by almost two years. This is the usual pattern for
similar forecasts of big projects, whose costs and completion
times are seriously underestimated while potential revenues are
exaggerated. In the case of Eurotunnel, it was estimated in
1986 that 16.5 million passengers would use its rail services
during the first year of operation. This forecast was reduced to
13 million in 1993, and subsequently cut to 6 million in 1994.
The actual number of passengers during the first full year of
operation (1995) was only 3 million (half the number predicted
in 1994 and less than 20% of the initial 1986 forecast). At the
beginning of 1996, the most optimistic forecast was 10 million
passengers by the end of the decade.
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“Expert” forecasts
There is significant empirical evidence comparing “expert”expert forecasts

forecasts with those of statistical models. In nearly all cases
(Dawes, 1988; Hogarth and Makridakis, 1981; Kahneman et
al., 1982; Meehl, 1954) where the data can be quantified, the
predictions of the models are superior to those of the expert.
The implications of these findings, as well as those mentioned
above, have critical consequences if the objective is to improve
forecasting accuracy and reduce the uncertainty of our predic-
tions. We humans are not good forecasters, sometimes for good
reasons (imagine a product manager predicting that his or her
new product will fail: the obvious course of action would be
to not launch the product at all). Our judgment is influenced
by a number of biases and other limitations that influence the
way we forecast and, therefore, decrease the accuracy of our
predictions. These biases are described next.

10/2 The nature of judgmental biases and limi-
tations

Most of us are well aware of the limitations of our memory; wememory limitations

know we cannot remember everything, so we take concrete steps
to avoid negative consequences. We write down, for example, the
names of people and businesses in alphabetical order, along with their
addresses and phone numbers, in a booklet or electronic organizer for
easy retrieval. Doing so, however, does not imply that our memory
is deficient; on the contrary, the human memory is of enormous
value. But its vast capacity would be filled in days if everything
were indiscriminately stored, so a crucial task is determining what
is important to remember and what can be ignored. The more our
memory is relieved of the burden of storing trivial facts, the greater
its capacity to store and easily retrieve more important information.

Yet, while we accept the deficiencies and limitations of our memory
(and thus jot down what we want to remember later on), we rarely
do anything to remedy the deficiencies of our judgment (Hogarth and
Makridakis, 1981)—mainly because we are unwilling to accept that
our judgment can be faulty or biased. Because judgmental biases are
almost never presumed to exist, it is extremely important to expose
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them: empirical evidence clearly demonstrates their existence and
their negative, damaging consequences. Judgmental biases do not
imply stupidity, however; their presence is clearly discernible among
highly intelligent people. Rather, they result from the way the mind
operates and reflect its attempts to reconcile conflicting objectives.

10/2/1 Judgmental biases in forecasting

Imagine that you work for Elco Electronics, a company with some
2,000 employees, as the product manager for laser printers. Account-
ing for about 40% of Elco’s revenues, these printers can also be used
as fax machines, scanners, and photocopiers. Competition in the
laser printer market is fierce, from both new entrants at home and
imports primarily from Pacific Rim countries. As product manager,
you must decide how many units of each of 10 models of printers to
produce and ship to distributors, and whether or not to invest in new
plant and equipment. Making those decisions requires forecasting.
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Figure 10-4: Sales of Elco’s laser printers: 1992–1998
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Figure 10-4 shows Elco’s sales of laser printers since 1992. Al-
though sales have seen a healthy increase in the past, your concern
is the future. You must make a unit sales forecast (in addition to
price, competition, and so on) for next year and for five years from
now. What will, in your opinion, be the forecast for 1999 and 2003,
including a low, pessimistic sales figure and a high, optimistic one?

Year Low (pessimistic) Most likely High (optimistic)
Forecast Forecast Forecast

1999 ———— ———— ————

2003 ———— ———— ————

Table 10-3: Forecast the sales of laser printers for 1999 and 2003 (consult Figure 10-4)

In fact, there is no right or wrong forecast in predicting the sales of
laser printers. If a third party (like yourself) were asked to forecast
Elco’s sales, he or she would most likely predict a straight-line extrap-
olation from the past to the future. Thus, the most likely forecast,straight-line

extrapolation around which most answers will hover, is about 65,000 units for 1999
and 99,000 units for 2003. That is because it is assumed that what
has happened in the past will continue to happen in the future; the
various factors causing sales to go up or down will cancel themselves
out as Elco and its competitors make moves and countermoves that
effectively neutralize each other. This is the approach used by people
making judgmental forecasts when no additional inside information
is available, and when personal or political considerations are not at
stake. In practice, such an approach, although mechanistic, seems to
work better than alternatives. Interestingly enough, forecasts of the
statistical technique of trend extrapolation provide very similar num-
bers as third parties who are asked to make judgmental predictions
concerning Elco’s sales.

What is important, however, is how the forecasts change if people
are told that the data in Figure 10-4 represent a new (or, alternatively,
a mature or old) product. As shown in Figure 10-5, the answers
vary widely, which demonstrates how often we ignore concrete data
and instead forecast using stereotypes (the sales of a new product
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Figure 10-5: Sales of Elco’s laser printers and forecasts.

must increase, for example, while those of an old one must decrease).
In fact, the differences in the forecasts for new, mature, and old
products (in particular for 2003) are enormous, highlighting the need
to exclude judgmental biases while forecasting. After all, it cannot
be automatically assumed that sales will increase in more than a
straight line simply because a product is new—particularly in the
personal computer industry where the life cycle of products rarely
exceeds a couple of years, making a seven-year-old product not a new
but an extremely old one. Yet this type of mistake is constantly made
by people who are asked to predict the sales at Elco.

One author gave the same data in Figure 10-4 to a group of
product managers who were told that the information represented
the past sales of a product from their company. They extrapolated
the figures to show an exponential increase similar to the one of “new
product” in Figure 10-5. However, another group of managers of the
same company, provided with the same information but told that it
related to a product belonging to their major competitor, forecast
an exponential decline, similar to the one of “old product” in Figure
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10-5! Obviously, such differences in forecasting are caused by personal
considerations, springing from optimism or wishful thinking, and
have little or nothing to do with an objective assessment of future
conditions.

Finally, all respondents who saw Figure 10-4 considerably under-
estimated the uncertainty involved (the estimation of the interval
between high and low forecasts). This was true in particular for 2003,
when sales could be a great deal lower than the lowest interval and
much higher than the highest interval specified by the respondents.
Many things can happen over five years, but respondents consis-
tently underestimated future uncertainty regardless of their position
(MBA students, middle managers, top managers) or their background
(MBAs, engineers, fine art students; financial, marketing, or general
managers). Assuming a linear trend, a realistic estimate, based on
statistical theory, of the low and high sales value for 1999 is fromprediction intervals

50,000 to 79,000 units. For 2003, the same figures are from 78,000 to
119,000 units. The vast majority of people estimated these intervals
to be less than half of those postulated by statistical theory, which, it
must be added, estimates its intervals assuming that the established
pattern will not change.

10/2/2 Dealing with judgmental biases

The entire subject of judgmental biases could take many volumes to
treat thoroughly and cannot, therefore, be covered in this chapter in
detail (see Kahneman and Tversky, 1979). Thus, we intend to discuss
those aspects of judgmental biases that most critically and directly
affect forecasting.

Inconsistency, a human bias with serious negative consequences,inconsistency

refers to changing our minds (or decisions) when there is no need to do
so. Consider a production manager who must forecast how much to
manufacture for each of 10 products in the coming month. Bowman
(1963), back in the 1950s, found that production managers’ forecasts
(and actual decisions) about how much to produce fluctuated from
month to month for no apparent good reason. Indeed, simply by
making decisions consistent, forecasting accuracy and profitability
improved. Bowman’s findings have been reproduced in a great
number of studies (Hogarth and Makridakis, 1981), and the conclu-
sion is always the same: repetitive, routine forecasts (and decisions
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in general) can be improved if inconsistency is removed. People,
however, are often unable or unwilling to apply the same criteria or
procedures when making similar decisions. Sometimes they forget;
other times they are influenced by their mood of the day (think of
a forecast made the morning after a quarrel with one’s partner and
a sleepless night). Other times people might be bored and want to
try something new. Finally, they might believe that conditions have
changed when they actually have not.

Production managers are not the only ones whose decisions are
inconsistent. Meehl (1954), in a small but influential book, concluded
that decision rules using a few variables predict better than people,
mostly because the models can consistently apply the same deci-
sion criteria, while people are inconsistent in their choice of factors
on which to base their decisions. Meehl’s conclusions have been
confirmed by hundreds of additional studies. Decision rules in the
form of simple statistical models have been found to outperform ex-
pert judges when repetitive, routine decisions were involved (Dawes,
1988). These decisions included medical diagnoses, psychological
predictions about people’s personality traits, selection of students
to be admitted to colleges or universities, predicting future earnings
of companies, and so forth. There is hardly any evidence showing
that expert decision makers do better than decision rules. Obviously,
these studies refer to repetitive, routine decisions, but even then
the conclusions are surprising, as in the case of medical diagnosis.
Garland (1960), for instance, reported a study in which experienced
X-ray specialists failed, about 30% of the time, to recognize the
presence of lung disease that was definitely visible on the X-ray film.
Similarly, studies found that radiologists changed their minds about
20% of the time when given the same X-ray on two different occasions.

Inconsistency can be avoided by formalizing the decision-making
process (today this is called building expert systems). This would expert systems

require deciding, first, which factors are important to consider in
making a certain repetitive decision; second, how such factors should
be weighted (one might be twice as important as another or vice
versa); and third, what objective should be optimized. The usefulness
of decision rules derives from the fact that several people can be decision rules

involved in determining them, thus making it possible to select the
best factors, an optimal weighting scheme, and the most viable objec-
tive(s). Since the rule will be used again and again, it makes sense to
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devote significant effort and resources to coming up with the best one
possible. The rule can subsequently be applied on a routine basis,
freeing considerable human resources and contributing to improving
forecasting accuracy or, more generally, decision making.

Consider, for instance, whether or not a purchase by a Visa
cardholder should be approved. Doing so on a case-by-case basis
takes numerous credit officers and becomes an expensive operation.
Now consider finding all important factors that credit officers use
to decide whether or not to approve a credit request. Since many
officers can be consulted and a great deal of effort can be devoted to
the process, the most relevant factors can be found and included in
a statistical model, which would determine if such factors are indeed
important and how much weight should be given to each. A decision
rule will thus be established, allowing a clerk to enter the required
information and let the model reach a decision. As the objective
is to minimize fraudulent purchases, an expert system can be built
and credit officers would be consulted only in the exceptional case,
where the model indicates a gray area and cannot decide. With such
a system fewer officers are required and decisions are consistent and
objective. Equally important, the decisions can be evaluated after the
fact in ways that can help further improve the model, if necessary.

Given today’s computer technology and tele-communications capa-
bilities, decision models of the type just described can be economically
developed and profitably applied on a routine basis. Visa has indeed
applied such decision-making models with considerable improvements
in efficiency and profits. Similar decision rules can be applied when
making judgmental forecasts.

Obviously, decision rules cannot be used indefinitely. The environ-
ment changes, as does competition; new objectives might be set and
so on. Thus, the effectiveness of decision rules must be monitoredmonitoring

constantly to make sure they are still appropriate. That means
learning must be introduced into the expert system; otherwise, we
run the risk of applying obsolete rules. Too much consistency can be
as dangerous as inconsistency, for it excludes learning and leads to
another bias, conservatism.

This is precisely the problem with biases: in trying to avoid one
we might cultivate another. A bias in this case exists precisely
because our minds must ensure consistency but must also allow for
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learning. The challenge facing all of us, therefore, is to be consistent
while at the same time introduce mechanisms to ensure learning and
eventually changes in the decision rules to adapt to new conditions.
For forecasters this is a critical challenge, in particular for long-term
predictions, where learning is infrequent and changes abound.

Can biases be avoided if decisions are made in groups? Unfortu-
nately not—in fact, evidence suggests that groups amplify bias (Janis,
1972) by introducing groupthink, a phenomenon that develops when groupthink

group members become supportive of their leader and each other,
thus avoiding conflict and dissent during their meetings. Moreover,
group decisions are more risky, as responsibility for the decisions
taken cannot be attributed to any single individual.

Table 10-4 describes those biases we have found (through our ex- common biases

perience of working with companies, our research work, and relevant
findings in the forecasting literature) to be of critical importance for
forecasting and future-oriented decision making in general. It also
provides suggestions to help prevent or mitigate their impact.

A prominent example of one such bias, recency (remembering
recent events more vividly, which consequently influences our judg-
ment to a greater extent than less recent events), concerns oil prices
between 1965 and 1988. During that period basic economic facts were
ignored and many mistakes made as organizations and governments
overreacted to the latest price levels and made decisions assuming
that such prices (or the trends involved) would last forever. This
turned out to be wrong both before 1973, when they were going
down, and between 1974 and 1981, when they were increasing at a
steep pace. If all the information about oil prices (see Figure 10-6)
had been used, it would have suggested that real oil prices would
remain constant in the long-term. This was true both before 1974 and
now. Thus, it should have been assumed that the deviations around
the long-term trend would be temporary and that the market would
return to its long-term equilibrium captured by the oil price’s mega
trend (see Chapter 9). In reality this has happened, even though oil
prices skyrocketed from $14.2 in 1973 to $64.7 seven years later. As
Figure 10-6 shows, oil prices in 1997 were very close to the long-term,
mega trend of such prices.
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Type of bias Description of bias Ways of avoiding or reducing
the negative impact of bias

Inconsistency Being unable to apply the same
decision criteria in similar
situations

• Formalize the decision-making
process

• Create decision making rules to
be followed

Conservatism Failing to change (or changing
slowly) one’s own mind in light of
new information/evidence

• Monitor for changes in the
environment and build
procedures to take actions when
such changes are identified

Recency Having the most recent events
dominate those in the less recent
past, which are downgraded or
ignored

• Realize that cycles exist and
that not all ups or downs are
permanent

• Consider the fundamental
factors that affect the event of
interest

Availability Relying upon specific events
easily recalled from memory to
the exclusion of other pertinent
information

• Present complete information
• Present information in a way

that points out all sides of the
situation being considered

Anchoring Being unduly influenced by initial
information which is given more
weight in the forecasting process

• Start with objective information
(e.g., forecasts)

• Ask people to discuss the types
of changes possible; ask the
reasons when changes are
proposed

Illusory
correlations

Believing that patterns are
evident and/or two variables are
causally related when they are
not

• Verify statistical significance of
patterns.

• Model relationships, if possible,
in terms of changes

Table 10-4: Common biases in forecasting and proposed ways of avoiding or
reducing their negative impact.
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Type of bias Description of bias Ways of avoiding or reducing
the negative impact of bias

Search for
supportive
evidence

Gathering facts that lead toward
certain conclusions and
disregarding others that threaten
them

• Induce disconfirming evidence
• Introduce role of devil’s

advocate

Regression effects Persistent increases (or decreases)
might be due to chance rather
than a genuine trend.

• One needs to explain that if the
errors are random, the apparent
trend is unlikely to continue.

Attribution of
success and
failure

Believing success is attributable
to one’s skills while failure to bad
luck, or someone else’s error.
This inhibits learning as it does
not allow recognition of one’s
mistakes

• Do not punish mistakes, instead
encourage people to accept their
mistakes and make them public
so they and others can learn to
avoid similar mistakes in the
future. (This is how Japanese
companies deal with mistakes.)

Optimism,
wishful thinking

People’s preferences for future
outcomes affect their forecasts of
such outcomes

• Have forecasts made by a
disinterested third party

• Have more than one person
independently make the
forecasts

Underestimating
uncertainty

Excessive optimism, illusory
correlation, and the need to
reduce anxiety result in
underestimating future
uncertainty

• Estimate uncertainty
objectively. Consider many
possible future events by asking
different people to come up with
unpredictable situations/events

Selective
perception

Seeing problems in terms of one’s
own background and experience

• Ask people with different
backgrounds and experience to
independently suggest solutions

Table 10-4 continued: Common biases in forecasting and proposed ways of
avoiding or reducing their negative impact.
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Figure 10-6: Oil prices in constant 1997 dollars, 1870–1997.

10/2/3 Conventional wisdom

Another type of judgmental bias that can threaten decision-making
effectiveness is unfounded beliefs or conventional wisdom. We believe,conventional wisdom

for instance, that the more information we have, the more accurate
our decisions will be. Empirical evidence does not support such a
belief, however. Instead, more information merely seems to increase
our confidence that we are right without necessarily improving the
accuracy of our decisions. This is a finding reached by Oskamp (1965)
and many other researchers, who warn against devoting energy and
resources to gathering a lot of information. In reality, the information
found is usually redundant and provides little additional value, if not
being outright harmful since it increases our confidence about the
future.

Another example of conventional wisdom we are willing to accept
is that we can discriminate between useful and irrelevant information.discriminating

information Empirical research indicates that this is rarely the case. In experi-
ments, subjects supplied with “good” and “bad” information are not
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capable of distinguishing between the two. In addition, the irrelevant
information is often used, decreasing decision-making effectiveness
particuarly if the relevant information is of a quantitative nature and
the irrelevant is qualitative (most people seem to weight “verbal”
information more heavily than numbers).

Table 10-5 summarizes relevant conventional wisdom, including
the two examples already offered. It also lists the evidence available
through empirical and laboratory studies. As with the biases dis-
cussed, the conventional wisdom listed in Table 10-5 can greatly influ-
ence our forecasts and decisions in general. It is, therefore, important
to avoid negative consequences by establishing procedures aimed at
minimizing their impact through the use of empirical findings listed
in Table 10-5.

10/3 Combining statistical and judgmental
forecasts

The big challenge in arriving at accurate forecasts is to utilize the
best aspects of statistical predictions while exploiting the value of
knowledge and judgmental information, while also capitalizing on
the experience of top and other managers. In the remainder of this
chapter we describe an approach one of the authors has been using
in many firms, which exploits the advantages of both judgmental and
statistical forecasts while avoiding their drawbacks. The example
involves coming up with budget forecasts, but it is applicable to other
situations requiring predictions.

10/3/1 Arriving at final forecasts during a budget meeting

In annual budget meetings, usually held in October or November, budget meetings

the major objective is to decide how much sales will grow in the
following year. Based on such growth, many other decisions are
made about how resources should be allocated and long-range plans
implemented; hence, considerable effort is devoted to forecasting
overall sales growth rate as accurately as possible.

There are conflicting interests of those participants in the budget
meeting, however, with marketing executives usually opting for a
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Conventional Wisdom Empirical Findings

1. The more information we have, the
more accurate the decision.

The amount of information does not im-
prove the accuracy of decisions, instead it
increases our confidence that our decision
will be correct.

2. We can distinguish between useful
and irrelevant information.

Irrelevant information can be the cause of
reducing the accuracy of our decisions.

3. The more confident we are about the
correctness of our decision, the more
accurate our decision will be.

There is no relationship between how
confident one is and how accurate his or
her decision is.

4. We can decide rationally when it is
time to quit.

We feel we have invested too much to
quit, although the investment is a sunk
cost.

5. Monetary rewards and punishments
contribute to better performance.

Human behavior is too complex to be
motivated by monetary factors alone.

6. We can assess our chances of succeed-
ing or failing reasonably well.

We are overly optimistic and tend to
downgrade or ignore problems and diffi-
culties.

7. Experience and/or expertise improve
accuracy of decisions.

In many repetitive, routine decisions, ex-
perience and/or expertise do not con-
tribute more value to future-oriented de-
cisions.

8. We really know what we want, and
our preferences are stable.

Slight differences in a situation can
change our preferences (e.g., most people
prefer a half-full to a half-empty glass of
water).

Table 10-5: Conventional wisdom versus empirical findings
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higher growth and production executives for lower. In a typical
budget meeting the final growth rate represents the outcome of a
bargaining process, which sometimes has little to do with forecasting
(see Walker and McClelland, 1991) and much more to do with
the relative power of each executive participating in the meeting,
his or her ability to persuade the others, personality, and political
considerations, the opinion of the CEO, and tradeoffs to minimize
conflict. It becomes important, therefore, to provide a solid, objective
base and a systematic procedure to forecast next year’s growth rate
as accurately as possible. For this to become possible the influence
of judgmental biases and other nonobjective considerations must be
minimized.

Anchoring the initial forecast objectively

Anchoring is a judgmental bias that develops if someone starts with anchoring

an initial growth rate forecast that may not be realistic but which
serves as an anchor that keeps the final forecast close to it. This
anchoring effect becomes even more serious if the chairman and CEO
start by specifying a growth forecast for next year: the discussion
focuses on (anchors) such a forecast and does not consider alternatives
far away from it. To avoid this bias and even use it for beneficial
purposes, everyone in the meeting can be given a folder in advance
that contains historical information about the economy, industry, and
firm; this information is extrapolated, providing objective forecasts
for the economy, industry, and firm.

It is also made clear that these forecasts will only be valid if,
and only if, the future will be a continuation of the past. However,
participants are told that it is fairly certain that changes are likely to
occur and that they, in the group, are in the best position to assess
the magnitude and consequences of the changes.

The participants are asked, therefore, to use their knowledge of
the market and competition as well as their experience and inside
information about next year to estimate the extent to which the
objective forecast of the growth rate ought to be changed, and to
write down the factors involved. That is, the participants are not
asked to make a forecast from scratch; rather, they are instructed to
modify the statistical one, which is, therefore, used as an anchor to
prevent predictions that may not be grounded in the firm’s objective
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past performance and prevailing economic/industry conditions. At
the same time, participants are asked to provide which reasons
they believe will be responsible for whatever modification they are
proposing to the statistical, objective predictions. Finally, they write
down their forecasts anonymously so that they will not influence each
other by their rank or functional position.

All forecasts have, as such, the same weight and are all anchored
around objective, statistical predictions. To facilitate and clarify the
process, a form similar to Table 10-6 is provided to each participant
to fill in anonymously after he or she has read the background
information provided in the folder. Once the forms are collected,
their results are tabulated, summarized, and presented to participants
before the discussion starts.

Three observations can be made from our experience with the
use of these forms. First, participants are indeed anchored to the
statistical, objective forecasts, which are changed only if there are
strong reasons to believe doing so is necessary. Second, factors that
some participants consider to increase sales are considered by other
participants to decrease sales; thus, these factors can be disregarded
unless subsequent discussion can prove their importance one way or
the other. Third, most factors for increasing, or decreasing, sales are
provided only by one or two participants rather than by everyone or
even a strong majority. The discussion, therefore, can concentrate on
the one or few factors that everyone, or a good majority, believes to be
influential, and focus on agreeing on the extent to which these factors
will influence next year’s sales—for it is rare to have a consensus
about the extent of changes.

Once the budget meeting has concluded, participants agree upon a
final forecast. It has exploited the objectivity advantage of statistical
methods, which can best identify and extrapolate established pat-
terns, and it has drawn upon inside information and the experience of
top management about forthcoming changes and their implications.
The approach also directs discussion to where it is most useful and
makes the meeting more efficient and effective.

Finally, by having agreed on the factors that will affect sales growth
for next year and by having estimated the extent of such change, it
is possible to evaluate, at the end of next year, the accuracy of top
management’s predictions versus that of the statistical method(s). As
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By extrapolating the historical quantitative information available the best estimate
for the growth rate in our sales for 1999 is 3.5%. Such statistical estimate assumes
that 1999 will be similar to the previous years. This is the equivalent of saying that
no major changes will occur or that these changes will cancel themselves out. If you
believe that major changes will indeed occur in 1999, specify them below under the
appropriate heading and estimate their positive or negative influence using the 3.5%
growth rate as the base.

Factors involved Estimated effect of the various factors in
changing the estimated growth rate of 3.5%

(please specify factor) % Positive influence of the
factor listed in increasing
the sales

% Negative influence of the
factor listed in decreasing
the sales

Economic

Industrywide

Competitive

Technological

Others (specify)

Overall Influence % Positive = % Negative =
Your own estimate of
the growth rate

3.5% + % Positive influence − % Negative influence

3.5% + − =

Table 10-6: Form used to justify the factors that will influence the quantitative forecast
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such, not only the accuracy of the statistical versus judgmental fore-
casts can be compared, but the relative accuracy of each participant
can likewise be assessed, along with his or her ability to correctly
predict each of the factors considered important in affecting sales.
Thus, participants can get feedback in the following year about how
well they have predicted, individually and as a group; this should help
them improve the judgmental accuracy of their future predictions. In
addition, the various factors that have affected sales can be evaluated,
providing quantitative information to assess their impact in the future
when similar changes are considered again.

10/4 Conclusion

Judgmental forecasts are indeed indispensable, for they present the
only alternative to predicting systematic changes from established
patterns and/or existing relationships. At the same time, we must be
careful to avoid the biases and other limitations that characterize our
judgment while reducing their negative consequences on forecasting.
The challenge for firms is to exploit both the advantages of statistical
predictions (including their low cost) and the unique ability of human
judgment to deal with systematic changes in patterns/relationships
which statistical methods cannot predict as they can only extrapolate
the continuation of such patterns/relationships.

In this chapter we described judgmental biases and limitations and
suggested an approach using statistical predictions as an objective
anchor; it can be modified judgmentally, based on participants’
experience, inside information, and knowledge about how the future
will be different from the past and present. Given the use of computer
networks (e.g., intranets) and increasingly sophisticated software,
such an approach will be employed to a much greater extent in
the future (see Chapter 12) to improve forecasting accuracy and
effectiveness.



References and selected bibliography 509

References and selected bibliography

Bernstein, P.L. (1996) Against the gods: the remarkable story of
risk , New York: John Wiley & Sons.

Bowman, E.H. (1963) Consistency and optimality in managerial
decision making, Management Science, 10 (1), 310–321.

Bunn, D. and G. Wright (1991) Interaction of judgmental and
statistical forecasting methods: issues and analysis, Management
Science, 37, 501–518.

Clemen, R. (1989) Combining forecasts: a review and annotated
bibliography, International Journal of Forecasting, 5, 559–584.

Conroy, R. and R. Harris (1987) Consensus forecasts of cor-
porate earnings: analysts’ forecasts and time series methods,
Management Science, 33 725–738.

Dawes, R.M., D. Faust, and P.E. Meehl (1989) Clinical versus
actuarial judgment, Science, 243, 1668–1674.

Dawes, R.M. (1988) Rational choice in an uncertain world , New
York: Harcourt Brace Jovanovich.

Garland, L.H. (1960) The problem of observer error, Bulletin of
the New York Academy Medicine, 569–584.

Glassman, J. (1997) In a random universe, the case against funds,
Washington Post Service, January 4.

Goldberg, L.R. (1970) Man vs model of man: a rationale, plus
some evidence, for a method of improving on clinical inferences,
Psychological Bulletin, 422–432.

Goodwin, P. and G. Wright (1993) Improving judgmental time
series: a review of the guidance provided by research, Interna-
tional Journal of Forecasting, 9, 147–161.

Graham, J.R. and C.R. Harvey (1995) “Market timing and
volatility implied in investment newsletters’ asset allocation
recommendations”, Working paper, Duke University Graduate
School of Business.

Harvey, N. (1995) Why are judgments less consistent in less pre-
dictable task situations? Organizational Behaviour and Human
Decision Processes, 63 (3), 247–263.



510 Chapter 10. Judgmental forecasting and adjustments

Henry, R.A. and J.A. Sniezek (1993) Situational factors affecting
judgments of future performance, Organizational Behaviour and
Human Decision Processes, 54, 104–132.

Hogarth, R. and S. Makridakis (1981) Forecasting and planning:
an evaluation, Management Science, 27, 115–138.

Janis, I.L. (1972) Victims of groupthink , Boston: Houghton Mifflin.

Kahneman, D. and A. Tversky (1979) Intuitive prediction: biases
and corrective procedures, TIMS studies in management sciences,
12, 313–327.

Kahneman, D., P. Slovic, and A. Tversky (1982) Judgment
under uncertainty: heuristic and biases, Cambridge, England:
Cambridge University Press.

Lawrence, M.J. and S. Makridakis (1989) Factors affecting
judgmental forecasts and confidence intervals, Organizational Be-
haviour and Human Decision Processes, 43, 172–187.

Lawrence, M.J. and M.J. O’Connor (1992) Exploring judgmen-
tal forecasting, International Journal of Forecasting, 8, 15–26.

(1993) Scale, randomness and the calibration of
judgmental confidence intervals, Organizational Behaviour and
Human Decision Processes, 56, 441–458.

(1995) The anchoring and adjustment heuristic in
time series forecasting, Journal of Forecasting, 14, 443–451.

Lawrence, M.J., R.H. Edmundson, and M.J. O’Connor (1986)
The accuracy of combining judgmental and statistical forecasts,
Management Science, 32, 1521–1532.

(1995) A field study of sales forecasting: its accu-
racy, bias and efficiency, Working paper, School of Information
Systems, University of New South Wales, Australia.

Makridakis, S. (1990) Forecasting, planning and strategy for the
21st century , New York: The Free Press.

(1996) Forecasting: its role and value for planning
and strategy, International Journal of Forecasting, 12, 513–539.

Mathews, B.P. and A. Diamantopoulos (1986) Managerial in-
tervention in forecasting: an empirical investigation of forecast
manipulation, International Journal of Research in Marketing,
3, 3–10.



References and selected bibliography 511

McNees, S.K. (1990) The role of judgment in macroeconomic
forecasting accuracy, International Journal of Forecasting, 6,
287–299.

Meehl P.E. (1954) Clinical versus statistical prediction: a theoreti-
cal analysis and review of the literature, Minneapolis: University
of Minneapolis Press.

Oskamp, S. (1965) Overconfidence in case-study judgments, Journal
of Consulting Psychology, 29, 261–265.

Rothchild, J. (1988) A fool and his money: the odyssey of an
average investor , New York: Viking.

Sanders, N.R (1992) Accuracy of judgmental forecasts: a compari-
son, OMEGA International Journal of Management Science, 20
(3), 353–364.

Silverman, B.G. (1992) Judgment error and expert critics in fore-
casting tasks, Decision Sciences, 23 (5), 1199–1219.

Walker, K.B. and L.A. McClelland (1991) Management fore-
casts and statistical prediction model forecasts in corporate bud-
geting, Journal of Accounting Research, 29 (2) 373–382.

Wason, P.C. and P.N. Johnson-Laird (1972) Psychology of rea-
soning: structure and content , London: Batsford.

Webby, R. and M. O’Connor (1996) Judgmental and statistical
time series forecasting: a review of the literature, International
Journal of Forecasting, 12, 91–118.

Winklhofer, H., A. Diamantopoulos, and S.F. Witt (1996)
Forecasting practice: a review of the empirical literature and an
agenda for future research, International Journal of Forecasting,
12, 193–221.



512 Chapter 10. Judgmental forecasting and adjustments

Exercises

10.1 In 1996 the giant firm of Philips Electronics lost $350 million
on revenues of $41 billion. For the last five years Philips
has been having great trouble modernizing itself and turning
to profitability. During this time the various chief executive
officers that passed through Philips were promising “to fix”
Philips’ problems but so far they have failed. Could one
believe current announcements that Philips’ problems will be
corrected in the future?

10.2 Glassman (1997) describes the reasons why various investment
funds do not outperform the average of the market. Comment
on the following quotes from Glassman’s article:

“For the third year in a row, fewer than one-fourth of
U.S. stock mutual funds beat the Standard & Poor’s 500
index. Once again, the vast majority of professionals
who are paid to choose the best stocks could not beat
the broad market averages.”

“This year’s failure—the ninth in the past thirteen years,
according to Lipper Analytical Services Inc.—brings to
mind a famous quotation from A Random Walk Down
Wall Street, by Burton Malkiel: ‘A blindfolded monkey
throwing darts at a newspaper’s financial pages could
select a portfolio that would do just as well as one
carefully selected by the experts’. . . ”

“Fund managers are not stupid. Why do they do so
poorly? One reason is that, to a great degree, stock-
picking is a ‘random walk’; stocks are priced so efficiently
by the market that finding winners may be a matter of
luck. If that is true, then the typical mutual fund will do
about what the averages do, minus its fees and expenses.
But most do worse. Why?. . . The biggest problem for
managers is that they are frantic rather than patient.
The typical fund had a turnover rate of 83 percent for
stocks in its portfolio, according to Morningstar. . . ”

“Managers are manic because they have to show strong
short-term returns in order to attract or hold antsy
investors. They cannot buy a great underpriced company
and wait five years for it to bloom, or they will lose their
jobs. . . ”
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“. . . managers have to justify their salaries by appearing
to do something. . . ”

“Finally, managers of large funds have to worry about
owning too large a chunk of the companies in which
they are investing. If you own millions of shares, you
will not be able to sell without pushing the price down
sharply. . . ”

“Most fund managers do not care about your taxes;
their bonuses are determined strictly on pretax returns,
and, after all, many investors own funds in tax-deferred
retirement accounts. . . ”

“If the market crashes and investors run for the exits,
most mutual fund managers will have to sell stocks in
order to raise cash to meet the redemption demands of
their shareholders. In such a debacle, smart investors
will be buying stocks at bargain prices; mutual funds
will not have that luxury. . . ”

10.3 The U.S. economy has been growing without interruption
since May 1991. The longest previous expansion in the U.S.
economy lasted for 105 months while the average post World
War II expansion has been lasting a little more than 50
months. What can one say about the current expansion?
Can we say how long it will be before it is interrupted by
a recession?

10.4 If you were to count, only once, from 0 to 100, how many
times will you encounter the number eight?
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This chapter describes the usage of the statistical forecasting
methods presented in Chapters 3 through 8, based on surveys among surveys

forecasting users.

It also presents empirical evidence concerning the post-sample empirical evidence

forecasting accuracy of all major methods—information that is nec-
essary in order to narrow the gap between what forecasting can
really achieve and what various users expect. This information
is also necessary for providing guidelines so that forecasts (both
statistical and judgmental) can be made as accurate as possible while
the uncertainty associated with them can be correctly assessed and
clearly communicated to potential users. In addition, if more tasks
are needed than simply extrapolating established patterns and rela-
tionships, then users must be provided with the type of information
they need so an appropriate method for their specific forecasting
situation can be proposed. Such a choice depends upon four factors:

(a) whether users want simply to forecast, or they also want to
understand and influence the course of future events;

(b) the characteristics of the time series;
(c) the time horizon of forecasting;
(d) the number of predictions required.

Finally, this chapter discusses the combination, or averaging, of combination forecasts

forecasts and presents evidence from both within and outside the
field; it shows that, in the majority of cases, such combining results in
more accurate post-sample predictions than the individual methods
being averaged. This empirical evidence also demonstrates that the
uncertainty of the combined forecasts is smaller than that of the
individual methods averaged together.

11/1 Surveys among forecasting users

There have been more than 35 surveys among forecasting users
(Winklhofer et al., 1996) since 1970. These studies have elicited
users’ responses concerning their familiarity with and usage of various
forecasting methods, their satisfaction with such methods, at which
area and forecasting horizons these methods have been applied, the
magnitude of errors, as well as many other questions. This section
summarizes the studies’ conclusions and presents some key tables
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taken mainly from the work of Mentzer and Cox (1984) and of
Dalrymple (1987), which is, in our view, the most complete. The in-
terested reader can consult the bibliography at the end of this chapter
for additional references or read the survey paper by Winklhofer et
al. (1996) concerning the usage of forecasting in practice.

In summarizing their survey of surveys, Winklhofer et al. (1996)
conclude that although a great deal of work has been done, some
issues (e.g., the role and level of forecasting) have been neglected, and
some linkages (e.g., data sources utilized) have been left unexplored.
Moreover, Winklhofer and his colleagues observe that while company
size and industry membership have been widely utilized to explain
differences, other potentially relevant variables, such as environmen-
tal turbulence and the degree of formalization or centralization of the
forecasting function within the firm, have been ignored. Similarly,
they conclude that although certain interrelationships have been
examined, others, like those between the resources committed to
forecasting and forecast performance, have not. For this reason they
propose that more research is needed to cover these neglected issues
and aspects in order to make forecasting more useful and relevant for
practitioners.

11/1/1 Familiarity and satisfaction with major forecasting
methods

Table 11-1, which is based on the Mentzer and Cox (1984) study,
indicates the level of familiarity of more than 150 U.S. managerslevel of familiarity

with a number of subjective and quantitative (objective) methods of
forecasting. On the basis of this table and the results of similar ques-
tions from other studies (Wilson, 1996; Sanders and Manrodt, 1994;
Wheelwright and Clarke, 1976; and Dalrymple, 1975), a number of
observations can be made:

1. Forecasting users are very familiar with the subjective (judg-
mental) methods of jury of executive opinion, sales force com-judgmental forecasts

posite, and customer expectations.

2. Users are also very familiar with the simpler quantitative meth-
ods of moving averages, straight-line projection, exponentialsimple methods

smoothing, and the more statistically sophisticated method of
regression.
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3. Moving average is the most familiar of the objective methods,
although, from empirical studies, it is not as accurate as the
method of exponential smoothing.

4. The Box-Jenkins methodology to ARIMA models is the least ARIMA models

familiar of the methods included in Table 11-1. The same is
true with other sophisticated methods of which practitioners
are not much aware.

5. Classical decomposition is the second least familiar method. time series

decompositionOnly about one half of the respondents indicated any familiarity
with this method, although it is one of the most useful, since
it can distinguish the various subpatterns (seasonality, trend
cycle, and randomness) of a data series and can be used to
seasonally adjust a data series. Only the Wilson study showed
a higher percentage of usage of this method. (Wilson does not
report users’ familiarity with the various methods.)

Respondents’ overall satisfaction with various methods is shown in
Table 11-2. It is interesting that forecasting users are less satisfied
with subjective methods than with objective methods, and they are
not simply neutral with regard to subjective methods. Dissatisfaction
with subjective methods is higher than it is with objective methods.
This observation is consistent with the findings discussed in Chap-
ter 10. A number of additional observations can also be made on the
basis of Table 11-2:

1. Regression is the method users have the highest level of satisfac- regression

tion with, despite empirical findings that time series methods
are more accurate than explanatory (regression and econo-
metric) methods. However, since regression can be used for
purposes other than simply obtaining forecasts, this finding is
not, therefore, surprising and proves the point made earlier:
higher accuracy is not the only criterion for selecting a certain
forecasting method.

2. The method with which users were next most satisfied is ex-
ponential smoothing. This finding is consistent with empir- exponential

smoothingical studies reporting that exponential smoothing is capable
of considerable accuracy, is easy to understand, and can be
used routinely and with little effort to forecast for many, often
thousands, of items.
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Very Vaguely Completely
Method Familiar Familiar Unfamiliar

Subjective
Jury of executive opinion 81 6 13
Sales force composite 79 5 16
Customer expectations 73 7 20

Objective (quantitative)
Moving average 85 7 8
Straight-line projection 82 11 7
Exponential smoothing 73 12 15
Regression 72 8 20
Trend-line analysis 67 16 17
Simulation 55 22 23
Life cycle analysis 48 11 41
Classical decomposition 42 9 49
Box-Jenkins 26 9 65

Table 11-1: Familiarity with forecasting methods (as a percentage of those respond-
ing). Source: Mentzer and Cox (1984).

3. The methods of moving average and trend-line analysis alsomoving average

produced a high level of satisfaction. Furthermore, trend-linetrend-line analysis

analysis had one of the smallest percentages of dissatisfied
users. This finding is somewhat surprising in light of empirical
evidence suggesting that neither method does very well on the
criterion of accuracy, and that exponential smoothing tends to
outperform both of these methods on many commonly used
accuracy criteria. However, both of these methods have intu-
itive appeal for practitioners. In specific cases the trend-line
is utilized for benchmarking (if the future will be a linear
extrapolation of the past) purposes, while moving average is
used to remove randomness from the data.

4. Users were the least familiar and the most dissatisfied with the
Box-Jenkins method. This result is consistent with empiricalBox-Jenkins method

findings indicating that the method is difficult to understand
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Method Satisfied Neutral Dissatisfied

Subjective
Jury of executive opinion 54 24 22
Customer expectations 45 23 32
Sales force composite 43 25 32

Objective(quantitative)
Regression 67 19 14
Exponential smoothing 60 19 21
Moving average 58 21 21
Trend-line analysis 58 28 15
Classical decomposition 55 14 31
Simulation 54 18 28
Life cycle analysis 40 20 40
Straight-line projection 32 31 37
Box-Jenkins 30 13 57

Table 11-2: Satisfaction with forecasting methods (as a percentage of those re-
sponding). Source: Mentzer and Cox (1984).

and apply while its post-sample accuracy (see below) is often
not better than that of much simpler methods, such as exponen-
tial smoothing. Wilson (1996) reports a higher satisfaction rate
than that indicated in Table 11-2, but the reason is probably
because many of his respondents were academics.

5. It is somewhat surprising that classical decomposition does not classical

decompositionfare better in Table 11-2. One reason might be that it is as
much a tool for analysis as a forecasting method. However, its
perceived value is certainly below what the empirical evidence
on performance would suggest. Moreover, its ability to decom-
pose a series into seasonality, trend-cycle, and randomness is of
high importance and of great intuitive appeal to managers.

6. Finally the satisfaction of users concerning expert systems and expert systems

neural networks is not high: 21.7% and 30% respectively (Wil- neural networks

son, 1996).



520 Chapter 11. The use of forecasting methods in practice

Forecast Period
D M-C D M-C D M-C

1–3 0–3 4–12 3–24 over 1 over 2
Method months months months months year years
Subjective
Sales force composite 23.1 37 34.3 36 5.2 8
Jury of executive opinion 18.7 37 29.1 42 6.7 38
Intention to buy survey 10.4

}
11.2

}
24

4.5
}

12
Industry survey 8.2 15.7 11.4

Extrapolation
Naive Forecast 34.3 – 17.9 – 0.7 –
Moving average 17.9 24 12.7 22 2.2 5
Percentage rate of change 10.4

}
21

13.4
}

28
8.2

}
21

Unit rate of change 9.7 9.7 4.5
Exponential smoothing 9.7 24 9.0 17 6.7 6
Line extension 6.0 13 8.2 16 3.7 10
Leading indicators 3.7 – 20.1 – 7.6 –

Quantitative
Box-Jenkins 6.0 5 3.7 6 2.2 2
Multiple regression analysis 5.2

}
11.9

}
36

4.5
}

28
Simple regression analysis 5.3 7.5 3.0
Econometric models 2.2 4 10.4 9 7.5 10
M-C: adapted from Mentzer and Cox (1984)

D: adapted from Dalrymple (1987)

Table 11-3: Percentage of respondents using techniques for different forecast horizons.

11/1/2 The use of different forecasting methods

Mentzer and Cox (1984), like others before and after them, surveyed
the use of different forecasting methods for different forecasting
horizons. Their results, summarized in Table 11-3, suggest several
points:



11/1 Surveys among forecasting users 521

1. The jury of executive opinion is the most widely used fore- judgmental forecasts

casting method; furthermore, its usage is uniform across all
forecasting time horizons. Although this method has some
advantages, it also has some serious disadvantages, as discussed
in Chapter 10.

2. Sales force composites and customer expectations are used less
for the long-term and more for the medium- and short-terms.
Overreliance on these two methods, and on the jury of executive
opinion, introduces considerable bias into forecasting. Empiri-
cal findings have shown that salespeople are overly influenced
by recent events.

3. Exponential smoothing and moving average methods are used exponential

smoothingmore for short-term, less for medium-term, and even less for
long-term horizons; this is consistent with empirical evidence,
which indicates that these methods perform best for shorter
time horizons.

4. It is surprising that the straight-line projection method is used trend-line projection

for short-term horizons. Given seasonality and cyclical factors,
ups and downs in the short-term make straight-line extrapola-
tions highly inaccurate. Even for the medium-term, trend-line
extrapolation is not very accurate, according to empirical stud-
ies.

5. The Box-Jenkins method is not used very much for any fore- Box-Jenkins method

casting horizons, which is consistent with empirical findings.

6. Finally, regression is used most often for medium-term, followed regression

by long-term, forecasting horizons. This is consistent with
theoretical reasoning that postulates that in the medium- and
long-terms, more emphasis should be placed on understanding
the variables to be forecast and the factors that influence them.
Such understanding can be substantially aided with regression
analysis.

The level at which different forecasting methods are used is shown
in Table 11-4. The jury of executive opinion method is used more
than any other method for all forecasting levels except product
forecasting, while customer expectations and sales force composite
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Organizational level
Product Product

Method Industry Corporate Group Line Product
Forecast Forecast Forecast Forecast Forecast

Subjective
Jury of executive opinion 26 41 32 32 22
Customer expectations 8 12 18 18 23
Sales force composite 5 20 25 27 24

Objective (quantitative)
Regression 18 22 21 29 12
Trend-line analysis 13 20 20 21 22
Simulation 7 9 7 4 4
Straight-line projection 6 10 11 10 11
Life cycle analysis 4 4 4 4 6
Moving average 4 9 18 19 20
Exponential smoothing 4 6 14 14 23
Box-Jenkins 2 3 3 2 6
Classical decomposition 2 4 8 7 9

Table 11-4: Percentage of respondents using different techniques for different
organizational level forecasts. Source: Mentzer and Cox (1984).

methods are used at least as much at the level of the product. As the
extent of disaggregation increases, moving average and exponential
smoothing methods are used more frequently, while regression is
used most frequently at the level of product line forecasts. (This
is consistent with both theoretical reasoning and empirical findings.)
Finally, straight-line analysis is used about the same amount across
all organizational levels, although from a theoretical point of view it
is more appropriate at higher levels of aggregation.

The application areas where the various methods are being used
are shown in Table 11-5. Production planning is the heaviest user of
forecasting, followed by budgeting and strategic planning. Surpris-
ingly, material requirements planning was one of the areas making the
least use of forecasting, although it is one that could greatly benefit
from accurate forecasts. Perhaps respondents did not distinguish
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Total Primary Decision Secondary Decision
Production planning 73 36 20
Budgeting 54 11 25
Stratgetic planning 45 6 18
Sales analysis 29 14 5
Inventory control 26 13 9
Marketing planning 22 8 13
Logistics planning 17 8 3
Purchasing 10 3 7
Material requirements planning 10 3 7
Production planning 4 0 0

100 100

Table 11-5: Percentage of respondents for different application areas where fore-
casts are used. Source: Mentzer and Cox (1984).

between production planning and material requirements planning,
even though material requirements planning precedes production
planning.

Finally, Table 11-6 shows the percentage of regular use of fore-
casting methods by industrial and consumer firms as reported by
Dalrymple (1987). Overall, it seems that industrial firms are heavier
users than consumer firms. This is surprising; forecasting is usually
more accurate for consumer products, because the number of cus-
tomers is much larger and because cycles influence consumer goods
less than industrial products. At the same time, certain statistical
methods (moving average and exponential smoothing) are used more
by consumer firms than by industrial firms.

The conclusions of surveys among forecasting users leave little
doubt that much more can be done to increase the usage of formal
forecasting methods in business and other organizations, which are
still heavily reliant on subjective forecasting methods. Sanders and
Manrodt (1994) make this point in their paper (p. 100):
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Method Percent of Percent of
Industrial Firms Consumer Firms

Subjective
Sales force composite 33.9 13.0
Jury of executive opinion 25.4 19.6
Industry survey 6.8 8.7
Intentions to buy 6.8 4.3

Extrapolation
Naive Forecast 18.6 17.4
Leading indicators 16.9 2.2
Moving average 8.5 10.9
Unit rate of change 6.8 6.5
Percentage rate of change 5.1 15.2
Exponential smoothing 3.4 10.9
Line extension 1.7 6.5

Quantitative
Econometric models 10.2 4.3
Multiple regression 10.2 4.3
Simple regression 5.1 2.2
Box-Jenkins

Number of firms 59 46

Table 11-6: Regular usage of sales forecasting techniques by industrial and con-
sumer firms. Source: Dalrymple (1987).

“Like past investigations (surveys) we found that judgmental
methods are the dominant forecasting procedure used in prac-
tice. However, two trends may indicate a greater readiness on
the part of managers to embrace formal forecasting procedures.
First managers indicated greater familiarity with quantitative
methods than in past surveys. . . . Second, the number of
respondents who are dissatisfied with quantitative methods is
much lower in this survey than in past surveys.”
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11/2 Post-sample accuracy: empirical findings

Over the last 30 years numerous empirical studies have compared the
post-sample forecasting accuracy of all major forecasting methods
using real-life business, economic, financial, demographic, and other
data. The major conclusions of these studies can be summarized as
follows:

1. Econometric methods: Armstrong (1978) surveyed all stud- econometric methods

ies comparing the accuracy of econometric versus alternative
methods. He concluded that econometric forecasts were not
shown to be significantly better than time series methods in
any of the 14 ex post and 16 ex ante empirical tests published
in the literature. Moreover, he confirmed that more complex
econometric models did not do better than simpler ones.

2. Multivariate models (ARIMA, Vector autoregressive, multivariate methods

state space, etc.): Although not many empirical studies
published compare the performance of such methods, those that
exist do not show any superior accuracy performance for these
methods (McNees, 1986; Riise and Tjostheim, 1984; also see 4.
below).

3. Non-linear models: In a survey of the latest developments of non-linear models

non-linear time series modeling, De Gooijer and Kumar (1992,
pp. 151–152) conclude,

“No uniformity seems to exist in the evidence presented
on the forecasting ability of non-linear models . . . Some
authors claim that even when a non-linear model gives a
better fit to the data, the gain in forecasting will generally
not be great; . . . Thus, in our opinion the question posed
in the heading of this subsection [What is the gain from
non-linear models?] is still unanswered.”

4. Macroeconomic forecasts: Ashley (1988) in a survey of macroeconomic

forecastsmacroeconomic forecasts concludes (p. 363),

“Most of these forecasts are so inaccurate that simple
extrapolation of historical trends is superior for forecasts
more than a couple of quarters ahead.”
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In a special issue on Macroeconomic Forecasting published by
the International Journal of Forecasting (October 1990), sev-
eral models (including econometric and multivariate ones) were
examined and the macroeconomic forecasts of the OECD and
IMF analyzed. Although some studies report macroeconomic
forecasts that are more accurate than simple extrapolations,
for short-term horizons, others (e.g., Arora and Smyth, 1990)
report macroeconomic forecasts that are inferior to those gen-
erated by random walk models. Worse, it does not seem that
the accuracy of macroeconomic forecasts improves over time.
There is evidence that such accuracy may even deteriorate over
time (Ash et al., p. 390).

5. Fixed parameter versus adaptive methods: Although itadaptive methods

has been claimed in the past that adaptive models can learn
and can therefore forecast more accurately, this claim is not
supported by empirical evidence (Gardner and Dannenbring,
1980; Makridakis et al., 1982).

6. Expert systems and neural networks: There is no evidenceexpert systems

neural networks that such methods do better than simple methods such as
exponential smoothing. Thus, until additional empirical studies
have been conducted, we cannot say much (see Chatfield, 1993)
about the value of expert systems and neural networks.

Although not all the empirical findings are in complete agreement,
the following four broad conclusions have been reached and accepted
by the great majority of researchers in the field of forecasting (see
Fildes and Makridakis, 1995):

1. Simple versus complex methods: This conclusion indicatessimple methods

that the post-sample accuracy of simple methods is, on average,
at least as good as that of complex or statistically sophisticated
ones. This seems surprising, as higher statistical sophistication
and more complexity should improve a method’s ability to more
correctly identify and better predict time series patterns. That
has not been the case, however. Even extremely simple methods
such as single exponential smoothing, which have, in addition,
been shown to be special cases of ARMA models, outperform,
on average, the ARMA models themselves as well as other
sophisticated methods such as econometric and multivariate
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ARMA models. The reason is simple: established time series
patterns can and do change in the future. Thus, having a model
that better fits historical data (the only thing sophisticated over-fitting

or complex methods can achieve) is not a guarantee of more
accurate post-sample predictions. It can, for instance, be shown
that a perfect fit may be assured by using an polynomial of
order n− 1, but such a fit can result in disastrous post-sample
forecasts. Simple methods, on the other hand, are robust,
extrapolating more appropriately the time series pattern. This
type of extrapolation provides more accurate results when, for
example, the series involved is a random walk whose turning
point cannot be predicted.

Table 11-7 shows the Mean Absolute Percentage Error (MAPE)
of many time series methods from the Makridakis and Hibon
(1979) study. Table 11-8 shows the MAPE of all major time
series methods from the M-Competition (Makridakis et al., M-Competition

1982), where 111 series were used by an expert in each method
to predict for up to 18 periods ahead. Even a deseasonalized
random walk model (called Näıve 2 in Tables 11-7 and 11-8)
outperformed, on average, the Box-Jenkins methodology to
ARMA models and that of Bayesian Forecasting. Figure 11-1
shows graphs of the performance of Näıve 2 single and damped
exponential smoothing (two very simple methods) versus that of
the Box-Jenkins methodology to ARMA models (a statistically
sophisticated method) in two different studies (Makridakis and
Hibon, 1979; and Makridakis et al., 1982). In Figure 11-1(a)
both Näıve 2 and single smoothing outperform the Box-Jenkins
methodology. In Figure 11-1(b) the accuracy of the three meth-
ods is similar, with Box-Jenkins being more accurate for some
horizons and less accurate for others. Overall, however, for all
18 forecasting horizons both Näıve 2 and single smoothing are
more accurate than the Box-Jenkins methodology to ARMA
models (see Table 11-1).

Other empirical studies (Fildes et al., 1997; Makridakis et al.,
1993) have reached the same conclusion: simple methods do at
least as well as complex or statistically sophisticated ones for
post-sample predictions even when a few series are involved and
judgmental adjustments can be made by experts in forecasting.
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Forecasting method Model Forecasting horizons

Fitting 1 2 3 4 5 6 9 12

1. Näıve 1 21.9 15.5 18.4 20.4 27.9 28.8 28.6 32.2 34.1

2. Single moving average 19.5 13.8 16.4 18.7 27.2 28.2 27.8 30.7 32.3

Original 3. Single exponential smoothing 19.5 14.4 16.6 19.0 27.3 28.1 27.9 31.3 33.3

data: 4. Adaptive response rate exponential smoothing 21.2 13.5 15.4 18.0 25.8 26.4 26.0 28.6 30.5

nonseasonal 5. Linear moving average 22.2 17.1 20.3 23.6 34.2 36.5 37.1 44.1 49.6

methods 6. Brown’s linear exponential smoothing 20.2 13.2 15.8 18.4 26.5 27.7 27.3 31.2 34.7

7. Holt’s (2 parameters) linear exp. smoothing 20.5 13.3 15.6 18.1 26.2 27.7 27.5 30.5 32.5

8. Brown’s quadratic exponential smoothing 20.8 13.6 15.9 18.1 26.2 28.4 29.0 36.4 43.3

9. Linear trend (regression fit) 22.5 19.0 19.8 22.3 30.8 31.3 30.6 34.8 38.0

Seasonal and 10. Harrison’s harmonic smoothing 11.0 26.4 26.3 27.6 27.4 28.0 29.3 32.2 34.2

nonseasonal 11. Winters’ linear and seasonal exp. smoothing 10.9 13.8 14.8 15.4 16.2 17.1 18.4 21.3 23.6

methods 12. Adaptive filtering 11.7 15.6 16.7 16.8 18.9 18.7 19.5 22.9 24.5

13. Autoregressive moving average (Box-Jenkins) 10.6 14.7 15.0 15.7 16.6 17.1 18.1 21.6 24.3

14. Näıve 2 10.0 14.5 15.0 15.1 15.3 15.6 16.6 19.0 21.0

Seasonally 15. Single moving average 8.4 12.9 13.6 13.7 13.8 14.3 15.3 17.7 19.8

adjusted 16. Single exponential smoothing 8.5 12.8 13.4 13.8 14.0 14.3 15.6 18.1 20.2

data: 17. Adaptive response rate exponential smoothing 9.2 13.0 14.0 14.5 14.7 15.2 16.2 18.5 20.4

nonseasonal 18. Linear moving average 9.1 15.0 15.6 16.3 16.6 17.4 18.6 22.6 26.4

methods 19. Brown’s linear exponential smoothing 8.5 12.9 14.3 14.6 14.9 15.9 17.1 20.3 23.5

20. Holt’s (2 parameters) linear exp. smoothing 9.0 12.0 12.8 13.2 13.7 14.8 16.0 19.7 23.0

21. Brown’s quadratic exponential smoothing 8.7 12.5 14.0 14.7 15.6 17.0 18.6 23.6 28.9

22. Linear trend (regression fit) 11.4 19.6 20.4 21.1 21.1 21.9 22.8 25.3 27.4

Table 11-7: Average of the Mean Absolute Percentage Errors (MAPE) of many
time series methods applied to all 111 series from the Makridakis and Hibon (1979)
study.
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Forecasting horizons Average of forecasting horizons
Methods Model 1 2 3 4 5 6 8 12 15 18 1–4 1–6 1–8 1–12 1–15 1–18 n

Fitting (max)
Näıve 1 14.4 13.2 17.3 20.1 18.6 22.4 23.5 27.0 14.5 31.9 34.9 17.3 19.2 20.7 19.9 20.9 22.3 111
Mov. Average 12.8 14.1 16.9 19.1 18.9 21.8 23.6 23.9 16.3 28.7 31.9 17.3 19.1 20.1 18.9 19.7 20.8 111
Single Exp 13.2 12.2 14.8 17.4 17.6 20.3 22.5 22.7 16.1 28.8 32.5 15.5 17.5 18.5 17.8 18.8 20.1 111
ARR Exp 15.1 13.0 17.1 18.4 18.3 20.7 22.8 22.4 16.1 29.6 32.2 16.7 18.4 19.2 18.3 19.3 20.5 111
Holt Exp 13.6 12.2 13.9 17.6 19.2 23.1 24.9 31.2 22.6 40.4 40.3 15.7 18.5 21.1 21.3 23.4 25.1 111
Brown Exp 13.6 13.0 15.1 19.6 19.5 25.2 27.1 35.0 28.0 54.0 59.6 16.5 19.7 22.8 23.6 26.8 30.3 111
Quad. Exp 13.9 13.2 16.1 21.9 23.2 30.3 34.1 51.5 49.0 103.1 106.0 18.6 23.1 28.4 31.7 40.4 47.7 111
Regression 16.6 17.9 19.9 21.1 21.2 23.2 25.0 26.2 26.1 49.5 60.2 20.0 21.4 22.5 22.9 25.4 29.5 110
Näıve 2 9.1 8.5 11.4 13.9 15.4 16.6 17.4 17.8 14.5 31.2 30.8 12.3 13.8 14.9 14.9 16.4 17.8 111
D Mov.Average 8.1 10.7 13.6 17.8 19.4 22.0 23.1 22.7 15.7 28.3 34.0 15.4 17.8 19.0 18.4 19.1 20.6 111
D Single Exp 8.6 7.8 10.8 13.1 14.5 15.7 17.2 16.5 13.6 29.3 30.1 11.6 13.2 14.1 14.0 15.3 16.8 111
D ARR Exp 9.8 8.8 12.1 14.0 16.1 16.7 18.1 16.5 13.7 28.6 29.3 12.9 14.4 15.1 14.7 15.8 17.1 111
D Holt Exp 8.6 7.9 10.5 13.2 15.1 17.3 19.0 23.1 16.5 35.6 35.2 11.7 13.8 16.1 16.4 18.0 19.7 111
D Brown Exp 8.3 8.5 10.8 13.3 14.5 17.3 19.3 23.8 19.0 43.1 45.4 11.7 13.9 16.2 17.0 19.5 22.3 111
D Quad. Exp 8.4 8.8 11.8 15.0 16.9 21.9 24.1 35.7 29.7 56.1 63.6 13.1 16.4 20.3 22.2 25.9 30.2 111
D Regress 12.0 12.5 14.9 17.2 18.4 19.7 21.0 21.0 23.4 46.5 57.3 15.7 17.3 18.2 18.8 21.3 25.6 110
Winters 9.3 9.2 10.5 13.4 15.5 17.5 18.7 23.3 15.9 33.4 34.5 12.1 14.1 16.3 16.4 17.8 19.5 111
Autom. AEP 10.8 9.8 11.3 13.7 15.1 16.9 18.8 23.3 16.2 30.2 33.9 12.5 14.3 16.3 16.2 17.4 19.0 111
Bayesian F 13.3 10.3 12.8 13.6 14.4 16.2 17.1 19.2 16.1 27.5 30.6 12.8 14.1 15.2 15.0 16.1 17.6 111
Combining A 8.1 7.9 9.8 11.9 13.5 15.4 16.8 19.5 14.2 32.4 33.3 10.8 12.6 14.3 14.4 15.9 17.7 111
Combining B 8.2 8.2 10.1 11.8 14.7 15.4 16.4 20.1 15.5 31.3 31.4 11.2 12.8 14.4 14.7 16.2 17.7 111
Box-Jenkins N.A. 10.3 10.7 11.4 14.5 16.4 17.1 18.9 16.4 26.2 34.2 11.7 13.4 14.8 15.1 16.3 18.0 111
Lewandowski 12.3 11.6 12.8 14.5 15.3 16.6 17.6 18.9 17.0 33.0 28.6 13.5 14.7 15.5 15.6 17.2 18.6 111
Parzen 8.9 10.6 10.7 10.7 13.5 14.3 14.7 16.0 13.7 22.5 26.5 11.4 12.4 13.3 13.4 14.3 15.4 111
Average 10.7 10.8 13.7 15.5 16.8 19.3 20.8 24.0 19.2 37.5 40.7 14.1 16.1 17.8 18.0 19.9 22.1

ARR = Adaptive Response Rate Mov. = Moving
Quad. = Quadratic Exp. = Exponential Smoothing
Winters = Holt-Winters Exponential Smoothing D = Deseasonalized

Table 11-8: MAPE of all major time series methods from the M-Competition
(Makridakis et al., 1982), where 111 series were used by an expert in each method
to predict for up to 18 periods ahead.
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Figure 11-1: The post-sample forecasting accuracy of Box-Jenkins, Näıve 2 and
Single Exponential Smoothing. (a) Makridakis and Hibon study; (b) M-Competition.
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Forecasting horizons Average Overall
Methods 1 2 3 4 5 6 8 12 15 1988 average
Näıve 1 7.3 16.6 20.0 23.9 41.2 34.9 37.9 17.5 24.2 23.8 22.0
Näıve 2 1.1 6.4 15.1 19.9 18.2 12.3 18.0 20.0 15.0 14.3 12.9

Method O/S 2.7 9.1 10.1 16.6 22.1 15.4 14.8 13.8 8.8 13.0 11.9
Single O/S 2.3 8.0 12.1 16.6 19.6 9.9 13.8 21.0 13.6 12.9 11.8
Holt O/S 2.4 9.6 12.1 16.6 24.9 12.3 12.3 18.1 12.4 14.0 12.8
Dampen O/S 2.7 9.5 13.6 16.4 22.8 12.4 12.6 17.8 13.6 14.2 13.1

Single 1.9 6.1 12.1 16.8 20.6 13.0 13.9 18.4 11.9 12.4 11.3
Holt 2.5 9.3 9.9 16.8 23.2 15.1 13.3 18.3 10.7 13.3 12.1
Dampen 2.7 7.9 11.4 16.6 21.0 12.7 13.2 18.9 10.6 11.9 11.0
Long 5.0 16.5 14.7 22.1 52.0 41.4 27.4 12.2 12.6 22.4 20.3

Box-Jenkins 5.2 14.4 13.7 21.0 25.8 19.0 20.1 18.1 16.1 16.5 15.4

Forecaster A 2.3 8.4 10.9 18.4 29.5 16.1 13.4 17.7 10.7 13.9 12.5
Forecaster B 2.6 12.5 6.3 15.8 24.9 23.2 15.8 20.1 21.8 22.5 19.4
Forecaster C 1.4 13.5 14.7 21.9 27.8 19.6 21.4 21.3 14.6 16.5 15.1
Forecaster D 3.4 15.1 15.2 22.6 35.7 21.0 26.0 21.8 22.9 21.9 19.8
Forecaster E 5.3 10.2 11.5 19.0 21.9 16.1 15.8 16.8 11.5 14.6 13.5

Comb exp sm 2.6 8.0 10.6 16.9 24.5 15.1 13.7 17.1 9.0 12.5 11.4
Comb forec 2.0 10.3 9.4 17.5 30.3 19.3 15.8 14.7 7.8 14.5 13.1
Average 3.0 10.8 12.3 18.7 28.3 18.7 17.6 17.7 13.8 16.1 14.6

Table 11-9: MAPE all series (period Oct 1987–Dec 1988)

Table 11-9 shows the MAPEs of various methods as well as
those of five forecasters, most of them using sophisticated meth-
ods. None of the forecasters performed on average, accuracy-
wise, better than the three exponential smoothing methods
(single, Holt, and damped), while only forecaster A was more
accurate than Näıve 2. Moreover, the Box-Jenkins methodology
was one of the least accurate methods (see Table 11-9).

2. Time horizon of forecasting: This conclusion states that forecast horizon

some methods perform more accurately for short horizons while
others are more appropriate for longer or long ones. That can
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be seen in Table 11-1 and is confirmed by a recent empirical
study (Fildes et al., 1997) involving 263 time series.

3. Different methods versus various accuracy measures:accuracy measures

Chapter 2 discussed various accuracy measures used in the
forecasting literature. If different methods are evaluated using
these various accuracy measures (mean square error, rankings,
percentage, Theil’s U-statistic, etc.), their performance differs
depending upon the specific measure used. Table 11-10 shows
the performance of different methods, in the Makridakis et al.
(1993) study, using ranking as the accuracy measure. The
methods that do best in Table 11-10 are not the same as those
of Table 11-8.

4. The combination of forecasts: Empirical findings withincombination forecasts

the field of forecasting and outside (for a survey and annotated
bibliography see Clemen, 1989) conclude that the averaging
of the forecasts of more than one method results in more
accurate predictions than the individual methods themselves.
In addition, and equally important, the uncertainty (size of
forecasting errors) in the combined forecasts is considerably
smaller than that of each of the single methods being averaged
(Makridakis and Winkler, 1983). Tables 11-8 and 11-9 show the
post-sample forecasting errors for various combination schemes
which outperform, on average, the individual methods being
combined.

11/3 Factors influencing method selection

Selecting an appropriate method for forecasting should not, under
any circumstances, be solely based on the method’s accuracy or its
statistical sophistication or complexity. Instead, the selection must
be made considering the following four factors that are related to the
objective (forecasting versus explaining): the data, the characteristics
of the data, the type (length between successive values) of data,
and the number and frequency of forecasts required for scheduling,
planning, or strategy.
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Forecasting horizons Average

Methods Model 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 of all n

Fitting forecasts (max)

NAIVE1 15.8 11.9 12.4 12.3 11.7 12.2 12.0 11.9 11.6 11.6 11.2 11.1 10.0 11.1 11.5 11.1 11.5 11.8 11.2 11.62 1001

Mov. Average 13.3 11.8 12.3 11.9 11.9 11.8 11.5 11.0 11.0 10.8 10.8 10.9 10.9 10.7 11.1 10.4 11.0 10.6 10.6 11.28 1001

Single EXP 12.9 11.9 12.2 11.9 11.9 11.9 11.6 10.8 10.8 10.4 10.5 10.7 10.6 10.4 10.9 10.5 10.8 10.6 10.6 11.18 1001

ARR EXP 18.3 12.8 14.0 12.4 13.0 12.1 12.4 10.8 11.2 10.7 11.0 11.3 11.5 11.2 11.6 11.1 11.2 10.8 10.8 11.82 1001

Holt EXP 10.5 10.9 10.9 11.0 10.7 10.9 11.0 11.9 11.4 11.7 12.0 12.0 11.3 11.9 12.4 12.0 11.7 11.6 11.8 11.41 1001

Brown EXP 12.4 10.8 10.9 10.9 10.8 11.2 11.4 12.1 11.8 12.0 11.9 12.0 11.9 12.6 13.0 12.3 12.1 12.3 12.6 11.68 1001

Quad.EXP 13.8 11.8 12.0 12.5 12.1 12.6 13.1 14.1 14.2 13.8 13.8 14.2 14.5 15.5 15.5 15.1 15.0 15.3 15.7 13.68 1001

Regression 15.6 14.2 13.4 12.8 12.2 11.6 11.4 11.6 11.5 11.9 12.3 12.4 11.8 12.0 12.3 11.3 11.2 11.0 11.1 12.08 1001

NAIVE2 11.1 10.4 10.5 10.6 10.8 11.0 10.6 10.4 10.6 10.5 10.2 10.3 10.0 9.8 9.5 10.2 10.0 10.1 9.9 10.36 1001

D Mov.Avrg 8.1 11.4 11.9 12.3 12.3 12.1 11.6 11.5 11.1 11.2 10.8 11.1 10.9 10.1 10.3 10.8 11.0 10.9 10.8 11.34 1001

D Sing EXP 7.6 10.3 10.4 10.6 10.7 10.8 10.5 9.8 9.7 9.6 9.6 9.7 9.8 9.3 9.0 9.7 9.5 9.5 9.4 10.00 1001

D ARR EXP 13.6 11.4 12.4 11.6 12.0 11.5 11.5 10.3 10.5 10.4 10.5 10.2 10.5 10.0 9.7 10.3 10.1 10.0 10.0 10.87 1001

D Holt EXP 4.8 9.4 8.9 9.3 9.7 9.7 9.9 10.4 10.5 10.7 10.5 10.4 10.7 10.8 10.3 10.7 10.4 10.6 10.7 10.09 1001

D brown EXP 6.6 9.4 9.0 9.5 9.7 9.9 10.0 10.6 10.6 10.6 10.8 10.6 10.9 11.0 10.7 11.0 11.0 11.3 11.3 10.29 1001

D Quad. EXP 8.3 10.2 10.2 11.0 11.2 11.6 11.9 12.8 13.1 12.9 13.0 13.0 13.7 13.7 13.5 14.1 14.2 14.4 14.6 12.44 1001

D Regress 12.3 13.3 12.0 12.1 11.4 10.8 10.9 11.0 11.0 11.4 11.4 11.0 11.2 10.7 10.4 10.7 10.2 10.5 10.0 11.21 1001

WINTERS 7.2 9.4 9.0 9.3 9.6 9.7 9.8 10.1 10.4 10.8 10.5 10.5 10.4 10.3 9.9 10.2 10.3 10.3 10.3 9.96 1001

Autom. AEP 9.1 9.8 9.8 10.2 9.7 10.0 10.0 10.5 10.4 10.7 10.8 10.6 10.6 10.9 11.0 10.5 10.7 10.6 10.7 10.32 1001

Bayesian F 15.6 11.0 10.0 10.1 10.3 10.1 10.4 10.4 10.7 10.3 10.3 10.2 10.7 10.5 10.3 10.4 10.7 10.4 10.2 10.38 1001

Combining A 6.7 9.0 8.8 8.9 9.2 9.2 9.4 9.3 9.3 9.4 9.4 9.2 9.4 9.1 8.8 9.3 9.1 9.2 9.4 9.17 1001

Combining B 7.5 9.8 10.0 10.0 10.1 10.3 10.1 9.8 9.8 9.7 9.6 9.7 9.8 9.5 9.1 9.6 9.4 9.6 9.6 9.80 1001

Average 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.00

Table 11-10: Average ranking of all major time series methods from the Makridakis
et al. (1982) study where 1001 series were used by an expert in each method to predict
for up to 18 periods ahead.
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1. Forecasting versus explaining: Often, we may want toexplanatory models

better understand the factors that influence the variable we
want to forecast (e.g., our sales) than simply to obtain a
prediction about the future value of such variable. The reason
is that by knowing the various factors that affect, say, our sales
we can take steps to influence the sales in desired directions.
This obviously can be achieved by increasing the advertising
budget, decreasing price, or undertaking other actions that
we know will have an impact. To identify such factors and
measure their specific influence, however, we must develop an
explanatory model (regression or econometric) that can provide
such information. Indeed, if such a model provides us with
accurate information and if appropriate steps are taken and
are successful, we can influence the future direction, and by so
doing invalidate (make less accurate) our forecasts.

For instance, this can happen if a time series model predicts
a 10% decline in sales while a regression model tells us that if
we increase advertising by 1%, sales will in increase by 2.5%.
If we increase advertising by 5%, sales will increase by 12.5%
(again, if we are successful), thus not only avoiding a decline
but even achieving a 2.5% increase. For these reasons, the
choice between explanatory and time series methods, which
simply provide us with “black box” type forecasts, is entirely
subjective, depending on our objective. If such an objective,
however, is to merely obtain forecasts, then time series models
are much simpler and cheaper to use while also being, on
average, more accurate.

2. Characteristics of time series: In Chapter 3 a time seriestime series

decomposition was decomposed into seasonality, trend, cycle (or trend-cycle),
and randomness. We also saw that seasonality, because of its
regularity, presents no special problems and that all methods
can predict it about equally well. If we have to make a choice we
should, therefore, prefer the simplest approach for estimating
seasonality: the classical decomposition method. Even in the
case of ARMA models, it is more accurate to first remove
seasonality before selecting an ARMA model (see Makridakis
and Hibon, 1997); doing so simplifies the selection process and
results in a small but consistent improvement in post-sample
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forecasting accuracy over the alternative of selecting a seasonal
ARMA model. The same is true of the Holt method, which
when applied to seasonally adjusted data produces more accu-
rate forecasts than the method of Winters, which is equivalent
to Holt but which also identifies and extrapolates seasonality
directly (see Makridakis et al., 1982 and 1984).

As seasonality presents no special problems or challenges, the
magnitude of randomness and the behavior of the trend-cycle randomness

become, therefore, the key to method selection. In general,
the larger the randomness the more appropriate the selection
of simpler methods. When the randomness dominates the
trend-cycles, as is often the case with short-term data, single
exponential smoothing is often the most accurate approach as
far as post-sample performance is concerned. It should be
noted that such a method extrapolates the most recent actual
value, once the randomness has been separated (smoothed)
from the data pattern, horizontally. That is, it assumes that
the direction in the trend in the time series cannot be predicted
correctly because of the excessive level of randomness and our
inability to predict the next turning points accurately.

The more the trend-cycle dominates the randomness in our
time series, the less appropriate becomes the method of single
smoothing to forecast the continuation of the pattern, as cycli-
cal continuity and trend persistence can be extrapolated with
reasonable confidence. This is why methods that can more
correctly identify and more appropriately extrapolate such a
pattern are needed. In the case of little randomness, as with
macroeconomics data, ARMA models have been shown to do
relatively better than smoothing methods (Makridakis et al.,
1982). Similarly, methods such as Kalman and other filters, as
well as Parzen’s approach, can be used and must be considered.

When there is not much randomness and the trend dominates
cyclical fluctuations, Holt’s method is to be preferred, as it
assumes that the latest smoothed (i.e., without randomness)
trend can be extrapolated linearly. However, if the cyclical
component dominates the trend, this type of extrapolation
often overshoots actual growth, as cyclical turns can be missed,
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resulting in large errors. Under such a condition damped
exponential smoothing is more appropriate since it slows down
the extrapolation of trend, as a function of its randomness, and
by so doing outperforms Holt’s smoothing.

3. Type of data: The type of data (yearly, quarterly, monthly,type of data

weekly, daily, etc.) relates to the characteristics of the time
series since, in general, randomness diminishes as the level of
aggregation increases.

Thus, yearly data include less randomness than monthly, since
averaging 12 months eliminates most of the randomness which
by definition fluctuates around zero. For long forecasting
horizons, therefore, a method that can correctly identify and
extrapolate the trend in the data pattern should be preferred.
This is why trend fitting is recommended: it ignores random,
and cyclical, fluctuations and concentrates on the long-term
increase or decline instead. The dangers, however, of trend
fitting were demonstrated in Chapter 9: the choice of the
starting date is of extreme importance given the often huge
cyclical fluctuations characterizing many series.

At the other extreme, in daily data randomness dominates
while trend is insignificant or not present at all. In such
a case, single smoothing is to be preferred as it is the best
method for isolating whatever pattern exists in such series by
averaging—smoothing—the time series.

Quarterly data are in between yearly and daily or weekly in
terms of trend and randomness. In addition, quarterly data can
also exhibit strong cyclical fluctuations as well as seasonality.
Since randomness in such data is limited, and the trend-cycle
dominates, providing a fair amount of momentum and persis-
tence, it is less likely that the pattern of the series will change
considerably. For these reasons, sophisticated methods, which
can correctly identify and extrapolate complex patterns, seem
to be doing the best with quarterly data and should, therefore,
be preferred to simpler methods.
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4. Number and frequency of forecasts: The number of re- forecast horizon

quired forecasts, and their frequency—which relates to their
number—is another factor that helps us determine the most
appropriate method to select. A greater number of predictions
is needed when forecasting on a daily rather than on a monthly
basis, or on a monthly rather than a quarterly basis. The
number of required forecasts further diminishes when going
from quarterly to yearly predictions. This means that when
predicting, say, the yearly sales of a company, significant effort
can be expended for the predictions involved.

Thus, the methods considered can include statistically sophisti-
cated ones, which can require a lot of human data to build and
human inputs to operate. This cannot be the case, however,
when forecasts for the inventory demand of many thousands
of items are needed on a monthly, weekly, or even daily basis.
In such a situation, automatic methods that require no human
input must be used. Thus, from a practical point of view, the
greater the number of forecasts and the more frequently they are
needed, the simpler and more automatic the methods utilized.

11/4 The combination of forecasts

There is little doubt that combining improves forecasting accuracy. combination forecasts

This empirical finding holds true in statistical forecasting, judgmental
estimates, and when averaging statistical and subjective predictions
(Clemen, 1989). In addition, combining reduces the variance of
post-sample forecasting errors considerably (Makridakis and Winkler,
1983). The empirical findings are at odds with statistical theory and
point to a rethinking of what is appropriate to forecasting methods
and how a method should be selected. As Clemen (1989) concludes,

“Using a combination of forecasts amounts to an admission that
the forecaster is unable to build a properly specified model.
Trying ever more elaborate combining models seems to add
insult to injury as the more complicated combinations do not
generally perform all that well.”
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11/4/1 Factors that contribute to making combining work

Several factors, described below, make the accuracy of individual fore-
casting methods deteriorate and increase the size of errors; combining
works because it averages such errors.

1. Measuring the wrong thing: In forecasting we often need to
estimate demand, but demand data are rarely, if ever, available.
Thus, instead of measuring demand we measure such things
as orders, production, shipments, or billings. It, of course,
is obvious that such proxies of apparent demand introduce
systematic biases in measuring the “real” demand and therefore
decrease forecasting accuracy.

2. Measurement of errors: No matter what we try to measure
there are always errors of measurement (including clerical and
data processing errors), the size of which can be substantial
and systematic. This is particularly true for disaggregate items
but can be also observed on aggregate ones whose magnitude
range from plus or minus 10 to 15%. Measurement errors also
include accounting changes, the way the data are kept, changes
in definitions, and what is to be included in the different factors
being used. Even if the size of measurement errors is in the
neighborhood of 10–15% (which is a minimum that applies to
highly aggregate macroeconomic variables), it makes little sense
to worry about better methods that would improve forecasting
accuracy by 5 or 10%.

3. Unstable or changing patterns or relationships: Statistical mod-
els assume that patterns and relationships are constant. This
is rarely the case in the real world, however, where special
events and actions, fashions, cycles, and so forth bring sys-
tematic changes and therefore introduce non-random errors in
forecasting.

4. Models that minimize past errors: Available forecasting meth-
ods select the best model by a process that depends upon how
well a model minimizes one-step-ahead forecasting errors. How-
ever, we often need forecasts for several/many periods ahead,
which may not be the most appropriate ones if they are based
on models that minimize the one-period-ahead errors. The



11/4 The combination of forecasts 539

remainder of this chapter presents an example of how forecasts
can be combined. This illustration also shows how combining
can result in more accurate predictions than the individual
methods being combined.

11/4/2 An example of combining

Table 11-11 displays the forecasts of single exponential, Holt’s, and
damped smoothing together with two kinds of combining. One is
called optimal and the other simple. In optimal combining, the
weights of each of the three methods utilized are determined in an
inverse function to the MSE of the model fit of each of the methods
(there are also other approaches for specifying optimal weights; see
the selected bibliography at the end of this chapter). In simple
combining the weights are equal. In other words, the combining is
the simple arithmetic average (i.e., the sum of the three predictions
divided by three) of the forecasts of the three methods used.

Table 11-11 illustrates that although the MSE of the model fit is at
its lowest with Holt’s smoothing, followed by damped and single, and
even though the MSE of the optimal combining is smaller than that of
the simple averaging, in the post-sample predictions the MSE of the
simple combining outperforms all alternatives in the great majority
of forecasting horizons and in the overall average. The same is true
with single exponential smoothing, whose post-sample MSE (as well
as Mean Error and MAPE) is the smallest of the three methods
although it was the largest of the model fit (see Table 11-11).

The reason is simple and can be seen in Figure 11-2. The historical
pattern of the time series has not remained constant during the
forecasting phase (the historical growth pattern has slowed down
considerably), making Holt’s smoothing overshoot the actual, post-
sample values. However, when the forecasts of the three methods are
combined (averaged) their errors are cancelled out to a great extent
(see Figure 11-3).

Moreover, the simple combination of Holt, damped, and single is
more accurate than the optimal combining, which gives more weight
to Holt than single smoothing. Although such an occurrence does
not happen all the time, empirical research has shown that, on aver-
age, the simple combining outperforms the individual methods being
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Time Optimal Simple
Period Series Single Holt Damped Combination Combination

Model fit forecasts
1 376 492 367 365 403 408
2 324 457 375 369 397 401
3 341 417 364 367 380 383
4 444 394 361 362 371 373
5 450 409 394 368 390 391
...

...
...

...
...

...
...

44 603 563 578 592 578 578
45 694 575 592 590 586 585
46 542 611 631 599 599 599
48 735 581 596 595 591 591

Model fit errors
Mean Error or Bias 9.37 1.57 17.77 9.48 9.57
MSE 4278.75 3501.39 3625.17 3540.61 3564.40
MAPE 11.39 10.23 10.40 10.49 10.54

Post-sample forecasts
49 628 627 648 607 628 627
50 676 627 653 615 632 632
51 629 627 659 620 636 635
52 600 627 664 623 639 638
53 654 627 670 625 642 641
54 661 627 675 627 644 643
55 606 627 580 628 647 645
56 660 627 686 629 649 647
57 665 627 691 629 651 649
58 595 627 696 629 653 651
59 621 627 702 630 655 653
60 723 627 707 630 657 655
61 608 627 713 640 659 657
62 728 627 718 630 661 658
63 650 627 723 630 663 660

Post-sample errors
Mean Error or Bias 19.64 − 38.79 21.58 − 0.67 0.81
MSE 1945.98 3116.47 2003.52 1468.48 1468.76
MAPE 5.21 6.87 5.59 4.85 4.84

Table 11-11: Forecasts (both model fit and post-sample) of three methods and their
simple and optimal combining
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Figure 11-2: Model fitted and post-sample forecasts of Single, Holt, and Damped
Exponential Smoothing.

combined as well as the optimal combination of forecasts (Makridakis
and Winkler, 1983). Moreover, the MSE, relating to the variance
or the magnitude of uncertainty in our forecasts, is smaller with the
simple combining than with the individual methods themselves or the
optimal combining (see Table 11-11). The reason is that averaging
cancels out large forecasting errors and diminishes the MSE. The fact
that simple combining reduces the MSE of post-sample forecasts is
an additional reason for using it in practice, where smaller errors
mean less uncertainty, which translates into smaller inventories and,
therefore, costs.

The superior performance of combining cannot be easily explained
by statistical theory, which postulates selecting models based on
how well they fit available data (model fit). This optimal model
selection is obviously not done when combining forecasts, as some
of the method(s) being combined will be suboptimal (this is clearly
the case of single smoothing in Table 11-11, whose MSE is much
bigger than the other two methods). However, if the historical
pattern changes during the forecasting phase, then combining can
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Figure 11-3: Forecasts of Single, Holt, and Damped Exponential Smoothing, and
optimal and simple combining.

be more accurate than the method that minimizes the MSE of the
model fit, which in Table 11-11 corresponds to the method of Holt.
Combining, therefore, allows us to more accurately predict and reduce
our uncertainty about the future when we are not sure whether or
not the historical pattern (or relationship) in our data will continue
or be different from that of the past. As can be seen in Figure 11-3,
combining averages out the errors of the individual methods being
combined and results, therefore, in smaller errors and more accurate
and more reliable predictions.
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Exercises

11.1 Table 11-12 shows the symmetric Mean Absolute Percent-
age Error of 16 methods of the newest forecasting competi- M3-IJF Competition

tion (M3-IJF) which compared 3003 time series. (The first
method, Näıve Forecast 2, shows the accuracy of the 1001
series of the M-Competition.) Relate the results of this
competition with those of the previous ones.

11.2 In the above mentioned competition we still have not com-
bined the various methods to compare their performance with
those of the individual methods being combined. What is your
opinion about how well combining will do?

11.3 The above mentioned competition includes methods that use
neural networks, machine learning, and expert systems to
make their predictions. Contrary to claims that such methods
would outperform the more traditional methods of forecasting,
this has not been the case. Comment on this result.
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Forecasting horizons Average of forecasting horizons n
Methods 1 2 3 4 5 6 8 12 15 18 1–4 1–6 1–8 1–12 1–15 1–18 (max)
Näıve 2-MC 9.3 11.5 13.4 15.4 17.8 19.5 17.8 16.0 18.8 20.3 12.4 14.5 15.1 15.4 15.8 16.3 1001
Näıve 2 11.0 11.5 13.9 15.1 15.0 16.2 15.2 16.0 20.1 20.9 12.9 13.8 14.1 14.7 15.3 15.9 3003
Single 9.8 10.5 12.9 14.1 14.0 15.1 13.9 14.7 18.8 19.5 11.8 12.7 13.0 13.4 13.9 14.5 3003
Holt 9.1 10.4 12.8 14.3 15.0 16.2 14.4 15.3 19.6 21.1 11.6 13.0 13.3 13.7 14.3 15.0 3003
Dampen 9.0 9.9 12.0 13.3 13.5 14.4 12.9 14.0 17.7 18.7 11.1 12.0 12.2 12.6 13.1 13.7 3003
Winter 9.6 10.6 13.1 14.5 14.8 16.0 14.4 15.9 20.3 20.8 11.9 13.1 13.4 13.9 14.5 15.2 3003
B-J automatic 9.2 10.4 12.2 13.9 14.0 14.8 13.0 14.1 17.8 19.3 11.4 12.4 12.5 12.8 13.3 14.0 3003
Autobox1 9.8 11.1 13.1 15.1 16.0 16.8 14.2 15.4 19.1 20.4 12.3 13.7 13.8 14.0 14.6 15.2 3003
Robust-trend2 10.5 11.2 13.2 14.7 15.0 15.9 15.1 17.5 22.2 24.3 12.4 13.4 13.7 14.6 15.4 16.3 3003
ARARMA 9.7 10.9 12.6 14.2 14.6 15.6 13.9 15.2 18.5 20.3 11.8 12.9 13.1 13.5 14.1 14.7 3003
AutomatANN3 10.4 12.3 14.2 15.9 16.2 17.8 16.0 16.7 19.8 21.2 13.2 14.5 14.7 15.0 15.6 16.2 3003
FLORES-P-14 9.2 10.5 12.6 14.5 14.8 15.3 13.8 14.4 19.1 20.8 11.7 12.8 13.0 13.3 13.9 14.7 3003
FLORES-P-25 10.0 11.0 12.8 14.1 14.1 14.7 12.9 14.4 18.2 19.9 12.0 12.8 12.8 13.0 13.6 14.3 3003
PP-Autocast6 9.1 10.0 12.1 13.5 13.8 14.7 13.1 14.3 17.7 19.6 11.2 12.2 12.4 12.8 13.3 14.0 3003
ForecastPro37 8.6 9.6 11.4 12.9 13.3 14.3 12.6 13.2 16.4 18.3 10.6 11.7 11.9 12.1 12.6 13.2 3003
THETA-Model8 10.3 11.1 12.7 13.7 14.4 15.4 13.4 14.2 17.6 19.1 12.0 13.0 13.1 13.4 13.8 14.4 3003
RBF9 9.9 10.5 12.4 13.4 13.2 14.2 12.8 14.1 17.3 17.8 11.6 12.3 12.4 12.8 13.2 13.8 3003
1 Automatic Box-Jenkins ARIMA modeling
2 Like Holt’s method but using the median to extrapolate the trend in the data
3 Automatic Artificial Neural Network
4 An expert system that chooses among four exponential smoothing methods
5 An expert system (as in 4 above) which also includes judgmental modifications
6 Peer Planner using a family of exponential smoothing methods based on Gardner’s damped trend smoothing
7 A system that selects the best among several methods based on the characteristics of the data
8 A hybrid forecasting method based on a successive filtering algorithm and a set of heuristic rules for both

extrapolation and parameters calibration
9 A rule based (expert system) forecasting method

Table 11-12: The average symmetric MAPE (all 3003 data) of the M3-IJF Competition.
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People have always wanted to predict the future to reduce their fear
and anxiety about the unknown and an uncertain tomorrow. This de-
sire has been satisfied by priests, astrologers, prophets, fortune tellers,
and the like since the dawn of civilization. Today, the need to predict
the future is fulfilled in a wide range of ways, from horoscopes to
econometric services; such forecasts, however, provide psychological,
rather than systematic, value. In this book we have introduced the
entire range of available forecasting methods (from the statistically
simplest to some of the most sophisticated; from quantitative to
judgmental). We have also discussed their use in business and other
organizations as well as their predictive, post-sample accuracy beyond
available historical data. Finally, we have talked about forecasting’s
practical value but also its limitations.

Regardless of the mathematical complexity of the model, the statis-
tical sophistication of the method, the large number of data, and the
power of the computer being utilized, forecasting can never become
a substitute for prophecy. Any and all types of statistical predictionsprophecy

are simply extrapolations (or interpolations) of established past pat-
terns and/or existing relationships. Even the majority of judgmental
forecasts are based on extrapolating patterns/relationships. For theseextrapolation

forecasts to be accurate, therefore, one of two things must happen:
either no major changes must occur from the conditions that have
prevailed during the past, or such changes must cancel themselves
out. Otherwise, forecasting errors, sometimes large ones, are possible
(their size will, usually, be proportional to the magnitude of changes
involved), unless we can develop appropriate foresight about the
direction and extent of the forthcoming changes based on means other
than extrapolation.

No matter what is being claimed by those wanting to profit from
people’s desire to foretell the future, no statistical method, or for that
matter any other approach, allows us to accurately forecast and/or
correctly estimate the extent of future uncertainty when “history does
not repeat itself.” People, therefore, rightly ask, “Is there a need
for a forecasting discipline or indeed a book on forecasting?” The
best way to answer this question is with another one: “What is the
alternative, since forecasts are required for scheduling, planning, and
other future-oriented decisions, including strategic ones, that need
predictions as inputs?” It is precisely because forecasts are needed
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that we must come up with the most rational and economical way
of obtaining them. Moreover, such forecasts must be as accurate as
possible while the magnitude of forecasting errors, or the extent of
uncertainty involved when predicting the future, must be as small as
possible but also estimated as realistically as possible.

We have shown (see Chapters 10 and 11) that all empirical ev-
idence available points in the same direction: ad hoc, judgmental judgmental vs

statistical forecastsforecasts are not necessarily more accurate than statistical ones,
particularly when many forecasts are required on a frequent basis.
In addition, judgmental predictions underestimate future uncertainty
considerably and consistently. Finally, they are much more expensive
than statistical ones as they require human time and are often made
during meetings that involve several/many people who must use
their precious, and expensive, time to come up with the required
forecasts. We have, therefore, advocated in this book (in Chap-
ter 10) that judgmental predictions must supplement the statistical
ones when and where they can contribute the most: in identifying
forthcoming changes and predicting the direction and extent that
they will influence the future so that statistical predictions, which can
more objectively and correctly identify and extrapolate established
patterns and/or existing relationships, can be appropriately modified.

This chapter first discusses the uses and limitations of forecasting
in terms of the forecasting horizons they intend to satisfy. It then
addresses some major organizational concerns involving forecasting,
including the perceptions of the preparers and users of forecasts, and
ways of improving the forecasting function within firms. Next covered
are additional aspects of forecasting requiring creative insights and
foresight. Finally, we present some issues related to the future of
forecasting and their implications. We predict some major changes,
bringing considerable improvements in forecasting effectiveness, when
intranets and extranets will be widely used by business firms and
non-profit organizations.

12/1 What can and cannot be predicted

Over the last 35 years a considerable amount of empirical evidence
and experience with forecasting applications has been accumulated.
From such studies (see Chapter 11) several general observations
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as well as some specific conclusions, based on the time horizon of
forecasting, can be drawn.

Empirical evidence (both from within the field of forecasting and
from judgmental psychology) concludes that the vast majority of
people are overoptimistic in their forecasts while they also under-optimism

estimate future uncertainty significantly. Few people who start new
businesses, for instance, seriously consider the high probability that
they will be bankrupt two or three years later. The same is true of
product managers or executives, who are not willing to accept that
the sales of their product or their budget estimates may fall by a
much bigger amount, or percentage, than they are willing to accept.
Otherwise, they will have many sleepless nights, which are readily
avoided through overoptimism. Because we often confuse forecasting
with wishful thinking or the achievement of some desired objective,
we need to have objective forecasts, based on statistical predictions,
before utilizing our judgment to forecast.

Another general observation based on empirical evidence is what
psychologists call the recency bias. We humans remember and arerecency bias

greatly influenced by recent events and their consequences. Stock
market crashes, for instance, are probably 90% psychological and
10% real, as people panic and are willing to sell at a highly reduced
price because they are afraid that prices will keep declining forever.
The same is true during periods of recession, when investments drop
significantly because businesspeople are influenced by current bad
economic conditions and do not realize that recessions are temporary
events lasting for more than one year (the longest postwar recession
lasted 18 months). Similarly, research findings have shown that the
largest amount of flood insurance is taken out just after a flood and
the smallest when the next flood takes place. In other words, people
are influenced by the fact that there has been a flood and insure
themselves, but as time passes and there is no flood, they believe that
they are wasting their money so they cancel their insurance policies.
By the time the next serious flood arrives (often many years, or even
decades later) few people have remained insured.

Setting uncertainty at realistic levels, separating objective predic-
tions from wishful thinking or the attainment of desired objectives,
and realizing that unusual, threatening events have occurred and will
continue to do so in the future are critical aspects that must be dealt
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with while forecasting. The future must be considered realistically
and objectively even though doing so may reveal threatening events
that will increase uncertainty and raise our anxiety. Most important,
the latest event(s) or development(s) must be contemplated with a
long-term, historical view in mind so that we will not be unduly
influenced by the recency bias that characterizes us. Thus, we must
realize, and accept, that a storm (even if it will last some time) will
be followed by calm, and that after a prolonged calm a storm will
undoubtedly occur, even if we cannot predict its exact timing or its
precise force.

12/1/1 Short-term predictions

In the short-term, forecasting can benefit by extrapolating the inertia extrapolating

(momentum) that exists in economic and business phenomena. As
changes in established patterns are not likely over a short time
span, extrapolating them provides us, most often, with accurate
and reliable forecasts. Seasonality can also be predicted fairly well. seasonality

Empirical evidence has shown that seasonality does not change much
or frequently. But even when it changes, it usually does so slowly,
in a predictable manner. Thus, once computed it can be projected,
together with the momentum of the series being forecast, accurately
and reliably in the great majority of cases.

Momentum and seasonality constitute the two greatest advantages
of using statistical forecasting methods. Such advantages can benefit
production planning and scheduling; equipment, personnel, and fi- scheduling planning

nancial planning; the ordering of raw and other materials; and setting
up appropriate levels of inventory, or slack in personnel, to deal with
higher levels of demand than the most likely value predicted by our
statistical models. As seasonal fluctuations can be substantial and
as momentum does exist, their accurate prediction can be used to
improve, sometimes substantially, short-term scheduling and plan-
ning decisions. Moreover, the uncertainty of our predictions can be
reliably estimated in terms of prediction intervals around the most
likely prediction(s).

The larger the number of customers or items involved, the smaller
the effects of random forces and the higher the accuracy and re-
liability of forecasting. Thus, firms selling to consumers not only
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can forecast more accurately but also can estimate the uncertainty of
their forecasts more reliably than firms selling to industrial customers.
Estimating uncertainty can be used to determine safety stocks (forestimating

uncertainty finished products and materials), slack in personnel and equipment,
and financial reserves, so that possible errors in forecasting can be
confronted with a minimum of surprise and unpleasant consequences.
If organizations do not already use a statistical, computerized system
to make short-term forecasts and estimates of uncertainty, our advice
would be to do so as soon as possible. Overwhelming empirical
evidence (see Chapter 11) shows concrete benefits from using statis-
tical methods (often simple ones) instead of using judgment to make
these forecasts and to estimate the uncertainty involved. Equally
important, the cost of statistical predictions is considerably less thancost of prediction

the corresponding judgmental ones.

Although few things can happen in the short-term to alter estab-
lished patterns or existing relationships, some changes are occasion-altered patterns

ally possible, introducing an additional element of uncertainty. For
instance, unexpected events (a fire, a major machine breakdown, a big
snowstorm) can take place, or competitors can initiate special actions
(advertising campaigns, price decreases, new product introductions).
Such unexpected events or actions can change established patterns,
thus invalidating forecasts and introducing additional uncertainty
(for more details and ways of dealing with special events/actions,
see Makridakis and Wheelwright, 1989).

12/1/2 Medium-term predictions

In the medium-term, forecasting is relatively easy when patterns
and relationships do not change. However, as the time horizon
of forecasting increases, so does the chance of a change in these
patterns/relationships. Economic cycles, for one thing, can and do
change established patterns and affect relationships. Unfortunately,
however, we have not yet been able to accurately predict the timing
and depth of recessions, or the start and strength of booms, usingrecessions and booms

statistical methods. Moreover, economists and other experts have
not been more successful than statistical methods in predicting the
start or the depth of recessions (Urresta, 1995; Fox, 1997; Makri-
dakis, 1982). This makes medium-term forecasting hazardous, as
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recessions and booms can start anytime during a planning horizon
of up to 18 months (the usual length of the medium-term which
includes budget forecasts). In addition, the uncertainty in forecast-
ing increases while becoming less easy to measure or deal with in
practical, concrete terms. This is so because differences between
forecasts and actual results can be substantial, especially in cyclical
industries, where business cycles occur. Moreover, forecasting errors
cease to be independent since recessions affect practically all firms
and products/services, at least those in cyclical sectors.

Medium-term forecasts are needed mostly for budgeting purposes. budgeting

They require estimates of sales, prices, and costs for the entire
company as well as for divisions, geographical areas, product lines,
and so forth. Moreover, they demand predictions of economic and
industry variables that affect company sales, prices, and costs. When
a recession takes place, all variables being predicted will be influenced
in the same direction and by similar magnitude; thus large errors
can result, which might necessitate the closing down of factories, the
firing of workers, and other unpleasant belt-tightening measures. The
March 1997 announcement of the permanent closing of a Renault
factory in Belgium and the firing of nearly 4,000 additional personnel
were partly caused, according to top management, by the 1996 slump
in the European car market, which was not predicted (indeed, there
were forecasts for growth).

The deeper a recession, the worse the forecasting errors and the
greater the unpleasant surprises and negative consequences. During
a boom the opposite type of error normally occurs, giving rise to
underestimations of demand, personnel needs, and the like. The
inability to predict booms, or the underestimation of their extent,
can result in opportunity losses, with serious negative consequences
for a firm’s competitiveness.

Although forecasting services and newsletters claim to be able to newsletters

predict recessions or booms, empirical evidence has shown beyond
any reasonable doubt that they have not so far been successful. This
means that our inability to forecast recessions and booms as well as
measure the uncertainty involved must be accepted and taken into
account not only during budget deliberations but also in formulating
a strategy that accepts such uncertainty and its consequences. On
the other hand, the end of a recession (once it has started) is easier
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to predict. Recessions last about a year, and their length does not
fluctuate widely around this average.

Not all companies are equally affected by cycles. In general,cycles

manufacturing firms are more affected than service firms; firms pro-
ducing or servicing luxury (elastic) goods are more affected than those
producing or servicing necessities (inelastic products and services);
industrial firms are more affected than consumer firms; and compa-
nies in industries where strong competition exists are affected more
than those in less competitive ones. These general rules can help
executives decide upon the extent of cyclical fluctuations so they can
determine what needs to be done to be prepared for the eventuality
of a recession or boom. A great deal of information about the length
of business cycles, the depth of recessions, and the strength of boom
can be gained for specific industries and firms through historical data,
which can be decomposed (see Chapter 9) to isolate and study the
trend-cycles involved.

In forecasting and planning one thing is sure: after a long boom
a recession is inevitable. The only thing not known is when it willrecession

start and how deep it will be. Thus, contingency plans, including the
buildup of reserves to face the coming recession, become necessary.
The same is true during periods of recession. A recovery is certain.
The only question is when exactly it will start and how strong it will
be. Obviously, there is always the possibility that a recession might
last a very long time, or that it may turn into a depression. It will
have to end sometime, however.

Although the possibility of a depression exists, it is highly unlikelydepression

and cannot be seriously considered; moreover, a firm trying to plan
for an extremely long or continuous recession will likely be too con-
servative in its outlook and actions and overtaken by more aggressive
competitors. Although we know that a car can hit us when we are
crossing a street, no one can seriously consider never walking because
of that possibility. Equally important, only one postwar recession has
lasted for more than one year (18 months precisely). Thus, chances
are that future recessions will not be much longer than one year.

Because recessions and booms cannot be predicted, it becomes nec-
essary to monitor critical variables to know, as soon as possible, whenmonitoring

they will arrive. This is the second best alternative to forecasting. It
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is like having a radar tracking system looking for a possible enemy
attack. It cannot tell us when the attack will be launched, but it can
warn us once it is on the way. Although monitoring is not forecasting,
it prevents executives from being taken completely by surprise when
a recession, or boom, arrives. Moreover, it can provide them with a
competitive advantage if they can predict the start of the recession
(or boom) earlier than their competitors—at least they will not be
at a disadvantage.

Another way of anticipating recessions is by looking for imbalances
in one’s own industry, the economy, or the international financial
system. The bigger and the more widespread such imbalances, the
greater the chance of a correction, which usually takes the form of a
recession. Similarly, the longer the boom, the higher the chance of a
recession or vice versa. Thus, all the talk about the end of recessions
is premature (the same beliefs were held in the end of the 1960s, just
before the 1969/70 recession). Recessions are part of the economic
system; the only question is how long and how deep they will be.

In practical terms, it makes little sense to attempt to forecast
recessions or booms well in advance. In the past, recessions or booms
that had not been forecast occurred, and others that had been pre-
dicted did not materialize. Therefore, spending money or resources to
predict recessions or booms adds little or no value to future decision
making. It is best to accept that such a task cannot provide us with
reliable predictions, and to plan budgets by extrapolating established
trends and relationships or by making contingency plans having the
average recession, or boom, in mind. Subsequently, an organization
should be capable of adjusting its plans as soon as monitoring has
confirmed a recession or boom. This is where contingency planning contingency planning

can be of great help. As recessions or booms are certain to arrive,
managers can be prepared to face them by having drawn up detailed
contingency plans of what to do once the occurrence of a recession or
boom of a certain magnitude has been confirmed.

12/1/3 Long-term predictions

Long-term forecasts are primarily needed for capital expansion plans,
selecting R&D projects, launching new products, formulating long-
term goals and strategies, and deciding the best way of adapting orga-



558 Chapter 12. Implementing forecasting: its uses, advantages, and limitations

nizations to environmental changes. Long-term predictions are based
on the extrapolation of mega trends and on analogies (see Chapter 9).mega trends

analogies The challenge is to determine, preferably through scenarios, how such
scenarios trends will affect us and how new technologies (e.g., computers and

telecommunications) will influence the future environment and our
industry and firm.

The farther away the time horizon of our predictions, the lesser the
accuracy of our forecasts, since many things can happen to change
established patterns and relationships. The purpose of forecasting
in such cases is to build scenarios that provide general directions to
where the world economy, or a particular industry, is heading, and to
identify the major opportunities as well as dangers ahead.

A big challenge is to predict technological innovations and how theytechnology

will change the industry, mold competition, and affect the specific
organization. New technologies can drastically change established
demand, societal attitudes, costs, distribution channels, and the com-
petitive structure of industries and firms. The major purpose of such
long-term forecasting is to help the organization develop foresight,
form a consensus about the future, and start considering ways of
adapting to the forthcoming change—or even actively contributing
to changing the industry in desired ways so that the firm can become
the leader and profit from such changes.

Because long-term forecasting cannot be specific and will always be
uncertain, its value lies in helping generate organizational consensusesorganizational

consensus and in establishing the right sense of direction. At present firms
must, for instance, be concerned about the forthcoming Information
Revolution and its impact (see Chapter 9), and more specifically how
the Internet and similar worldwide networks may affect them in the
future.

12/2 Organizational aspects of forecasting

Wheelwright and Clarke (1976), in a survey about the usage of fore-
casting in business firms, identified some major differences between
the perceptions of forecast users (managers and decision makers)users and preparers

and those of forecast preparers. These differences can be seen in
Table 12-1, which identifies preparers’ and users’ abilities as seen
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Preparer’s Ability Rating (%)
Understand sophisticated mathematical forecasting tendencies +1
Understand management problems −25a

Provide forecasts in new situations −42
Provide forecasts in ongoing situations −13
Identify important issues in a forecasting situation −30
Identify the best technique for a given situation −56
Provide cost-effective forecasts −33
Provide results in the time frame required −38

User’s Technical Ability
Understand the essentials of forecasting techniques +27
Understand sophisticated mathematical forecasting techniques +12
Identify new applications for forecasting +5
Effectively use formal forecasts −6
Evaluate the appropriateness of a forecasting technique +24

User/Preparer Interaction Skills
Understand management problems (preparers) −25
Work within the organization (preparers) −10
Understand management problems (users) −5
Communicate with preparers of forecasts (users) −1
Work within the organization in getting forecasts (users) +2

User’s Management Abilities
Make the decisions required in their jobs −3
Effectively use formal forecasts −6
Describe important issues in forecasting situations −8
Work within the organization in getting forecasts +2

a25% more preparers rated themselves good or excellent than did users.

Rating = 100× % users rating good or excellent−% preparers rating good or excellent
% preparers rating good or excellent

Table 12-1: Differences in perceptions of users and preparers of forecasts. Source:
Steven C. Wheelwright and Darral G. Clarke (1976), “Corporate Forecasting:
Promise and Reality,” Harvard Business Review (November–December 1976), copy-
right c© 1976 by the President and Fellows of Harvard College, all rights reserved.
Reprinted by permission.
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separately by each group, the users’/preparers’ interaction skills, as
well as the users’ management abilities. Examining the differences in
Table 12-1 it is obvious that preparers perceive that they are doing a
much better job than users think, while they also perceive that users
cannot adequately understand fundamental aspects of forecasting
including the selection of the most appropriate method(s). At the
same time, preparers think that they understand management and
work problems much better than is perceived by users. Such major
differences between preparers and users were further supported in a
series of questions about those activities whose improvement would
be most beneficial to the firm’s forecasting efforts. A majority of
responses highlighted communication between preparers and users.
In addition, management support and data-processing support were
also cited as important areas that could significantly enhance the

Responsibilities
and skills not
covered

User’s role
as seen by
preparer

Preparer’s
role as seen
by user

Preparer’s
role as seen
by preparer

User’s role
as seen by
user
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�
�
�
�
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���

Figure 12-1: Role perceptions of preparers and users of forecasts.
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value of the firm’s forecasting efforts.

Wheelwright and Clarke concluded from their survey that while the
communication problem was indeed real, it was merely a symptom
of a deeper problem. The problem inherent in a number of the
responding firms centered around the definition of the responsibilities responsibilities

and skills of users and preparers. It appeared that both groups had
abdicated certain essential tasks and skills to their counterparts, with
the result that some of the basics were not being covered. This
conclusion is shown graphically in Figure 12-1. Each group appeared
to view its own role more narrowly than the role of its counterpart,
with the consequence that some responsibilities and skills were not
being picked up by either group.

Wheelwright and Clarke identified a range of critical tasks where a
significant number of the surveyed firms rated themselves as only
adequate or less than adequate in their skills and abilities. For
example, in only 15% of the firms did both the user and preparer
rate themselves as adequate or more than adequate in understanding
management’s forecasting problems. In only 29% did both users and
preparers rate themselves as adequate or better at identifying the
important issues in a forecasting situation.

While these results suggest some basic areas requiring attention,
those charged with managing the forecasting function need a mecha-
nism for identifying what is wrong with their own situation and the
types of actions to be taken. These issues are discussed next.

12/2/1 Correcting an organization’s forecasting problems

Much of the authors’ work in forecasting has suggested that a good
starting point for improving the forecasting function within organi-
zations is to audit existing problems and opportunities. Although review existing

problemsthere is some literature on performing such reviews, the bulk of
it concentrates on accuracy as the key problem and identifies as
causes of the problem the use of poor data, the wrong methods,
and the lack of trained forecasters. Without much empirical ba-
sis, this literature suggests that an obvious solution to problems
of accuracy is the use of improved—by which is generally meant
more sophisticated—methods. Not surprisingly, such solutions tend
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to require more sophisticated forecasters or additional training for
those already at work. Thus, the typical solution is to replace
existing methods with more mathematical ones and to replace and
upgrade existing forecasters so that they can handle such methods.
Unfortunately, empirical evidence does not support the assumption
that sophisticated methods outperform simpler ones (see Chapter 11).

The results of such actions range from slight improvements to frus-
tration and higher turnover among forecasters. Even organizations
with trained statisticians and sophisticated methods are frequently
disappointed with the performance and impact of their forecasting.
This interaction of problem–causes–remedies–results often leads to
the undesired scenario summarized in Figure 12-2.

One reason for results being less desirable than expected is that
in many organizations forecasting is not a career. Rather, it is
part of the assignment of a market planner or a group controller,
or it is a temporary job on the way to more important positions.
Recommending that these forecasters become experts in sophisticated
statistical techniques has been inconsistent with organizational and
personal philosophies and objectives, as well as bad advice if the goal
is improved accuracy.

In addition, applying a specific method and obtaining a numerical
output represent only one step, albeit an important one, in the
process of forecasting. Concentrating on accuracy is like trying to
melt an iceberg by heating the tip: when forecasting accuracy is
slightly improved, other managerial problems of implementation rise
to the surface to prevent the full realization of forecasting’s promise.

12/2/2 Types of forecasting problems and their solutions

To improve forecasting, one framework that the authors have found
useful has as its first step the characterization of problems as one ofcharacterize problems

several types, which are discussed below: credibility and impact, lack
of recent improvement, and lack of a firm base on which to build,
while solutions center around the opportunities and in adequate
training.
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Credibility and impact: credibility and impact

Forecasting often has little impact on decision making. This
may be caused by a forecast’s lack of relevance—in terms
of what, when, how, and in which form such forecasts are
provided. The problem may be interpersonal, for example,
when those who prepare the forecasts and those who use them
fail to communicate effectively; or the problem may be one of
organizational structure, where forecasting is performed at such
a level that it is highly unlikely that it will ever have much
impact on decision making. In addition, forecasters tend to
concentrate on well-behaved situations that can be forecast with
standard methods, and ignore the more dynamic (and often
more interesting) change situations that decision makers most
want to forecast.

Lack of recent improvements in forecasting: lack of improvements

Forecasting problems arise when forecasting is no longer im-
proving. Sometimes the reason is simply that the resources
committed to forecasting have become so stretched in maintain-
ing ongoing procedures that no new development is possible.
At other times there may not be enough commitment to attain
the next level of substantial progress. This also occurs when
organizational change and managerial interface problems are
not recognized. The remedies prescribed in Figure 12-2 run
into barriers that they cannot overcome. Furthermore, these
remedies probably are not helpful, even if accepted by the
organization.

Lack of a firm base on which to build: lack of firm base

This is generally a getting-started problem. Resources or em-
phasis committed to forecasting may be insufficient for sub-
stantial impact. Even when resources have been committed,
knowledge of good forecasting practice and available methods
may be lacking during startup. The problem may also result
from an absence of any systematic strategy or plan for improv-
ing forecasting.

Major opportunities for improvement: opportunities for

improvementOrganizations frequently describe their forecasting problems in
terms of opportunities for substantial improvements. They may



564 Chapter 12. Implementing forecasting: its uses, advantages, and limitations
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Figure 12-2: Traditional views of forecasting problems.

be quite satisfied with what is being done but feel more could be
done—particularly if certain areas are not being handled sys-
tematically as part of the forecasting system or if performance is
not yet at the expected level. Organizations may also feel this
way when they think their forecasting approach is extremely
vulnerable to changes in the environment, or when changes
in their strategy may require (be contingent on) significant
improvements in forecasting performance. In any of these situ-
ations, major opportunities for improvement must be identified
both internally and by benchmarking a firm’s performance in
various criteria with that of others, preferably those best in
forecasting applications.
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Training: training

Training is the most common remedy when organizations attack
forecasting problems. It may also be the most overrated. The
emphasis should not be on increasing the forecaster’s knowledge
of sophisticated methods, since doing so does not necessarily
lead to improved performance. Rather, training should consider
issues such as how to select a time horizon; how to choose the
length of a time period; how to find appropriate data and adjust
it for outliers and other, possible, errors; how judgment can be
incorporated into a statistical forecast; how large changes in the
environment can be monitored; and the level of aggregation
to be forecast. Users of forecasts, on the other hand, need
training in the pros and cons of alternative methods and in
the identification of situations where systematic forecasting
can play a major role in improving organizational decision
making. Finally, training may help in refining one’s approach
to implementation and avoiding or minimizing communication
problems between the preparers and the users of forecasts.

Underlying such an audit is the notion that both forecasters and
the decision makers who use their forecasts tend to do a number
of things “wrong,” which detracts from realizing the full potential
for their organization. As suggested in Table 12-2, Armstrong has
identified 16 pitfalls often seen in practice that are characteristic of pitfalls

mistakes in using forecasting. Table 12-2 also suggests (in the form
of a question) the solution for each of those mistakes. As indicated in
this checklist, a firm that can answer “yes” to each solution question
is doing an outstanding job of avoiding mistakes and getting the
most out of its forecasting applications. The larger the percentage of
“no” responses for a given situation, the more things are being done
incorrectly and the greater the opportunity to improve significantly
the way the forecasting situation is being handled.

This section has dealt with possible organizational pitfalls and
improvements so that forecasting can become more useful and rel-
evant for those most needing its predictions: the users of forecasts.
The changes being suggested will, however, in their great majority,
produce marginal improvements, which if taken together can better
the forecasting function. At the same time, organizations should look
for “big” improvements that may produce revolutionary changes in
their approach to forecasts and their usefulness.
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1. Assess the methods without the forecasts. Most of the discussion should focus on the
methods. Which forecasting methods were considered, and which ones were used?
The auditor is in a good position, as an outside observer, to say whether the methods
are reasonable. (See checklist items 1 through 8.)

2. Given that the methods are judged reasonable, what assumptions and data were used
in the forecast? (This step may be difficult to separate from the previous step.) One
role of the auditor is to judge whether all relevant factors have been examined. In
particular, the auditors might help to ensure that key environmental factors have been
assessed. (See items 9 through 11.)

3. An assessment should be made of uncertainty. This should include upper and lower
bounds for each forecast, contingency forecasts, previous accuracy, and the arguments
against each forecast. Interestingly, in a study on long-range metals forecasts, Rush
and Page found that while 22% of the 27 forecasts published from 1910 to 1940 made
explicit references to uncertainties, only 8% of the 63 studies from 1940 to 1964 did
so. In other words, the concern over uncertainty decreased over time. (See items 12
through 15.)

4. Finally, an assessment should be made of costs. (See item 16.)

No ? Yes
Forecasting Methods

1. Forecast independent of top management?
2. Forecast used objective methods?
3. Structured techniques used to obtain judgments?
4. Least expensive experts used?
5. More than one method used to obtain forecasts?
6. Users understand the forecasting methods?
7. Forecasts free of judgmental revisions?
8. Separate documents prepared for plans and forecasts?

Assumptions and Data
9. Ample budget for analysis and presentation of data?

10. Central data bank exists?
11. Least expensive macroeconomic forecasts used?

Uncertainty
12. Upper and lower bounds provided?
13. Quantitative analysis of previous accuracy?
14. Forecasts prepared for alternative futures?
15. Arguments listed against each forecast?

Costs
16. Amount spent on forecasting reasonable?

Table 12-2: Armstrong’s forecasting audit checklist. Source: Armstrong, J.S.,
1982. “The Forecasting Audit,” Chapter 32, The handbook of forecasting, S.
Makridakis and S.C. Wheelwright (eds.). New York: John Wiley & Sons, Inc.
Reprinted by permission.



12/3 Extrapolative predictions versus creative insights 567

12/3 Extrapolative predictions versus
creative insights

Nowadays, when benchmarking is widely used, whatever improve-
ments a firm can achieve in its forecasting function will be easily
imitated by others. The widespread use of personal computers, large
data banks, and easy-to-use forecasting programs have allowed a large
percentage of firms to employ statistical methods to obtain accurate
and timely objective predictions. Accurate statistical forecasting
has become a competitive requirement, therefore, that provides few
unique advantages to today’s firms. The same is true of extrapolative,
long-term predictions (in particular, general ones), which are readily
available for practically everyone interested in obtaining them; they
are published in books and are available in a variety of sources. Thus,
these provide no strategic advantages even if they are highly accurate.

The substantial growth in the demand for personal computers
has, for example, been correctly predicted since the middle 1980s;
however, the great majority of firms producing and/or selling such
computers went out of business as high growth rates and the prospects
of huge profits contributed to creating serious overcapacity, by both
existing players as well as new entrants, which fueled competition and
reduced profit margins. In final analysis fewer than a dozen firms
worldwide have managed to prosper in such a highly competitive
environment. On the other hand, Bill Gates became one of the
richest men on earth by moving into a direction few considered of
major importance at that time: software. IBM was not interested
in buying outright the operating system Microsoft offered to run its
first personal computers, though it could have easily done so as its
bargaining power at that time was huge while that of Gates and
Microsoft was nil.

IBM did not want to buy the rights to the operating system
because the company did not believe that the software for running the
personal computers was important. The premise: they extrapolated extrapolating the

pastthe past in a linear fashion. By doing so, they judged the value of
personal computers and programs from the perspective of mainframe
computers and programs where the obvious winner was the hardware
(“big iron”), which provided huge profit margins while the role of
software, mostly proprietary, was simply to support the hardware.
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As well, the price of software was then prohibitively high; only the
government, military, or business firms could contemplate buying it.

Gates’ insight was to see a whole new market made up of hun-
dreds of millions of personal computers each using its own software
that would be cheap enough so that anyone with a computer could
afford it. Whether or not Bill Gates was simply lucky or indeed
had a creative insight is probably unanswerable. However, he and
Microsoft were ready to exploit the opportunities opening up through
exploding demand for personal computers, while others were not.
In consequence, Microsoft’s market value increased above that of
IBM’s, which found itself in serious trouble precisely because personal
computers and cheap software greatly diminished the demand for its
mainframe computers as the cost per million instructions of personal
computing became less than 1/100 that of mainframes.

The story of Bill Gates and Microsoft is not unique. The ability
to see the future in a new light, not constrained through the linear
extrapolation of the past, has always been central to every break-
through: from Henry Ford’s Model T to the latest developments in
the Internet. Unless someone is capable of conceiving brand-new
ways of utilizing the capabilities available through new technologies,
there cannot be a breakthrough. Linear thinking, on the other hand,
provides only small, marginal improvements and a lot of competition.
Thus, forecasting involves much more than mere extrapolations,
which are most relevant for the short-term but of little use for the
long run.

Forecasting for operational scheduling and planning is based upon
the correct identification of established patterns/relationships and
their appropriate extrapolation. This extrapolation, although it
provides great advantages for operational purposes, can also become
the biggest hindrance to succeeding in the long-term because suc-
cessful forecasting requires creative insights not constrained throughcreative insights

the linear extrapolation of the past. Long-term forecasting requires
visionaries who are, at the same time, practical realists. They must
be capable of breaking from the conventional wisdom of the past and
present, and conceive the future in new ways which, by definition,
must be based not on tired thinking but on creative insights about
forthcoming changes and their implications.
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Are all those with creative insights concerning the future success-
ful? The answer is a definite no. For every success story there are
probably hundreds of failures (Kaplan, 1995); being a pioneer requires
taking huge risks that do not pay off in the great majority of cases
(Schnaars, 1989). Yet for those pioneers who make it, the payoffs are
enormous, justifying the great risks taken to succeed.

12/3/1 Hindsight versus foresight

People are rarely surprised by what has happened (Hogarth and
Makridakis, 1981). The Monday morning quarterback syndrome is
strong in all of us. After the fact we believe we know what has
happened and we can explain with absolute certainty the reasons
why those involved were successful visionaries—or outright failures
blinded by shortsightedness and unable to recognize and act upon the
major changes that affect their firm and industry/market. Hindsight
is easy. The big challenge is developing correct foresight about future
events whose timing and consequences are not yet known.

At the beginning of 1997, for instance, there was a big debate. On
one side were Intel and Microsoft, whose dominance forced consumers
into a spiral of buying ever more sophisticated computer programs,
such as Windows 95, whose operation required faster computers
(i.e., those using Intel’s Pentium chip). This spiral of bigger pro-
grams/faster computers seemed endless; if buyers wanted to keep
up with the newest developments they had to continuously spend
large sums on upgrading their computers and on buying bigger, more
sophisticated programs. In doing so they improved the profitability
of Intel and Microsoft, but they spent a lot of money.

On the other side of the debate were firms like Sun Microsystems,
Oracle, and Netscape that argued that there was no need for high-
powered personal computers and huge, complex programs capable of
meeting the needs of even the most sophisticated users. Instead they
proposed a cheap, basic computer box that could run on the Internet
(Schlender, 1996). Users could download any program they wished
from the Internet to do a specific task: word processing, spelling,
etc. Users would not have to pay for a single program containing
myriad features they would never use; rather, they would pay only
for what was wanted, renting the programs for a single occasion,
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or on a monthly or yearly basis. The advantage of renting is that
in addition to being extremely cheap, as there would be millions
of users, the version rented would contain the latest improvements.
Since even the largest, specific-purpose program could be run on a
cheap basic computer box, users would not have to buy a bigger
and faster computer every few years, thereby breaking the spiral and
diminishing or destroying the monopolistic power that “Wintel” held
over the personal computer market. The result would open up brand-
new possibilities.

At present it is not clear whether Intel/Microsoft or Sun/Oracle/
Netscape will be the winners of the race to dominate the personal
computer market. Maybe there will be one, or the other, or probably
a combination of the two. This is where correct foresight is critical,
as the consequences of who will win are enormous. At the same time,
in a few years when the winner is known it will be easy to say, in
hindsight, whether Bill Gates of Microsoft and Andy Grove of Intel
were visionary or shortsighted. In other words, saying after the fact
that Ken Olsen of Digital and John Akers of IBM were shortsighted
has little value. What provides great value is correct foresight about
the future. Successful foresight will have to involve new developments
that go beyond Internet and computer languages such as Sun’s Java.
These are not even known at present but will, undoubtedly, become
huge commercial successes in the future precisely because of the
creative insights of some people who can conceive their commercial
value and take specific steps to exploit them to their advantage.

As creative insights will always be in short supply, so will the
foresight needed to correctly anticipate major future changes, which
when exploited can provide huge commercial benefits. The bottleneck
to future success will, therefore, become the creative potential of
entrepreneurs and executives who can come up with the foresight
required to anticipate those changes that will be in the biggest
demand tomorrow.
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12/4 Forecasting in the future

In the future we foresee several major changes that will affect fore-
casting and its use and usefulness. They will be mostly related to the
so-called Information Revolution and are described in the remainder Information

Revolutionof this chapter.

12/4/1 Data, information, and forecasts

As the cost of computers, communications, and information storage
falls, their usage will increase—to the point that they become util-
ities like electricity and telephone. Nearly everyone will be able to
access any databank or source of information desired, and/or store
practically unlimited data on some computer device; this access will data access

be possible from anywhere. As the dissemination of information
becomes faster and global, market efficiency will improve and local efficiency

inefficiencies be eliminated. The quality of information will become information quality

better as more resources are devoted to data collecting and process-
ing. Furthermore, computer programs will analyze and evaluate in-
formation and provide expert advice on its meaning and implications. expert advice

Such advice will also include the identification and extrapolation of
established patterns/relationships, assuming no major changes, or
even providing alternative scenarios under various assumptions of
possible changes so as to aid judgmental forecasting. As a result,
accurate extrapolative predictions will be commonplace and provide
no competitive advantages. Instead, they will be a competitive
requirement every firm will need so as to improve its internal efficiency
and effectiveness and survive in the long run. Externally, as more
organizations and people are capable of accurate extrapolations,
whatever benefits they generate will be quickly discounted, making
all markets more efficient.

A major consequence of super-efficient markets will undoubtedly
be that they behave increasingly like random walks, making it im- random walks

possible to predict, at least statistically, their turning points. In-
significant, unpredictable events could trigger major turning points
in a fashion similar to the “butterfly effect” in chaos theory, where chaos theory

some trivial initial condition (such as the air displaced by the flying
of a butterfly in a tropical forest) can instigate a major hurricane
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a week or two later. Since business and economic events are, in
addition, influenced by psychological factors, the effect of some trivial
initial happening could bring considerable changes as its effects are
amplified through people’s perceptions of the implications. In such an
environment competitive advantage will stem from correct, unique,
and insightful anticipations of forthcoming changes that are exploited
before others realize the opportunities.

12/4/2 Collective knowledge, experience, and forecasting

Successful forecasting requires studying the past and knowing the
present. In statistical forecasting historical data are collected and
used to identify established patterns and existing relationships, which
are subsequently extrapolated to predict their continuation. Such
data provide the memory that links the past/present with the future
and serves as the basis of forecasting. But in the long run we must
break the linearity and through creative insights build the future of
our dreams. Many will fail and in a sense pay the price for the few
who will manage to achieve success.

Where much can and needs to be done is in soliciting the collective
wisdom of all knowledgeable people in the organization in ways that
can improve overall forecasting accuracy and usage while keeping
costs as low as possible. This is where groupware run throughgroupware

intranets (and extranets) is bound to play a highly valuable role,
improving organizational learning and the accuracy of forecasting,
particularly in special, or even unique, cases and when patterns
and/or relationships have changed or are about to change.

The three biggest advantages we see in groupware for forecasting
purposes are:

1. Allowing the interaction of several/many people without theease of interaction

need to be physically present in a meeting. This means that
their collective wisdom and knowledge can be tapped without
the high cost of co-location. Groupware also reduces the in-
fluence of dominant individuals (including the boss, who can
unduly impose opinions about the future) while speeding up
the process of arriving at a consensus forecast(s) because several
people can offer opinions simultaneously. Moreover, as useful
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background information can be put onto electronic bulletin
boards, participants can be better informed before or during
a “virtual” meeting. Furthermore, suppliers, customers, and
company people working in different departments will have
access to the data banks and bulletin boards where information
is kept and changes, and their implications, are noted so that
their influence on the future can be better estimated;

2. Keeping extensive and detailed records of the factors and op- keeping records

tions considered as well as the forecasts of the various partic-
ipants. These records can be used in the future to form the
basis of feedback and facilitate learning. Equally important,
groupware can record such learning for the future, when other
people will be involved in the forecasting process. A new
product manager, for example, will not have to start from
scratch but can instead learn from records kept in ways that
allow for organizational learning beyond specific individuals.

3. Facilitating the “unbiasing” of judgmental forecasts (by both unbiased judgmental

forecastsproviding objective information and illustrating past cases of
judgmental biases) and the building of a consensus concern-
ing the future. Such a consensus is particularly valuable for
long-term predictions when important technological and other
changes can occur and whose consequences can be critical for
the firm.

In our view, groupware will probably affect the field of forecasting
more than any other development (in ways that are difficult to envi-
sion at present), providing the impetus for more accurate and effective
predictions and allowing statistical predictions to be more efficiently
and effectively blended (combined) with judgmental ones. To achieve
such an objective the advantages of both statistical methods and
judgment will have to be exploited while their disadvantages avoided
by designing appropriate groupware procedures for doing so. More
specifically, the field of forecasting must go beyond its present quan-
titative bounds and expand to include the following 10 considerations
necessary to better understand the factors that influence the future
and how they could change past patterns and/or relationships:
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1. Economic/market forces (e.g., the law of demand and supply)
and biological laws (e.g., the S-shaped increases in growth) that
generate and maintain various types of long-term equilibria.

2. People’s preferences, tastes, and budget constraints.

3. People’s aspirations to change the future in some desired man-
ner or direction.

4. Some people’s ability to change the future in some favored way
(e.g., through new technologies).

5. Some people’s wish to maintain the status quo.

6. Some people’s capabilities to control or slow down change (e.g.,
through monopolies or cartels).

7. Natural events (e.g., a good or bad harvest) and their influence
on the economic and business environment.

8. Momentum, or inertia, that sustains established patterns and
upholds existing relationships, at least in the short-term.

9. Psychological factors, market inefficiencies, and plain accidents
or mere coincidences.

10. Ability to monitor effectively current events and take corrective
action if necessary and possible.

This is, we believe, the direction the field of forecasting must take
to provide an “all-inclusive” service to those who need predictions
about the future upon which to base their plans and strategies. This
is, therefore, the big challenge for those in the field: they must go
beyond their narrow speciality and provide a service to encompass the
above 10 aspects necessary for making accurate and realistic forecasts.
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Exercises

12.1 Describe what can and cannot be predicted while attempting
to forecast the future.

12.2 Discuss the value of creating meaningful insights about the
future when operating in a competitive environment where
information is readily and instantly disseminated.

12.3 Where do you see the field of forecasting going in the future
and what can you do to benefit from forthcoming changes in
the environment?

12.4 Table 12-2 in this chapter shows Armstrong’s Forecasting
Audit Checklist. Comment on the value of such checklist and
discuss its usefulness in avoiding forecasting biases.
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1 Forecasting Software

Every forecaster will need access to at least one forecasting package.
The selection of a suitable package can be difficult with thousands of
computer packages available which allow some forecasting. There
are large packages providing a bewildering array of facilities and
able to handle millions of data from thousands of variables. There
are small specialized packages which will handle only a few models,
often providing facilities which are not available in larger packages.
There are statistical programming languages enabling the user to
develop their own forecasting methods. There are add-on forecasting
functions for spreadsheet packages. The choice of software depends
on the forecasting methods available, the ease of data entry and data
management, the quality of the output, and a host of other factors
associated with the needs of the user.

In this appendix, we summarize a range of forecasting software and
give some indication of their usefulness in different contexts.

1/1 Spreadsheets

Spreadsheet packages such as Excel, Lotus 1-2-3, and Quattro Pro arespreadsheet packages

used extensively in business. They usually provide some forecasting
functions. For example, Microsoft Excel (version 5.0) provides facili-
ties for single exponential smoothing, simple and multiple regression.
Add-on functions are available for the most popular packages which
provide some additional facilities.

It should be noted that a spreadsheet is not designed for statistical
analysis and the facilities which are provided are insufficient for
exploratory data analysis, checking model assumptions and compar-
ing several competing forecasting methods. Instead, a spreadsheet
functions more as a statistical calculator. Many other packages allow
input from Lotus and Excel files, so they provide a useful adjunct to
other more powerful forecasting software.

1/2 Statistics packages

General statistics packages usually provide some forecasting facilities.
Minitab, SAS, and SPSS are among the most popular statistics
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packages which are used for forecasting. Each of these packages
is available for both mainframes and microcomputers, and can be
used via a menu structure or via a command language. Table I-1
summarizes their capabilities. We have also included S-Plus which is
not intended to be a general statistics package, but an environment
for data analysis and developing statistical applications. However, it
comes with a number of useful forecasting facilities. In producing this
summary, we have used the Minitab version 11, SAS version 6.12 with
the ETS component, SPSS version 7.5 with the Trends module and
S-Plus version 4.0. All packages were used on the Windows platform.

Note that although a package may offer a particular method, the
ease-of-use and available options can vary greatly between packages.
Only where a package has a built-in function to perform a particular
method is it marked as available. Each of these packages also has
some facilities for programming, enabling the user to implement
forecasting methods not provided as a standard option.

General statistics packages are useful for those who require statis-
tical, graphical, and data analysis facilities more generally than just
for forecasting. Reviews of statistical software appear regularly in software reviews

a number of journals including the “Statistical Software Newsletter”
which is published with Computational Statistics and Data Analysis
by Elsevier.

1/3 Specialty forecasting packages

Smaller computer packages are available which specialize in forecast-
ing. These contain a much more limited range of facilities than a
general statistics package, but they often contain forecasting tools
which are not available in the larger packages. These specialty
packages are useful for those whose only statistical needs are related
to forecasting. They are also useful in conjunction with a more
general statistics package, particularly where they provide facilities
which are otherwise unavailable. Most of the specialty forecasting
packages are only available on the Windows platform. Among the
most popular Windows forecasting packages are Forecast Pro, EViews
(a successor of MicroTSP), SIBYL/Runner, Autobox, and SCA.
These are summarized in Table I-2. In producing this summary,
we have used Forecast Pro 2.0, EViews 3.0, SIBYL/Runner 1.12,
Autobox 4.0, and SCA 5.1a (with PC-EXPERT and PC-GSA). Some
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Chapter Method Minitab SAS SPSS S-Plus

2 Time plots
√ √ √ √

Seasonal plots
Scatterplots

√ √ √ √

Autocorrelation
√ √ √ √

3 Classical decomposition
√ √ √

Census II decomposition (X11) √ √

STL decomposition
√

Decomposition plot
√

Sub-series plot √

4 Moving average forecasts
√

Single exponential smoothing
√ √

ARRSES
Holt’s method

√ √ √

Holt-Winters’ additive method
√ √ √

Holt-Winters’ multiplicative method
√ √ √

Other exponential methods
√ √

5 Correlations
√ √ √ √

Simple linear regression √ √ √ √

Loess smoothing
√ √ √ √

6 Multiple linear regression
√ √ √ √

Best subsets regression
√

Step-wise regression
√ √ √ √

Durbin-Watson test
√ √ √

Residual plots
√ √ √ √

7 ACF and PACF plots √ √ √ √

Box-Pierce or Ljung-Box tests
√ √ √

ARIMA models
√ √ √ √

AIC for ARIMA models √ √ √

Automatic model selection
√

Simulation of ARIMA models
√ √

8 Regression with AR errors
√ √ √

Regression with ARIMA errors
√ √ √

Dynamic regression models
√

Intervention analysis
√

*

Multivariate AR models
√

State space models
√

Non-linear models
Neural network forecasting

Other Comparison of forecasting methods √

Allows holdout sets
√

* only where δ(B) = 1

Table I-1: Forecasting facilities in Minitab 11, SAS 6.12 (with ETS), SPSS 7.5
(with Trends) and S-Plus 4.0.
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Chapter Method Forecast EViews SIBYL/ Autobox SCA
Pro Runner

2 Time plots
√ √ √ √ √

Seasonal plots
Scatterplots

√ √

Autocorrelation
√ √ √ √ √

3 Classical decomposition
√

Census II decomposition (X11)
√ √

STL decomposition
Decomposition plots
Sub-series plots

4 Moving average forecasts
√ √ √ √ √

Single exponential smoothing
√ √ √ √ √

ARRSES √

Holt’s method
√ √ √ √ √

Holt-Winters’ additive method
√ √ √ √ √

Holt-Winters’ multiplicative method √ √ √ √ √

Other exponential methods
√ √ √ √ √

5 Correlations
√ √ √ √

Simple linear regression
√ √ √ √ √

Loess smoothing
6 Multiple linear regression

√ √ √ √ √

Best subsets regression
Step-wise regression

√ √

Durbin-Watson test
√ √ √ √

Residual plots
√ √ √

7 ACF and PACF plots
√ √ √ √ √

Box-Pierce or Ljung-Box tests
√ √ √ √

ARIMA models
√ √ √ √ √

AIC for ARIMA models
√ √ √ √

Automatic model selection
√ √ √

Simulation of ARIMA models
√ √ √

8 Regression with AR errors
√ √ √ √

Regression with ARIMA errors
√ √ √

Dynamic regression models √ √

Intervention analysis
√ √

Multivariate AR models
√ √

State space models
√

Non-linear models
√

Neural network forecasting
Other Comparison of forecasting methods

√ √ √ √ √

Allows holdout sets √ √ √ √ √

Table I-2: Forecasting facilities in Forecast Pro 2.0, EViews 3.0, SIBYL/Runner
1.12, Autobox 4.0 and SCA for Windows version 5.1a (with PC-EXPERT and PC-
GSA).
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of these packages offer a wide range of forecasting facilities; others
offer advanced features for a smaller set of methods.

Reviews of forecasting packages appear periodically. Recent re-software reviews

views include Ord and Lowe (1996) and Rycroft (1993, 1995). Reg-
ular reviews appear in the International Journal of Forecasting and
the Journal of Forecasting.

1/4 Selecting a forecasting package

Because there is such a large number of different forecasting packages
to choose from, many users have difficulty selecting an appropriate
package for their needs. The questions below provide some guide in
making a selection.

1. Does the package have the facilities you want? Checksoftware facilities

that the forecasting methods you wish to use are available in
the package. The checklist of methods in Tables I-1 and I-2
may be helpful. You will also need to check data management,
graphics, and reporting facilities.

2. What platforms is the package available on? Obviouslycomputer platforms

the package must be available on your preferred platform. But
it may also be necessary to have it available on several platforms
and to be able to transfer files between platforms.

3. How easy is the package to learn and use? Ask for asoftware ease-of-use

demonstration to ensure that the facilities are easy to use. In
particular, make sure that it is easy to input and output data
in the format you require.

4. Is it possible to implement new methods? The advancednew methods

user will want to be able to modify existing methods or im-
plement new methods. This is normally done via an in-built
programming language.

5. Do you require interactive or repetitive forecasting?interactive software

Often you will need to carry out very similar forecasting tasks
each month, or each quarter. These may involve thousands
of individual series. In this case, a forecasting package which
provides a “batch” facility is useful. But if your forecasting
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is always carried out interactively, then the batch facility is
unnecessary.

6. Do you have very large data sets? Most packages have a
limit on the number of observations and the number of variables

large data sets

which can be handled. Be wary of all claims about the size of
data sets which can be handled. Such claims are sometimes
only true for very powerful computers. If possible, it is best to
try the software on your data first.

7. Is there any local support? Having someone nearby to help software support

is invaluable. Such a person may be a fellow user in the same
organization, a member of a local users’ group, or a contributor
to an Internet news group. Technical support provided by the
software vendor is also important, and good documentation is
essential. There are also short courses available for the most
widely used forecasting packages.

8. Does the package give the right answers? A common numerical accuracy

misconception is that all packages give the same answers.
Unfortunately, mistakes have been made, even in some very
well-known and widely-used packages. It is a good idea to check
output from the package against published results or output
from an equivalent analysis in a competing package. Some
differences will result from different algorithms being used for
numerical computation. But some may result from errors in
the program. Numerical inaccuracy can be a problem when
very large or very small numbers are involved. This has been a
particular problem with most spreadsheets (see Sawitzki, 1994).

2 Forecasting associations

The International Institute of Forecasters (IIF) is an association
that includes both academics and practitioners in the field. It hosts
an annual conference which is held one year in North America,
and the next outside North America. In addition to the annual
conference it also publishes the International Journal of Forecasting.
The purpose of the International Institute of Forecasters is to foster
generation, distribution, and knowledge on forecasting to academics
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and practitioners throughout the world. The IIF was founded in
1981.

Inquiries about membership of the International Institute of Fore-
casters should be addressed to:

Stuart Bretschneider
Center for Technology and Information Policy
Syracuse University
Syracuse, NY 13244-1090
U.S.A.

The annual membership is $80 which includes a subscription to the
International Journal of Forecasting and The Forum newsletter.

The International Association of Business Forecasters

(IABF) includes mostly practitioners in the area of forecasting. In
addition to its annual conference it also publishes the Journal of
Business Forecasting and the joint newsletter (The Forum) with the
International Institute of Forecasters. The International Association
of Business Forecasters is dedicated to:

• enhancing the professional status of users and preparers of
business forecasts;

• promoting an understanding and appreciation for the work of
professional forecasters among business managers;

• encouraging research in the areas of forecasting methods and
systems, and planning;

• promoting dialogue among users, preparers, and academicians
engaged in research and teaching of forecasting techniques;

• conducting periodic regional and national conferences, sym-
posia, and similar events to disseminate information about
business forecasting and planning;

• helping members learn more about forecasting and planning.

Membership information is available through:

Howard Keen
Conrail
2001 Markets Street 5-B
PO Box 41405
Philadelphia, PA 19101-1405
U.S.A.
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The cost of the membership varies according to whether it is a
company subscription ($150) or an individual subscription ($30 for
the United States and Canada, $35 outside the United States and
Canada) or a full-time student ($10).

Membership in the International Association of Business Forecast-
ers includes a $10 discount for the Journal of Business Forecasting.

3 Forecasting conferences

The two major forecasting conferences are annual and are organized Forecasting

conferencesby the two major associations (IIF and IABF). Both conferences
include papers on all principal aspects of forecasting and they are at-
tended by several hundred participants. The IIF conferences include
more academic papers and more of the participants are academicians.
The IABF conferences include mostly practical, “how to do” papers,
and are attended by many practitioners. Several of the papers
(usually the most important) presented at these conferences are later
published in the International Journal of Forecasting and the Journal
of Business Forecasting respectively. The IIF conference is held one
year in North America, and the following year in a city outside North
America, while the IABF conference is usually held in the United
States.

4 Forecasting journals and newsletters

There are three forecasting journals and a newsletter (The Forum) Forecasting journals

Forecasting

newsletter

which is published jointly by the two major forecasting associations.
In addition, journals in statistics, economics, business and manage-
ment often include articles on forecasting.

The International Journal of Forecasting is (in the opinion of
the authors) the leading journal in the field. It publishes high quality
academic papers and includes sections on software and book reviews
as well as surveys on research on forecasting. It covers all areas of
forecasting and occasionally includes papers on the practice of fore-
casting. Subscriptions to the journal are obtained automatically for
the members of the International Institute of Forecasters. For others
who are not members, they can obtain subscription information from
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the Customer Service Department, Elsevier Science, at the following
addresses:

PO Box 945 PO Box 211 20-12 Yushima 3-chome
New York, NY 10159 0945 1000 AE Amsterdam Bunkyo-ku, Tokyo 113
U.S.A. The Netherlands Japan

The Journal of Business Forecasting is published by the In-
ternational Association of Business Forecasters and includes mainly
articles that are concerned with practical and “how to do it” issues.
Subscription information about the journal can be obtained from the
International Association of Business Forecasters.

The Journal of Forecasting includes mostly academic papers
on the various areas of forecasting. Information for subscriptions can
be obtained from the publisher, John Wiley & Sons, Baffins Lane,
Chichester, Sussex PO19 1UD, England.

The Forum is the joint newsletter of the International Association
of Business Forecasters and the International Institute of Forecast-
ers. It contains information about the forecasting conferences as
well as various topics of interest to forecasters. It includes reviews
of forecasting programs, it contains advertisements from all major
developers of forecasting softwares, and lists on how these programs
can be obtained. Finally, it publishes short articles and includes news
about those working in the field of forecasting.

5 Forecasting on the Internet

There is a rapidly growing collection of forecasting resources on
the Internet including time series data, forecasting software, e-mail
discussion lists, and information about conferences.

A good place to start is the web page for this book at

www.maths.monash.edu.au/̃ hyndman/forecasting/

This contains all the data used in this book and over 500 additional
time series from the “Time Series Data Library” which can be usedTime Series Data

Library for student projects or self-learning. The 3003 series used in the
latest M3-IJF Competition can also be downloaded. There are linksM3-IJF Competition
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to other time series collections, forecasting resources, and forecasting
software.

The International Institute of Forecasters has a web page which
contains links to other resources, time series data, information about
how to join their e-mail discussion list, information about the next
International Forecasting Symposium, and more. The web address is

weatherhead.cwru.edu/forecasting/

The home page of the International Association of Business Fore-
casters is at

www.iabf.org

This includes The Forum (the joint newsletter of the IIF and IABF),
information about upcoming conferences, and how to join the asso-
ciation.
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Appendix II:

GLOSSARY OF FORECASTING

TERMS

ACF See Autocorrelation function.

Additive model A model in which the various terms are added to-

gether. See also Multiplicative model.

Adaptive response rate In many time series forecasting methods, a

trade-off must be made between smoothing randomness and

reacting quickly to changes in the basic pattern. Adaptive-

response-rate forecasting uses a decision rule that instructs

the forecasting methodology (such as exponential smoothing) to

adapt more quickly when it appears that a change in pattern

has occurred and to do more smoothing of randomness when it

appears that no such change has occurred.

AIC (Akaike’s Information Criterion) The AIC provides a measure

of the goodness-of-fit of a model which takes into account the

number of terms in the model. It is commonly used with ARIMA

models to determine the appropriate model order. The AIC is

equal to twice the number of parameters in the model minus

twice the log of the likelihood function. The theory behind the

AIC was developed by Akaike and is based on entropy concepts.

See Order selection criteria.

Algorithm A systematic set of rules for solving a particular problem.

The sets of rules used in applying many of the quantitative

methods of forecasting are algorithms.

589
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Applicability Recently, applicability has gained recognition as an

important criterion in selecting a forecasting method. Appli-

cability refers to the ease with which a method can be applied

to a given situation with a specific user of forecasting. Increased

complexity of sophisticated forecasting methods often reduces

applicability.

ARMA model This type of time series forecasting model can be

autoregressive (AR) in form, moving average (MA) in form, or

a combination of the two (ARMA). In an ARMA model, the

series to be forecast is expressed as a function of both previous

values of the series (autoregressive terms) and previous error

values from forecasting (the moving average terms).

ARIMA An abbreviation for AutoRegressive Integrated Moving

Average. A time series which, when differenced, follows an

ARMA model is known as an ARIMA model. It is a very broad

class of time series models. See Autoregressive (AR) model,

Differencing, Integrated, and Moving average.

Asymptotically unbiased estimator If the bias of an estimator ap-

proaches zero as the sample size increases, the estimator

is called “asymptotically unbiased.” The formula for mean

squared error is a biased estimator of variance, but it is asymp-

totically unbiased. See Biased estimator.

Autocorrelated errors When the error terms remaining after appli-

cation of a forecasting method show autocorrelation, it indicates

that the forecasting method has not removed all of the pattern

from the data. There are several hypothesis tests for autocor-

related errors. The Box-Pierce test and Ljung-Box test check

whether a sequence of autocorrelations is significantly different

from a sequence of zeros; the Durbin-Watson test checks only for

first-order autocorrelations after fitting a regression model. See

Regression with ARIMA errors and Dynamic regression models.

Autocorrelation This term is used to describe the correlation between

values of the same time series at different time periods. It is

similar to correlation but relates the series for different time

lags. Thus there may be an autocorrelation for a time lag of 1,

another autocorrelation for a time lag of 2, and so on.
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Autocorrelation function The pattern of autocorrelations for lags 1,

2, . . . , is known as the autocorrelation function or ACF. A plot

of the ACF against the lag is known as the correlogram. It is

frequently used to identify whether or not seasonality is present

in a given time series (and the length of that seasonality), to

identify appropriate time series models for specific situations,

and to determine if data are stationary.

Autoregressive (AR) model Autoregression is a form of regression,

but instead of the variable to be forecast being related to other

explanatory variables, it is related to past values of itself at

varying time lags. Thus an autoregressive model would express

the forecast as a function of previous values of that time series.

Backcasting In applying quantitative forecasting techniques based

on past errors, starting values are required so certain recursive

calculations can be made. One way to obtain these is to apply

the forecasting method to the series starting from the end and

going to the beginning of the data. This procedure is called

backcasting and provides a set of starting values for the errors

that can then be used for applying that forecasting method to

the standard sequence of starting from the data and forecasting

through the end.

Backward shift operator The letter B is used to denote a backward

shift by one period. Thus B operating on Xt has the effect of

shifting attention to Xt−1. Similarly BB or B2 is the same as

shifting attention to two periods back. A first difference for a

time series can be denoted (1−B)Xt. A second-order difference

is denoted (1−B)2Xt and a second difference would be denoted

(1−B2)Xt. See Differencing.

Biased estimator If a formula is defined to calculate a statistic (such

as the mean) and the expected value of this statistic is not

equal to the corresponding population parameter (e.g., the

mean of the population), then the formula will be called a

biased estimator. The usual formula for the sample mean is

an unbiased estimator of the population mean, but the formula

for mean squared error is a biased estimator of the variance. See

Asymptotically unbiased estimator.
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BIC (Bayesian Information Criterion) Like the AIC, the BIC is an

order selection criteria for ARIMA models. It was invented by

Schwarz1 (1978) and sometimes leads to less complex models

than the AIC.

Box-Jenkins methodology George E. Box and Gwilym M. Jenkins

have popularized the application of autoregressive / moving

average models to time series forecasting problems. While

this approach was originally developed in the 1930s, it did

not become widely known until Box and Jenkins published a

detailed description of it in book form in 1970.2 The gen-

eral methodology suggested by Box and Jenkins for applying

ARIMA models to time series analysis, forecasting, and control

has come to be known as the Box-Jenkins methodology for time

series forecasting.

Box-Pierce test This is a test for autocorrelated errors. The Box-

Pierce Q statistic is computed as the weighted sum of squares

of a sequence of autocorrelations. If the errors of the model

are white noise, then the Box-Pierce statistic is distributed

approximately as a chi-square distribution with h−m degrees of

freedom where h is the number of lags used in the statistic and

m is the number of fitted parameters. It is sometimes known

as a “portmanteau test.” Another portmanteau test is the

Ljung-Box test which is an improved version of the Box-Pierce

test.

Business cycle Periods of prosperity generally followed by periods

of depression make up what is called the business cycle. Such

cycles tend to vary in length and magnitude and are often dealt

with as a separate subcomponent of the basic pattern contained

in a time series.

Census II The Census II method is a refinement of the classical

decomposition method. It attempts to decompose a time series

into seasonal, trend, cycle, and random components that can be

analyzed separately. This method has been developed by using

1G. Schwarz (1978) Estimating the dimensions of a model, Annals of Statistics,
6, 461–464.

2G.E.P. Box and G.M. Jenkins (1970) Time Series Analysis, San Francisco:
Holden-Day. Later editions were published in 1976 and 1994 (with G.C. Reinsell).
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the empirical results obtained from its application at the United

States Bureau of Census and elsewhere. The most widely used

variant of the Census II method is X-11 decomposition. This

has now been superseded by the X-12-ARIMA method.

Central limit theorem Regardless of the shape of the population

distribution, this theorem states that the sampling distribution

of the mean of n independent sample values will approach the

normal distribution as the sample size increases. In practice,

when the sample size is sufficiently large (say greater than 30)

this theorem is invoked.

Chi-square test Given a standard normal population (i.e., normal

distribution with mean zero and variance one) and n indepen-

dently sampled values, the sum of the squares of these sampled

values is called a chi-square value with n degrees of freedom.

The complete set of such chi-square values is called a chi-square

distribution. Several statistics have approximate chi-square

distributions including the Box-Pierce statistic and the Ljung-

Box statistic. Using these statistics, hypothesis tests can be

conducted to see if the sample autocorrelations are significantly

different from zero. See Sampling distribution

Classical decomposition method This algorithm seeks to decompose

the underlying pattern of a time series into cyclical, seasonal,

trend, and random subpatterns. These subpatterns are then

analyzed individually. See also Census II.

Coefficient of determination See R-squared and R-bar-squared.

Coefficient of variation This statistic is the ratio of the standard

deviation to the mean, expressed as a percent. It is a measure

of the relative dispersion of a data series.

Confidence interval Based on statistical theory and probability dis-

tributions, a confidence interval, or set of confidence limits, can

be established for population parameters such as the mean.

For example, a 95% confidence interval will contain the true

value of the population parameter with probability 95%. The

term confidence interval is sometimes inappropriately applied

to prediction interval.
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Correlation coefficient A standardized measure of the association

or mutual dependence between two variables, say X and Y .

Commonly designated as r, its values range from −1 to +1,

indicating strong negative relationship, through zero, to strong

positive association. The correlation coefficient is the covari-

ance between a pair of standardized variables.

Correlation matrix Most computer programs designed to perform

multiple regression analysis include the computation of the cor-

relation coefficients between each pair of variables. The set of

these correlation coefficients is often presented in the form of a

matrix, referred to as the correlation matrix.

Correlogram See Autocorrelation function.

Covariance This is a measure of the joint variation between variables,

say X and Y . The range of covariance values is unrestricted

(large negative to large positive). However, if the X and Y

variables are first standardized, then covariance is the same as

correlation and the range of covariance (correlation) values is

from −1 to +1.

Critical value In hypothesis testing, the critical value is the threshold

for significance. A test statistic beyond the critical value gives

a significant result. See Hypothesis testing and P-value.

Crosscorrelation A standardized measure of association between one

time series and the past, present, and future values of another

time series. This statistic has the characteristics of a regular

correlation coefficient and is used in the Box-Jenkins approach

to fitting dynamic regression models. It is not covered in this

book.

Cumulative forecasting Instead of forecasting values for sequential

time periods of equal length, users of forecasting often prefer to

forecast the cumulative level of a variable over several periods.

For example, one might forecast cumulative sales for the next

12 months, rather than forecast an individual value for each of

these 12 months.

Curve fitting One approach to forecasting is simply to fit some

form of curve, perhaps a polynomial, to the historical time
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series data. Use of a linear trend is, in fact, a curve fitting

method. Higher forms of curve fitting are also possible, and

they frequently provide better results.

Cyclical data See Business cycle.

Cyclical index A cyclical index is a number, usually standardized

around 100, that indicates the cyclical pattern of a given set of

time series data.

Decomposition See Classical decomposition method, Census II, and

STL decomposition.

Degrees of freedom (df) Given a sample of data and the computa-

tion of some statistic (e.g., the mean), the degrees of freedom are

defined as the number of observations included in the formula

minus the number of parameters estimated using the data. For

example, the mean statistic for n sample data points has n d.f.,

but the variance formula has (n− 1) df because one parameter

(the mean of X) has to be estimated before the variance formula

can be used.

Delphi method This qualitative or technological approach seeks to

use the judgment of experts systematically in arriving at a

forecast of what future events will be or when they may occur.

The approach uses a series of questionnaires to elicit responses

from a panel of experts.

Dependent variable See Forecast variable.

Depression This term is used to describe that portion of the business

cycle in which production and prices are at their lowest point,

unemployment is highest, and general economic activity is low.

Deseasonalized data See Seasonal adjustment.

Diagnostic checking A step in time series model building where the

estimated errors of a model are examined for independence,

zero mean, constant variance, and so on.

Differencing When a time series is non-stationary, it can often be

made stationary by taking first differences of the series—that

is, creating a new time series of successive differences (Xt −
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Xt−1). If first differences do not convert the series to stationary

form, then first differences of first differences can be created.

This is called second-order differencing. A distinction is made

between a second-order difference (just defined) and a second

difference (Xt−Xt−2). See Backward shift operator and Seasonal

differencing.

Double moving average When a moving average is taken of a series

of data that already represents the result of a moving average, it

is referred to as a double moving average. It results in additional

smoothing or the removal of more randomness than an equal-

length single moving average.

Dummy variable Often referred to as a binary variable whose value is

either 0 or 1, a dummy variable is frequently used to quantify

qualitative events. For example, a strike/non-strike situation

could be represented by a dummy variable. These variables are

most commonly used in the application of multiple regression

analysis. They are also known as indicator variables.

Durbin-Watson statistic The Durbin-Watson (DW) statistic, named

after its creators, tests the hypothesis that there is no auto-

correlation of one time lag present in the errors obtained from

forecasting. By comparing the computed value of the Durbin-

Watson test with the appropriate values from the table of values

of the DW statistic (Table F of Appendix III), the significance

can be determined. See Autocorrelated errors.

Dynamic regression models A dynamic regression model is a regres-

sion model which allows lagged values of the explanatory vari-

able(s) to be included. The relationship between the forecast

variable and the explanatory variable is modeled using a transfer

function. A dynamic regression model is used to predict what

will happen to the forecast variable if the explanatory variable

changes. The errors from this model are usually described with

an ARIMA model. Hence, a regression with ARIMA errors is a

special case of a dynamic regression model.

Econometric model An econometric model is a set of equations

intended to be used simultaneously to capture the way in which

endogenous and exogenous variables are interrelated. Using
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such a set of equations to forecast future values of key economic

variables is known as econometric forecasting. The value of

econometric forecasting is intimately connected to the value of

the assumptions underlying the model equations.

Economic indicator An economic indicator is a time series that has

a reasonably stable relation (it lags, leads, or is coincident) to

the average of the whole economy, or to some other time series

of particular interest. Leading indicators are frequently used to

identify turning points in the level of general economic activity.

Elasticity This term is used to describe the amount of change in

supply or demand when there is a 1% change in price. For a

highly elastic product there would be a change greater than 1%

in quantity with a 1% in price. The opposite is true for an

inelastic product.

Endogenous variable An endogenous variable is one whose value is

determined within the system. For example, in an econometric

model the market price of a product may be determined within

the model, thus making that an endogenous variable.

Error A forecast error is calculated by subtracting the forecast value

from the actual value to give an error value for each forecast

period. In forecasting, this term is commonly used as a syn-

onym for residual. However, in regression with ARIMA errors and

dynamic regression models, we draw a distinction between errors

and residuals. An error is the difference between the forecast

obtained from the regression part of the model and the actual

value whereas the residual is obtained by subtracting the true

forecast value from the actual value.

Error cost function An error cost function states the cost of an error

as a function of the size of the error. The most frequently used

functional form for this is quadratic, which assumes that the

effect of an error is proportional to the square of the error.

Estimation Estimation consists of finding appropriate values for the

parameters of an equation in such a way that some criterion

will be optimized. The most commonly used criterion is that of

mean squared error. Often, an iterative procedure is needed in
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order to determine those parameter values that minimize this

criterion.

Ex ante forecast A forecast that uses only information available at

the time of the actual forecast. See Ex post forecast.

Ex post forecast A forecast that uses some information beyond the

time at which the actual forecast is prepared. See Ex ante

forecast.

Exogenous variable An exogenous variable is one whose value is

determined outside of the model or system. For example, in

an econometric model the gross national product might be

an exogenous variable. In a multiple regression equation, the

explanatory variables would be exogenous variables.

Explanatory model This type of forecasting model assumes that the

variable to be forecast is related to one or more other explanatory

variables. Regression models, dynamic regression models, and

multivariate ARMA models are the most common forecasting

approaches of this type.

Explanatory variable An explanatory variable is one whose values

are determined outside of the system being modeled. An ex-

planatory variable is used to predict values of a forecast variable.

Explanatory variables are also called independent variables and

regressors.

Exploratory forecasting The general class of technological forecast-

ing methods that seek to predict long-run outcomes are known

as exploratory approaches. These contrast with the normative

approaches that seek to determine how best to achieve certain

long-term results.

Exponential growth If $100 is invested in a bank at 10% compound

interest, then the amount grows at an exponential rate. This is

exponential growth. Similarly, populations grow exponentially

if unchecked. In forecasting, many situations (e.g., sales, GNP)

can be modeled as exponential functions.

Exponential smoothing Exponential smoothing methods provide

forecasts using weighted averages of past values of the data and
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forecast errors. They are commonly used in inventory control

systems where many items are to be forecast and low cost is a

primary concern. The simplest exponential smoothing method

is single exponential smoothing (SES), suitable for data with

no trend or seasonal patterns. For trended data, Holt’s method

is suitable and for seasonal data, Holt-Winters’ method may be

used. Pegels’ classification provides a convenient structure in

which to study and apply exponential smoothing methods.

Feedback Feedback occurs when there is an interrelationship be-

tween two series such that past values of each series affect cur-

rent values of the other series. If feedback occurs, a multivariate

ARMA model must be used.

File A file is a collection of data arranged in some order for future

reference. When stored on a computer, files may represent

actual computer programs for performing certain forecasting

methods or simply historical data to be used by those computer

programs.

Filter The purpose of a filter, as developed in engineering, is to elim-

inate random variations (high or low frequencies) so that only

the true pattern remains. As applied to time series forecasting,

filters generally involve one or more parameters that are used

to weight historical values of the series, or of the residuals of the

series, in some optimal way that eliminates randomness.

First difference See Differencing.

Forecasting Forecasting is the prediction of values of a variable based

on known past values of that variable or other related variables.

Forecasts also may be based on expert judgments, which in turn

are based on historical data and experience.

Forecast horizon The forecast horizon is the length of time into the

future for which forecasts are to be prepared. These gener-

ally vary from short-term forecasting horizons (less than three

months) to long-term horizons (more than two years).

Forecast interval See Prediction interval.

Forecast variable A variable that is predicted by some other variable

or variables is referred to as a forecast variable. The forecast
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variable is also called the dependent variable or response vari-

able.

Fourier analysis See Spectral analysis.

F -test In statistics the ratio of two mean squares (variances) can

often be used to test the significance of some item of interest.

For example, in regression the ratio of “mean square due to the

regression” to “mean square due to error” can be used to test

the overall significance of the regression model. By looking up

an F table, the degree of significance of the computed F value

can be determined. See Hypothesis testing.

Function A function is a statement of relationship between variables.

Virtually all of the quantitative forecasting methods involve

a functional relationship between the item to be forecast and

either previous values of that item, previous error values, or

other explanatory variables.

Goodness of fit See AIC, R2, Mean absolute percentage error (MAPE),

and Mean squared error (MSE).

Gross National Product (GNP) The most comprehensive measure

of a nation’s income is the gross national product. It includes

the total output of goods and services for a specific economy

over a specific period of time (usually one year).

Heteroscedasticity This condition exists when the errors do not

have a constant variance across an entire range of values. For

example, if the residuals from a time series have increasing

variance with increasing time, they would be said to exhibit

heteroscedasticity. See Non-stationary and Homoscedasticity.

Heuristic A heuristic is a set of steps or procedures that uses a trial-

and-error approach to achieve some desired objective. The word

comes from Greek, meaning to discover or find.

Holdout set When assessing the performance of one or more models

for making forecasts, a group of data is sometimes withheld

from the end of the series. This is a holdout set and is not

used in the parameter estimation of the models. The forecasts
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from each of the models can then be compared with this hold-

out set to allow genuine forecast assessment. See Post-sample

evaluation.

Holt’s exponential smoothing method Holt’s method is an exten-

sion of single exponential smoothing which allows for trends in

the data. It uses two smoothing parameters, one of which is

used to add a trend adjustment to the single smoothed value. It

is sometimes also called double or linear exponential smoothing.

Holt-Winters’ exponential smoothing method Winters extended

Holt’s exponential smoothing method by including an extra equa-

tion that is used to adjust the forecast to reflect seasonality.

This form of exponential smoothing can thus account for data

series that include both trend and seasonal elements. It uses

three smoothing parameters controlling the level, trend, and

seasonality.

Homoscedasticity This condition exists when the variance of a series

is constant over the entire range of values of that series. It

is the opposite of heteroscedasticity. When a series of residuals

exhibits constant variance over the entire range of time periods,

it is said to exhibit homoscedasticity.

Horizontal or stationary data See Stationary.

Hypothesis testing An approach commonly used in classical statis-

tics is to formulate a hypothesis and test the statistical signifi-

cance of a hypothesis. For example, a hypothesis might be that

the errors from applying a time series method of forecasting

are uncorrelated. The statistical test would then be set up to

determine whether or not those residuals behave in a pattern

that makes then significantly different (statistically) from un-

correlated variables. See P-value.

Identification This is the step in time series model building (for

ARMA and ARIMA approaches) where patterns in summary

statistics such as autocorrelation functions, partial autocorrelation

functions, and so on are related to potential models for the data.

The intent is to identify, at least tentatively, an appropriate

model so that the next steps in model-building—estimating

parameters followed by diagnostic checking—can be pursued.
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(It should be noted that this definition and use of the word

bears no relationship to the same word as used in the economics

literature.)

Impulse response weights If an input time series X exerts its in-

fluence on an output variable Y in a dynamic manner over

the future time periods, then the set of weights defining this

relationship is called the impulse response function. These

weights are estimated as part of a dynamic regression model.

Independent variable See Explanatory variable.

Index numbers These numbers are frequently used as summary in-

dicators of the level of economic activity and/or corporate

performance. For example, the Federal Reserve Board Index

of Industrial Production summarizes a number of variables

that indicate the overall level of industrial production activity.

Similar index numbers can be prepared for economic variables,

as well as for corporate variables.

Indicator variable See Dummy variable.

Integrated This is often an element of time series models (the I in

ARIMA models), where one or more of the differences of the

time series are included in the model. The term comes from the

fact that the original series may be recreated from a differenced

series by a process of integration (involving a summation in the

typical discrete environment).

Interactive forecasting This term has been used to describe forecast-

ing packages that allow the user to interact directly with the

data and with the results of alternative forecasting methods.

Intercept In simple regression the constant term is referred to as the

intercept of the regression equation with the Y -axis. If the

explanatory variable X is 0, then the value of the forecast variable

will be the intercept value.

Interdependence If two or more variables are interdependent or

mutually dependent, it indicates that their values move together

in some specific manner. Thus a change in the value of one of

the variables would correlate with a change in the value of the

other variable.
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Intervention analysis This approach to forecasting is a special case of

dynamic regression models. It facilitates determining the effects

of unusual changes in the explanatory variables on the forecast

variable. The most important characteristic of intervention

analysis is that transient effects caused by such changes can

be measured and their influence on the forecast variable can be

predicted.

Lag A difference in time between an observation and a previous

observation. Thus Yt−k lags Yt by k periods. See also Lead.

Lead A difference in time between an observation and a future

observation. Thus Yt+k leads Yt by k periods. See also Lag,

Lead time, and Leading indicator.

Leading indicator An economic indicator whose peaks and troughs

during the business cycle tend to occur sooner than those of

the general economy. Turning points in such an indicator

lead subsequent turning points in the general economy or some

other economic series, thus signaling the likelihood of such a

subsequent turning point.

Lead time This term refers to the time interval between two events,

when one must precede the other. In many inventory and

order entry systems, the lead time is the interval between the

time when an order is placed and the time when it is actually

delivered.

Least squares estimation This approach to estimating the parame-

ter values in an equation minimizes the squares of the deviations

that result from fitting that particular model. For example, if

a trend line is being estimated to fit a data series, the method

of least squares estimation could be used to minimize the mean

squared error. This would give a line whose estimated values

would minimize the sum of the squares of the actual deviations

from that line for the historical data.

Likelihood The probability that a certain empirical outcome will be

observed, conditional on a certain prior outcome. This term

is often used in connection with statistics that are maximum

likelihood estimators for a population.
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Ljung-Box test This is a test for autocorrelated errors. It is an

improved version of the Box-Pierce test.

Local regression Local regression is a form of smoothing. A curve is

estimated by applying linear regression to sections of the data.

See Loess.

Loess The most popular implementation of local regression. It

also provides some protection against extreme observations by

downweighting outliers.

Logistic curve This curve has the typical S-shape often associated

with the product life cycle. It is frequently used in connection

with long-term curve fitting as a technological method.

Logarithmic transformation This transformation is applied to re-

move exponential growth in a series. The transformed series

consists of logarithms of the original series.

Macrodata These type of data describes the behavior of macroeco-

nomic variables such as GNP, inflation, the index of industrial

production, and so on. Macroeconomics deals with the study

of economics in terms of whole systems, usually at national or

regional levels.

Matrix In mathematical terminology a matrix is a rectangular array

of elements arranged in rows and columns. There may be one

or more rows and one or more columns in such a matrix.

Maximum likelihood estimation The parameters in an equation can

be estimated by maximizing the likelihood of the model given

the data. For regression models with normally distributed errors,

maximum likelihood estimation is equivalent to least squares

estimation.

M-Competition The M-Competition (Makridakis et al., 1982, 1984)

compared the accuracies of about 20 different forecasting tech-

niques across a sample of 111 time series. A subset of the

methods was tested on 1001 series. The last 12 points of each

series were held out and the remaining data were available for

model fitting. The accuracy was assessed via the mean absolute

percentage error (MAPE) on the holdout set.
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M3-IJF Competition The M3-IJF Competition was conducted in

1997 by the International Journal of Forecasting. It compared

a range of forecasting techniques across a sample 3003 time

series. The accuracy was assessed using a range of measures on

a holdout set.

Mean The arithmetic average or mean for a group of items is defined

as the sum of the values of the items divided by the number

of items. It is frequently used as a measure of location for a

frequency or probability distribution.

Mean Absolute Percentage Error (MAPE) The mean absolute per-

centage error is the mean or average of the sum of all of the

percentage errors for a given data set taken without regard

to sign. (That is, their absolute values are summed and the

average computed.) It is one measure of accuracy commonly

used in quantitative methods of forecasting.

Mean Percentage Error (MPE) The mean percentage error is the

average of all of the percentage errors for a given data set. This

average allows positive and negative percentage errors to cancel

one another. Because of this, it is sometimes used as a measure

of bias in the application of a forecasting method.

Mean Squared Error (MSE) The mean squared error is a measure

of accuracy computed by squaring the individual error for each

item in a data set and then finding the average or mean value of

the sum of those squares. The mean squared error gives greater

weight to large errors than to small errors because the errors

are squared before being summed.

Medial average The middle number of a data set is the median. It

can be found by arranging the items in the data set in ascending

order and identifying the middle item. The medial average

includes only those items grouped around the median value.

For example, the highest and lowest value may be excluded

from a medial average.

Median Frequently used as a measure of location for a frequency or

probability distribution, the median of a group of items is the

value of the middle item when all the items are arranged in

either ascending or descending order of magnitude.
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Microdata Micro comes from the Greek word meaning small. Mi-

crodata refers generally to data collected at the level of an

individual organization or a company. Microeconomics refers

to the study of such data as contrasted with macroeconomics,

which deals generally with a regional or national level.

Mixed model In time series analysis a process or model that com-

bines moving average (MA) forms with autoregressive (AR)

forms is frequently referred to as a mixed process. See ARMA

models.

Model A model is the symbolic representation of reality. In quanti-

tative forecasting methods a specific model is used to represent

the basic pattern contained in the data. This may be a re-

gression model, which is explanatory in nature, or a time series

model.

Moving average There are two distinct meanings to this term. First,

for a time series we can define the moving average of order K as

the average (mean) value of K consecutive observations. This

can be used for smoothing (Chapter 3) or forecasting (Chapter

4). Second, in Box-Jenkins modeling the MA in ARIMA stands

for moving average and means that the value of the time series

at time t is influenced by a current error term and (possibly)

weighted error terms in the past. See Chapter 7 for examples.

Multicollinearity In multiple regression, computational problems arise

if two or more explanatory variables are highly correlated with

one another. The regression coefficients associated with those

explanatory variables will be very unstable. In larger sets of

explanatory variables, the condition of multicollinearity may

not be easy to detect. If any linear combination of one subset

of explanatory variables is nearly perfectly related to a linear

combination of any other subset of explanatory variables, then a

multicollinearity problem is present. See Chapter 6 for details.

Multiple correlation coefficient If a forecast variable Y is regressed

against several explanatory variables X1, X2, . . . , Xk, then the

estimated Y value is designated Ŷ . The correlation between Ŷ

and Y is called the multiple correlation coefficient and is often

designated R. It is customary to deal with this coefficient in
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squared form (i.e., R2). See Multiple regression, R-squared, and

R-bar-squared.

Multiple regression The technique of multiple regression is an exten-

sion of simple regression. It allows for more than one explanatory

variable to be included in predicting the value of a forecast

variable. For forecasting purposes a multiple regression equation

is often referred to as a causal or explanatory model.

Multiplicative model A model in which the various terms are mul-

tiplied together. See also Additive model.

Multivariate ARMA model Multivariate ARMA models allow sev-

eral time series which are mutually dependent to be forecast.

Each of the series is forecast using a function of its own past,

the past of each of the other series, and past errors. This is in

contrast to dynamic regression models where there is only one

forecast variable and it is assumed that the explanatory variables

do not depend on the past of the forecast variable. See ARMA

model.

Näıve forecast Forecasts obtained with a minimal amount of effort

and data manipulation and based solely on the most recent

information available are frequently referred to as näıve fore-

casts. One such näıve method would be to use the most recent

observation available as the future forecast. A slightly more

sophisticated näıve method would be to adjust the most recent

observation for seasonality.

Neural networks Neural networks are based on simple mathematical

models of the way brains are thought to work. They can

be thought of as a network of neuron-like units organized in

layers. When applied to time series, they provide a non-linear

forecasting method.

Noise The randomness often found in data series is frequently re-

ferred to as noise. This term comes from the field of engineering

where a filter is used to eliminate noise so that the true pattern

can be identified.

Non-linear estimation If parameters have to be estimated for non-

linear functions, then ordinary least squares estimation may not
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apply. Under these circumstances certain non-linear techniques

exist for solving the problem. Minimizing the sum of squared

residuals is one common criterion. Another is maximum likeli-

hood estimation. Non-linear estimation is an iterative procedure

and there is no guarantee that the final solution is the global

minimum.

Non-linear forecasting A time series model is non-linear if it cannot

be written as a linear function of past observations, errors, and

explanatory variables. Non-linear models are capable of repro-

ducing some features in time series, such as chaotic behavior,

which are not able to be captured using linear models. See

Neural networks.

Non-stationary A time series exhibits non-stationarity if the under-

lying generating process does not have a constant mean and/or

a constant variance. In practice, a visual inspection of the

plotted time series can help determine if either or both of these

conditions exist, and the set of autocorrelations for the time

series can be used to confirm the presence of non-stationarity

or not. See Stationary.

Normal distribution This is a probability distribution which is very

widely used in statistical modeling. It is the distribution of

many naturally occurring variables and the distribution of many

statistics. It is represented by a bell-shaped curve.

Observation An observation is the value of a specific event as ex-

pressed on some measurement scale by a single data value. In

most forecasting applications a set of observations is used to

provide the data to which the selected model is fit.

Optimal parameter or weight value The optimal, final parameters

or weights are those values that give the best performance for a

given model applied to a specific set of data. It is those optimal

parameters that are then used in forecasting.

Order selection criteria For ARMA models of time series, it can be

difficult to determine the order of the autoregressive and moving

average components of the model. There are several order

selection criteria to help make this decision, including the AIC

and BIC.
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Outlier An outlier is a data value that is unusually large or small.

Such outliers are sometimes removed from the data set before

fitting a forecasting model so that unusually large deviations

from the pattern will not affect the fitting of the model.

Parameter Characteristics of a population such as the mean or

standard deviation are called parameters. These should be

distinguished from the characteristics of a sample taken from a

population, which are called statistics.

Parsimony The concept of parsimony holds that as few parameters

as possible should be used in fitting a model to a set of data.

This concept is a basic premise of the Box-Jenkins approach to

time series analysis.

Partial autocorrelation This measure of correlation is used to iden-

tify the extent of relationship between current values of a

variable with earlier values of that same variable (values for

various time lags) while holding the effects of all other time lags

constant. Thus, it is completely analogous to partial correlation

but refers to a single variable.

Partial correlation This statistic provides a measure of the associ-

ation between a forecast variable and one or more explanatory

variables when the effect of the relationship with other explana-

tory variables is held constant.

Pattern The basic set of relationships and the underlying process

over time is referred to as the pattern in the data.

Pegels’ classification Pegels has conveniently classified exponential

smoothing method into a two-way table with three rows labeled

A (no trend), B (linear trend), and C (multiplicative trend),

and three columns labeled 1 (no seasonality), 2 (additive sea-

sonality), and 3 (multiplicative seasonality). Cell A-1 repre-

sents simple exponential smoothing; cell B-1 represents Holt’s

two-parameter method; and cell B-3 represents Winters model.

Polynomial In algebra a polynomial is an expression containing one

or more terms, each of which consists of a coefficient and a

variable(s) raised to some power. Thus a + bx is a linear

polynomial a + bx + cx2 is a quadratic polynomial in x. A
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polynomial of order m includes terms involving powers of x up

to xm. Regression models often involve involve linear and higher

order polynomials.

Polynomial fitting It is possible to fit a polynomial of any number

of terms to a set of data. If the number of terms (the order)

equals the number of data observations, the fit can be made

perfectly.

Post-sample evaluation The evaluation of a forecasting model using

data that were collected after the set of data on which the model

was estimated is often referred to as a post-sample evaluation

of the forecasting model. Ongoing tracking of the performance

of a model is another example of this. See also Holdout set.

Prediction interval Based on statistical theory and probability dis-

tributions, a forecast interval, or set of forecast limits, can be

established for a forecast. For example, a 95% prediction inter-

val will contain the observation with probability 95%. These

limits are based on the extent of variation of the data and

the forecast horizon. Sometimes the term confidence interval is

inappropriately used instead of prediction interval. Prediction

intervals are also known as forecast intervals.

Probability The probability of an event is expressed as a number

from 0 through 1. An impossible event has probability zero. A

certain event has probability 1. Classical probability is defined

in terms of long-run relative frequency—in a long series of

identical trials the relative frequency of occurrence of the event

approaches a fixed value called the probability of the event.

In Bayesian analysis, probability is defined more subjectively

as the encoding of my knowledge about that event. It is the

degree of plausibility of the event given all that I know at this

time, and is expressed as a number between 0 and 1.

Product life cycle The concept of the product life cycle is partic-

ularly useful in forecasting and analyzing historical data. It

presumes that demand for a product follows an S-shaped curve

growing slowly in the early stages, achieving rapid and sus-

tained growth in the middle stages, and slowing again in the

mature stage. See S-curve.
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P-value Used in hypothesis testing. The P -value is the probability

of obtaining a result as extreme as the one calculated from

the data, if the hypothesis to be demonstrated is not true.

For example, an F -test is used to test whether the slope of

a regression line is non-zero. In this case, the P -value is the

probability of obtaining an F value as large as that obtained

if, in fact, the line has zero slope. It is customary to conclude

that the result is significant if the P -value is smaller than 0.05,

although this threshold is arbitrary.

Qualitative or technological forecasting Qualitative or technologi-

cal methods of forecasting are appropriate when the assumption

of constancy is invalid (the pattern contained in past data can-

not be assumed to continue into the future), when information

about the past cannot be obtained, or when the forecast is

about unlikely or unexpected events in the future.

Quantitative forecasting Quantitative forecasting methods can be

applied when information about the past is available, if that

information can be quantified and if the pattern included in

past information can be assumed to continue into the future.

R-squared (R2) In regression the square of the correlation between Y

(the forecast variable) and Ŷ (the estimated Y value based on

the set of explanatory variables) is denoted R2. This statistic is

often called the coefficient of determination. See R-bar-squared.

R-bar-squared (R̄2) Since the computation of R2 does not involve

the degrees of freedom for either SS (sum of squares of devia-

tions due to the regression or the SS of deviations in the original

Y data, a corrected R2 is defined and designated R̄2 (R-bar

squared). See R-squared. This statistic can be interpreted as

the proportion of variance in Y that can be explained by the

explanatory variables.

Randomness The noise or random fluctuations in a data series are

frequently described as the randomness of that data series.

Random sampling This statistical sampling method involves select-

ing a sample from a population in such a way that every

unit within that population has the same probability of being

selected as any other unit.
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Random walk A random walk is a time series model which states

that each observation is equal to the previous observation plus

some random error. Therefore, the change between observa-

tions is white noise.

Regression A term “regression” dates back to Sir Francis Galton and

his work with the heights of siblings in different generations.

The heights of children of exceptionally tall (or short) parents

“regress” to the mean of the population. Regression analysis

today means any modeling of a forecast variable Y as a function

of a set of explanatory variables X1 through Xk. See Simple

regression and Multiple regression.

Regression coefficients In regression, a forecast variable Y is mod-

eled as a function of explanatory variables X1 through Xk. The

regression coefficients are the multipliers of the explanatory

variables. The estimates of these regression coefficients can

be used to understand the importance of each explanatory

variable (as it relates to Y ) and the interrelatedness among

the explanatory variables (as they relate to Y ). See Regression.

Regression with ARIMA errors In standard regression modeling, it

is assumed that the errors are uncorrelated. However, it is

common with time series to find that this assumption is not

true. When there are autocorrelated errors, the correlation in the

errors may be modeled by an ARIMA model. This combination

of a regression model and an ARIMA model for the errors is

discussed in Section 8/1. See also Dynamic regression models.

Regressor See Explanatory variable.

Residual It is calculated by subtracting the forecast value from the

observed value to give a residual or error value for each forecast

period. In forecasting this term is commonly used as a synonym

for error, although in some cases we distinguish the two.

Sample A sample is a finite or limited number of observations or

data values selected from a universe or population of such data

values.

Sampling distribution The distribution of a statistic from a finite

sample. If many such samples were able to be taken, the
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collection of possible values of the statistic would follow its

sampling distribution.

Sampling error The sampling error is an indication of the magnitude

of difference between the true values of a population parameter

and the estimated value of that parameter based on a sample.

S-curve An S-curve is most frequently used to represent the product

life cycle. Several different mathematical forms, such as the

logistics curve, can be used to fit an S-curve to actual observed

data.

Seasonal adjustment Seasonal adjustment is the process of remov-

ing seasonality from time series data. It is often done after time

series decomposition. Seasonal adjustment facilitates the com-

parison of month-to-month changes. It is used in dealing with

such data as unemployment statistics, economic indicators, or

product sales.

Seasonal data See Type of data.

Seasonal difference In order to achieve a stationary series before ap-

plying the Box-Jenkins methodology to time series forecasting,

the first or second differences of the data must often be taken.

A seasonal difference refers to a difference that is taken between

seasonal values that are separated by one complete season.

Thus, if monthly data are used with an annual seasonal pattern,

a seasonal difference would simply compute the difference for

values separated by 12 months rather than using the first

difference, which is for values adjacent to one another in a series.

See Differencing.

Seasonal exponential smoothing

See Holt-Winters’ exponential smoothing.

Seasonal index A seasonal index is a number that indicates the

seasonality for a given time period. For example, a seasonal

index for observed values in July would indicate the way in

which that July value is affected by the seasonal pattern in the

data. Seasonal indices are used in seasonal adjustment.

Seasonal variation The change that seasonal factors cause in a data

series is frequently called seasonal variation.
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Serial correlation See Autocorrelation.

Significance See Hypothesis testing.

Simple regression Simple regression is a special case of multiple re-

gression involving a single explanatory variable. As with multiple

linear regression it assumes a linear relationship between the

explanatory variable and the forecast variable. The relationship

is estimated using the method of least squares and a set of

observed values.

Slope The slope of a curve at a given point indicates the amount

of change in the forecast variable for a one-unit change in the

explanatory variable. In simple regression the coefficient of the

explanatory variable indicates the slope of the regression line.

Smoothing Estimating a smooth trend, usually be taking weighted

averages of observations. The term smoothed is used because

such averages tend to reduce randomness by allowing positive

and negative random effects to partially offset each other.

Specification error A type of error often caused either by the incor-

rect choice of a functional form of a forecasting model or the

failure to include important variables in that functional form or

model.

Spectral analysis The decomposition of a time series into a set of

sine-waves (or cosine-waves) with differing amplitudes, frequen-

cies, and phase angles, is variously known as spectral analysis,

harmonic analysis, Fourier analysis, and so on. Each method

has specific features but in general they all look for periodicities

in the data. Spectral analysis is not covered in this book.

Spencer’s weighted moving average The Spencer’s weighted mov-

ing average is an approach to computing a moving average that

will compensate for a cubic trend in the data. It consists of two

averages, one for 15 periods and the other for 21 periods. Both

have been used widely in many decomposition methods.

Standard deviation A summary statistic (parameter) for a sample

(population). It is usually denoted s (σ) for a sample (pop-

ulation), and is the square root of variance. The standard
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deviation is a measure of the spread in the data (population).

For many data sets, about 95% of the observations will be

within approximately two standard deviations of the mean.

Standard error Given a population distribution (say a normal dis-

tribution), a sampling plan (say a simple independent random

sampling plan), and a specific statistic (say the mean), then the

sampling distribution of the mean is a probability distribution

with an expected value, a standard deviation, and various other

properties. The standard deviation of the sampling distribution

of a statistic is called the standard error of that statistic.

Standardize Given a sample set of values for X, where the mean

is X̄ and the standard deviation is S, the ith value in the set,

Xi, is standardized by subtracting the mean and dividing by

the standard deviation. The standardized values are often

designated by the letter Z.

State space modeling State space models are a matrix representa-

tion for univariate and multivariate time series. Many time

series models can be written in “state space” form. It provides a

convenient structure to handle computations for a wide variety

of time series models. There are also some forecasting methods

which use the state space model directly. Computations for

state space models are carried out using the Kalman recursion

equations or Kalman filter. Consequently, state space models

are sometimes known as a “Kalman filter” model.

Stationary If the underlying generating process for a time series is

based on a constant mean and a constant variance, then the

time series is stationary. More formally, a series is stationary if

its statistical properties are independent of the particular time

period during which it is observed. See Non-stationary.

Statistic Given a sample consisting of n values, a statistic is any

summary number that captures a property of the sample data.

For example, the mean is a statistic, and so are the variance, the

skewness, the median, the standard deviation, etc. For a pair of

variables sampled jointly the correlation coefficient is a statistic

and so is the covariance. The values of a statistic vary from

sample to sample, and the complete set of values is called the

sampling distribution of the statistic.
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STL decomposition The STL decomposition method was proposed

by William Cleveland and others in 1990 as an alternative to

the Census II methods of time series decomposition. The name

“STL” is an acronym for “A Seasonal-Trend decomposition

procedure based on Loess.” See also Loess.

Technological forecasting See Qualitative or technological forecast-

ing.

Time series An ordered sequence of values of a variable observed at

equally spaced time intervals is referred to as a time series.

Time series model A time series model is a function that relates the

value of a time series to previous values of that time series, its

errors, or other related time series. See ARIMA.

Tracking signal Since quantitative methods of forecasting assume

the continuation of some historical pattern into the future, it

is often useful to develop some measure that can be used to

determine when the basic pattern has changed. A tracking

signal is the most common such measure. One frequently used

tracking signal involves computing the cumulative error over

time and setting limits so that when the cumulative error goes

outside those limits, the forecaster can be notified and a new

model can be considered.

Trading day A trading day is an active day. In many business

time series the number of business days in a month or some

other specified period of time may vary. Frequently trading-day

adjustments must be made to reflect the fact that every January

(or similar period) may not include the same number of trading

days.

Transfer function A transfer function is part of a dynamic regression

model and describes how a change in the explanatory variable

is transferred to the forecast variable.

Transformation Transformation involves changing the scale of mea-

surement in variable(s). For example, data can be transformed

from a linear to a logarithmic scale, or from a linear to a square

root scale. Transformations play two roles: (1) in time series

they are used to achieve a series which is stationary in variance



Appendix II: Glossary of forecasting terms 617

and (2) in regression they are used to make the relationship

linear or to improve the fit of the model.

Trend analysis Trend analysis (or trend-line analysis) is a special

form of simple regression in which time is the explanatory vari-

able.

t-test The t-test is a statistical hypothesis test used extensively in

regression analysis to test if the individual coefficients are sig-

nificantly different from 0. It is computed as the ratio of the

coefficient to the standard error of that coefficient.

Turning point Any time a data pattern changes direction it can be

described as having reached a turning point. For seasonal

patterns these turning points are usually very predictable and

can be handled by many different forecasting methods because

the length of a complete season remains constant. In many

cyclical data patterns the length of the cycle varies as does

its magnitude. Here the identification of turning points is a

particularly difficult and important task.

Type of data In many forecasting methods, such as decomposition,

data are classified as having one or more subpatterns. These

include a seasonal pattern, a trend pattern, and a cyclical

pattern. Frequently, when forecasters refer to the type of data

they mean the specific forms of subpatterns that are included

in that data.

Unbiasedness A statistic is referred to as an unbiased estimator of a

population parameter if the sampling distribution of the statistic

has a mean equal to the parameter being estimated. See Biased

estimator and Asymptotically unbiased estimator.

Updated forecast Revisions of original forecasts in light of data that

subsequently become available after the time period in which

the original forecasts were made are often referred to as updated

forecasts. This concept is analogous to posterior distributions,

although the updating is often much more subjective than in

Bayesian analysis and the calculation of posterior distributions.

Validation The process of testing the degree to which a model is

useful for making forecasts. The sample data are often split
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into two segments, one being used to estimate the parameters

of the model, and the other being used as a holdout set to test

the forecasts made by the model. There are many variations

on this process of validation.

Variance A summary statistic (parameter) for a sample (popula-

tion). It is usually denoted S2 (σ2). It is the average of squared

deviations from the mean.

Vector ARMA model See Multivariate ARMA model.

Weight The term weight indicates the relative importance given

to an individual item included in forecasting. In the method

of moving averages all of those past values included in the

moving average are given equal weight. In more sophisticated

methods of time series analysis, the problem of model identifica-

tion involves determining the most appropriate values of those

weights.

White noise When there is no pattern whatsoever in the data series,

it is said to represent white noise.

Winters exponential smoothing

See Holt-Winters’ exponential smoothing method.

X-11 decomposition The X-11 method for time series decomposition

is one of the series of methods which is part of the Census II

family developed at the United States Bureau of the Census. It

was developed in 1967 and was improved in the X-11-ARIMA

method. It has now been superseded by the X-12-ARIMA

method.

X-12-ARIMA decomposition The latest method for time series de-

composition from the Census II family is X-12-ARIMA. It is an

enhancement of the X-11 method.
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620 Statistical tables

A: Normal probabilities

Table entry is the probability in the
right-hand tail of a standard normal
distribution (mean 0 and standard
deviation 1). For negative values of z,
probabilities are found by symmetry.

Z

Probability

Second decimal place of zz 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641
0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247
0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859
0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483
0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121
0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776
0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451
0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148
0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867
0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611
1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379
1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170
1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985
1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823
1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681
1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559
1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455
1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367
1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294
1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233
2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183
2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143
2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110
2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084
2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064
2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048
2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036
2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026
2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019
2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014
3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010
3.1 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007
3.2 0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005
3.3 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003
3.4 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002
3.5 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002
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B: Critical values for t statistic

Table entry is the point t with the
probability p lying above it. The first
column gives the degrees of freedom.
Use symmetry for negative t values.

t

Probability p

Tail probability p

df 0.1 0.05 0.025 0.01 0.005

1 3.08 6.31 12.71 31.82 63.66
2 1.89 2.92 4.30 6.96 9.92
3 1.64 2.35 3.18 4.54 5.84
4 1.53 2.13 2.78 3.75 4.60
5 1.48 2.02 2.57 3.36 4.03
6 1.44 1.94 2.45 3.14 3.71
7 1.41 1.89 2.36 3.00 3.50
8 1.40 1.86 2.31 2.90 3.36
9 1.38 1.83 2.26 2.82 3.25

10 1.37 1.81 2.23 2.76 3.17
11 1.36 1.80 2.20 2.72 3.11
12 1.36 1.78 2.18 2.68 3.05
13 1.35 1.77 2.16 2.65 3.01
14 1.34 1.76 2.14 2.62 2.98
15 1.34 1.75 2.13 2.60 2.95
16 1.34 1.75 2.12 2.58 2.92
17 1.33 1.74 2.11 2.57 2.90
18 1.33 1.73 2.10 2.55 2.88
19 1.33 1.73 2.09 2.54 2.86
20 1.33 1.72 2.09 2.53 2.85
21 1.32 1.72 2.08 2.52 2.83
22 1.32 1.72 2.07 2.51 2.82
23 1.32 1.71 2.07 2.50 2.81
24 1.32 1.71 2.06 2.49 2.80
25 1.32 1.71 2.06 2.49 2.79
30 1.31 1.70 2.04 2.46 2.75
40 1.30 1.68 2.02 2.42 2.70
50 1.30 1.68 2.01 2.40 2.68
60 1.30 1.67 2.00 2.39 2.66
70 1.29 1.67 1.99 2.38 2.65
80 1.29 1.66 1.99 2.37 2.64
90 1.29 1.66 1.99 2.37 2.63

100 1.29 1.66 1.98 2.36 2.631 1.28 1.64 1.96 2.33 2.58

80% 90% 95% 98% 99%
Confidence level
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C: Critical values for F statistic

Table entry is the point F with the
probability p lying above it. The first
column gives the df in the
denominator, the column headings
give the df in the numerator. The
second column gives the value of p.

F

Probability p

denom. numerator df1
df2 p 1 2 3 4 5 6 7 8 9 10

0.10 39.9 49.5 53.6 55.8 57.2 58.2 58.9 59.4 59.9 60.2
1 0.05 161.4 199.5 215.7 224.6 230.2 234.0 236.8 238.9 240.5 241.9

0.01 4052.2 4999.5 5403.4 5624.6 5763.6 5859.0 5928.4 5981.1 6022.5 6055.8

0.10 8.53 9.00 9.16 9.24 9.29 9.33 9.35 9.37 9.38 9.39
2 0.05 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40

0.01 98.50 99.00 99.17 99.25 99.30 99.33 99.36 99.37 99.39 99.40

0.10 5.54 5.46 5.39 5.34 5.31 5.28 5.27 5.25 5.24 5.23
3 0.05 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79

0.01 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.35 27.23

0.10 4.54 4.32 4.19 4.11 4.05 4.01 3.98 3.95 3.94 3.92
4 0.05 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96

0.01 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66 14.55

0.10 4.06 3.78 3.62 3.52 3.45 3.40 3.37 3.34 3.32 3.30
5 0.05 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74

0.01 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16 10.05

0.10 3.78 3.46 3.29 3.18 3.11 3.05 3.01 2.98 2.96 2.94
6 0.05 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06

0.01 13.74 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87

0.10 3.59 3.26 3.07 2.96 2.88 2.83 2.78 2.75 2.72 2.70
7 0.05 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64

0.01 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62

0.10 3.46 3.11 2.92 2.81 2.73 2.67 2.62 2.59 2.56 2.54
8 0.05 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35

0.01 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 5.81

0.10 3.36 3.01 2.81 2.69 2.61 2.55 2.51 2.47 2.44 2.42
9 0.05 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14

0.01 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26

0.10 3.28 2.92 2.73 2.61 2.52 2.46 2.41 2.38 2.35 2.32
10 0.05 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98

0.01 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85
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11 12 13 14 15 20 25 30 60 120 1
60.5 60.7 60.9 61.1 61.2 61.7 62.1 62.3 62.8 63.1 63.3

243.0 243.9 244.7 245.4 245.9 248.0 249.3 250.1 252.2 253.3 254.3
6083.3 6106.3 6125.9 6142.7 6157.3 6208.7 6239.8 6260.6 6313.0 6339.4 6365.8

9.40 9.41 9.41 9.42 9.42 9.44 9.45 9.46 9.47 9.48 9.49
19.40 19.41 19.42 19.42 19.43 19.45 19.46 19.46 19.48 19.49 19.50
99.40 99.42 99.42 99.43 99.43 99.45 99.46 99.47 99.48 99.49 99.50

5.22 5.22 5.21 5.20 5.2 5.18 5.17 5.17 5.15 5.14 5.13
8.76 8.74 8.73 8.71 8.7 8.66 8.63 8.62 8.57 8.55 8.53

27.13 27.05 26.98 26.92 26.9 26.69 26.58 26.50 26.32 26.22 26.13

3.91 3.90 3.89 3.88 3.87 3.84 3.83 3.82 3.79 3.78 3.76
5.94 5.91 5.89 5.87 5.86 5.80 5.77 5.75 5.69 5.66 5.63

14.45 14.37 14.31 14.25 14.20 14.02 13.91 13.84 13.65 13.56 13.46

3.28 3.27 3.26 3.25 3.24 3.21 3.19 3.17 3.14 3.12 3.10
4.70 4.68 4.66 4.64 4.62 4.56 4.52 4.50 4.43 4.40 4.36
9.96 9.89 9.82 9.77 9.72 9.55 9.45 9.38 9.20 9.11 9.02

2.92 2.90 2.89 2.88 2.87 2.84 2.81 2.80 2.76 2.74 2.72
4.03 4.00 3.98 3.96 3.94 3.87 3.83 3.81 3.74 3.70 3.67
7.79 7.72 7.66 7.60 7.56 7.40 7.30 7.23 7.06 6.97 6.88

2.68 2.67 2.65 2.64 2.63 2.59 2.57 2.56 2.51 2.49 2.47
3.60 3.57 3.55 3.53 3.51 3.44 3.40 3.38 3.30 3.27 3.23
6.54 6.47 6.41 6.36 6.31 6.16 6.06 5.99 5.82 5.74 5.65

2.52 2.50 2.49 2.48 2.46 2.42 2.40 2.38 2.34 2.32 2.29
3.31 3.28 3.26 3.24 3.22 3.15 3.11 3.08 3.01 2.97 2.93
5.73 5.67 5.61 5.56 5.52 5.36 5.26 5.20 5.03 4.95 4.86

2.40 2.38 2.36 2.35 2.34 2.30 2.27 2.25 2.21 2.18 2.16
3.10 3.07 3.05 3.03 3.01 2.94 2.89 2.86 2.79 2.75 2.71
5.18 5.11 5.05 5.01 4.96 4.81 4.71 4.65 4.48 4.40 4.31

2.30 2.28 2.27 2.26 2.24 2.20 2.17 2.16 2.11 2.08 2.06
2.94 2.91 2.89 2.86 2.84 2.77 2.73 2.70 2.62 2.58 2.54
4.77 4.71 4.65 4.60 4.56 4.41 4.31 4.25 4.08 4.00 3.91
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p 1 2 3 4 5 6 7 8 9 10

0.10 3.23 2.86 2.66 2.54 2.45 2.39 2.34 2.30 2.27 2.25
11 0.05 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85

0.01 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63 4.54

0.10 3.18 2.81 2.61 2.48 2.39 2.33 2.28 2.24 2.21 2.19
12 0.05 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75

0.01 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 4.30

0.10 3.14 2.76 2.56 2.43 2.35 2.28 2.23 2.20 2.16 2.14
13 0.05 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67

0.01 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19 4.10

0.10 3.10 2.73 2.52 2.39 2.31 2.24 2.19 2.15 2.12 2.10
14 0.05 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60

0.01 8.86 6.51 5.56 5.04 4.70 4.46 4.28 4.14 4.03 3.94

0.10 3.07 2.70 2.49 2.36 2.27 2.21 2.16 2.12 2.09 2.06
15 0.05 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54

0.01 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80

0.10 3.05 2.67 2.46 2.33 2.24 2.18 2.13 2.09 2.06 2.03
16 0.05 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49

0.01 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69

0.10 3.03 2.64 2.44 2.31 2.22 2.15 2.10 2.06 2.03 2.00
17 0.05 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45

0.01 8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.68 3.59

0.10 3.01 2.62 2.42 2.29 2.20 2.13 2.08 2.04 2.00 1.98
18 0.05 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41

0.01 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60 3.51

0.10 2.99 2.61 2.40 2.27 2.18 2.11 2.06 2.02 1.98 1.96
19 0.05 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38

0.01 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43

0.10 2.97 2.59 2.38 2.25 2.16 2.09 2.04 2.00 1.96 1.94
20 0.05 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35

0.01 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37

0.10 2.96 2.57 2.36 2.23 2.14 2.08 2.02 1.98 1.95 1.92
21 0.05 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32

0.01 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.40 3.31

0.10 2.95 2.56 2.35 2.22 2.13 2.06 2.01 1.97 1.93 1.90
22 0.05 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30

0.01 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 3.26
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11 12 13 14 15 20 25 30 60 120 1
2.23 2.21 2.19 2.18 2.17 2.12 2.10 2.08 2.03 2.00 1.97
2.82 2.79 2.76 2.74 2.72 2.65 2.60 2.57 2.49 2.45 2.40
4.46 4.40 4.34 4.29 4.25 4.10 4.01 3.94 3.78 3.69 3.60

2.17 2.15 2.13 2.12 2.10 2.06 2.03 2.01 1.96 1.93 1.90
2.72 2.69 2.66 2.64 2.62 2.54 2.50 2.47 2.38 2.34 2.30
4.22 4.16 4.10 4.05 4.01 3.86 3.76 3.70 3.54 3.45 3.36

2.12 2.10 2.08 2.07 2.05 2.01 1.98 1.96 1.90 1.88 1.85
2.63 2.60 2.58 2.55 2.53 2.46 2.41 2.38 2.30 2.25 2.21
4.02 3.96 3.91 3.86 3.82 3.66 3.57 3.51 3.34 3.25 3.17

2.07 2.05 2.04 2.02 2.01 1.96 1.93 1.91 1.86 1.83 1.80
2.57 2.53 2.51 2.48 2.46 2.39 2.34 2.31 2.22 2.18 2.13
3.86 3.80 3.75 3.70 3.66 3.51 3.41 3.35 3.18 3.09 3.00

2.04 2.02 2.00 1.99 1.97 1.92 1.89 1.87 1.82 1.79 1.76
2.51 2.48 2.45 2.42 2.40 2.33 2.28 2.25 2.16 2.11 2.07
3.73 3.67 3.61 3.56 3.52 3.37 3.28 3.21 3.05 2.96 2.87

2.01 1.99 1.97 1.95 1.94 1.89 1.86 1.84 1.78 1.75 1.72
2.46 2.42 2.40 2.37 2.35 2.28 2.23 2.19 2.11 2.06 2.01
3.62 3.55 3.50 3.45 3.41 3.26 3.16 3.10 2.93 2.84 2.75

1.98 1.96 1.94 1.93 1.91 1.86 1.83 1.81 1.75 1.72 1.69
2.41 2.38 2.35 2.33 2.31 2.23 2.18 2.15 2.06 2.01 1.96
3.52 3.46 3.40 3.35 3.31 3.16 3.07 3.00 2.83 2.75 2.65

1.95 1.93 1.92 1.90 1.89 1.84 1.80 1.78 1.72 1.69 1.66
2.37 2.34 2.31 2.29 2.27 2.19 2.14 2.11 2.02 1.97 1.92
3.43 3.37 3.32 3.27 3.23 3.08 2.98 2.92 2.75 2.66 2.57

1.93 1.91 1.89 1.88 1.86 1.81 1.78 1.76 1.70 1.67 1.63
2.34 2.31 2.28 2.26 2.23 2.16 2.11 2.07 1.98 1.93 1.88
3.36 3.30 3.24 3.19 3.15 3.00 2.91 2.84 2.67 2.58 2.49

1.91 1.89 1.87 1.86 1.84 1.79 1.76 1.74 1.68 1.64 1.61
2.31 2.28 2.25 2.22 2.20 2.12 2.07 2.04 1.95 1.90 1.84
3.29 3.23 3.18 3.13 3.09 2.94 2.84 2.78 2.61 2.52 2.42

1.90 1.88 1.86 1.84 1.83 1.78 1.74 1.72 1.66 1.62 1.59
2.28 2.25 2.22 2.20 2.18 2.10 2.05 2.01 1.92 1.87 1.81
3.24 3.17 3.12 3.07 3.03 2.88 2.78 2.72 2.55 2.46 2.36

1.88 1.86 1.84 1.83 1.81 1.76 1.73 1.70 1.64 1.60 1.57
2.26 2.23 2.20 2.17 2.15 2.07 2.02 1.98 1.89 1.84 1.78
3.18 3.12 3.07 3.02 2.98 2.83 2.73 2.67 2.50 2.40 2.31
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p 1 2 3 4 5 6 7 8 9 10

0.10 2.94 2.55 2.34 2.21 2.11 2.05 1.99 1.95 1.92 1.89
23 0.05 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 2.27

0.01 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30 3.21

0.10 2.93 2.54 2.33 2.19 2.10 2.04 1.98 1.94 1.91 1.88
24 0.05 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25

0.01 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26 3.17

0.10 2.92 2.53 2.32 2.18 2.09 2.02 1.97 1.93 1.89 1.87
25 0.05 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24

0.01 7.77 5.57 4.68 4.18 3.86 3.63 3.46 3.32 3.22 3.13

0.1 2.91 2.52 2.31 2.17 2.08 2.01 1.96 1.92 1.88 1.86
26 0.05 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22

0.01 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.18 3.09

0.10 2.90 2.51 2.30 2.17 2.07 2.00 1.95 1.91 1.87 1.85
27 0.05 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25 2.20

0.01 7.68 5.49 4.60 4.11 3.78 3.56 3.39 3.26 3.15 3.06

0.1 2.89 2.50 2.29 2.16 2.06 2.00 1.94 1.90 1.87 1.84
28 0.05 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 2.19

0.01 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.12 3.03

0.10 2.89 2.50 2.28 2.15 2.06 1.99 1.93 1.89 1.86 1.83
29 0.05 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22 2.18

0.01 7.60 5.42 4.54 4.04 3.73 3.50 3.33 3.20 3.09 3.00

0.10 2.88 2.49 2.28 2.14 2.05 1.98 1.93 1.88 1.85 1.82
30 0.05 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16

0.01 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 2.98

0.10 2.84 2.44 2.23 2.09 2.00 1.93 1.87 1.83 1.79 1.76
40 0.05 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08

0.01 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89 2.80

0.10 2.81 2.41 2.20 2.06 1.97 1.90 1.84 1.80 1.76 1.73
50 0.05 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07 2.03

0.01 7.17 5.06 4.20 3.72 3.41 3.19 3.02 2.89 2.78 2.70

0.10 2.79 2.39 2.18 2.04 1.95 1.87 1.82 1.77 1.74 1.71
60 0.05 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99

0.01 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63

0.1 2.76 2.36 2.14 2.00 1.91 1.83 1.78 1.73 1.69 1.66
100 0.05 3.94 3.09 2.70 2.46 2.31 2.19 2.10 2.03 1.97 1.93

0.01 6.90 4.82 3.98 3.51 3.21 2.99 2.82 2.69 2.59 2.50

0.10 2.73 2.33 2.11 1.97 1.88 1.80 1.75 1.70 1.66 1.63
200 0.05 3.89 3.04 2.65 2.42 2.26 2.14 2.06 1.98 1.93 1.88

0.01 6.76 4.71 3.88 3.41 3.11 2.89 2.73 2.60 2.50 2.41

0.10 2.71 2.31 2.09 1.95 1.85 1.78 1.72 1.68 1.64 1.61
1,000 0.05 3.85 3.00 2.61 2.38 2.22 2.11 2.02 1.95 1.89 1.84

0.01 6.66 4.63 3.80 3.34 3.04 2.82 2.66 2.53 2.42 2.34
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11 12 13 14 15 20 25 30 60 120 1
1.87 1.84 1.83 1.81 1.80 1.74 1.71 1.69 1.62 1.59 1.55
2.24 2.20 2.18 2.15 2.13 2.05 2.00 1.96 1.86 1.81 1.76
3.14 3.07 3.02 2.97 2.93 2.78 2.69 2.62 2.45 2.35 2.26

1.85 1.83 1.81 1.80 1.78 1.73 1.70 1.67 1.61 1.57 1.53
2.22 2.18 2.15 2.13 2.11 2.03 1.98 1.94 1.84 1.79 1.73
3.09 3.03 2.98 2.93 2.89 2.74 2.64 2.58 2.40 2.31 2.21

1.84 1.82 1.80 1.79 1.77 1.72 1.68 1.66 1.59 1.56 1.52
2.20 2.16 2.14 2.11 2.09 2.01 1.96 1.92 1.82 1.77 1.71
3.06 2.99 2.94 2.89 2.85 2.70 2.60 2.54 2.36 2.27 2.17

1.83 1.81 1.79 1.77 1.76 1.71 1.67 1.65 1.58 1.54 1.50
2.18 2.15 2.12 2.09 2.07 1.99 1.94 1.90 1.80 1.75 1.69
3.02 2.96 2.90 2.86 2.82 2.66 2.57 2.50 2.33 2.23 2.13

1.82 1.80 1.78 1.76 1.75 1.70 1.66 1.64 1.57 1.53 1.49
2.17 2.13 2.10 2.08 2.06 1.97 1.92 1.88 1.79 1.73 1.67
2.99 2.93 2.87 2.82 2.78 2.63 2.54 2.47 2.29 2.20 2.10

1.81 1.79 1.77 1.75 1.74 1.69 1.65 1.63 1.56 1.52 1.48
2.15 2.12 2.09 2.06 2.04 1.96 1.91 1.87 1.77 1.71 1.65
2.96 2.90 2.84 2.79 2.75 2.60 2.51 2.44 2.26 2.17 2.06

1.80 1.78 1.76 1.75 1.73 1.68 1.64 1.62 1.55 1.51 1.47
2.14 2.10 2.08 2.05 2.03 1.94 1.89 1.85 1.75 1.70 1.64
2.93 2.87 2.81 2.77 2.73 2.57 2.48 2.41 2.23 2.14 2.03

1.79 1.77 1.75 1.74 1.72 1.67 1.63 1.61 1.54 1.50 1.46
2.13 2.09 2.06 2.04 2.01 1.93 1.88 1.84 1.74 1.68 1.62
2.91 2.84 2.79 2.74 2.70 2.55 2.45 2.39 2.21 2.11 2.01

1.74 1.71 1.70 1.68 1.66 1.61 1.57 1.54 1.47 1.42 1.38
2.04 2.00 1.97 1.95 1.92 1.84 1.78 1.74 1.64 1.58 1.51
2.73 2.66 2.61 2.56 2.52 2.37 2.27 2.20 2.02 1.92 1.80

1.70 1.68 1.66 1.64 1.63 1.57 1.53 1.50 1.42 1.38 1.33
1.99 1.95 1.92 1.89 1.87 1.78 1.73 1.69 1.58 1.51 1.44
2.62 2.56 2.51 2.46 2.42 2.27 2.17 2.10 1.91 1.80 1.68

1.68 1.66 1.64 1.62 1.60 1.54 1.50 1.48 1.40 1.35 1.29
1.95 1.92 1.89 1.86 1.84 1.75 1.69 1.65 1.53 1.47 1.39
2.56 2.50 2.44 2.39 2.35 2.20 2.10 2.03 1.84 1.73 1.60

1.64 1.61 1.59 1.57 1.56 1.49 1.45 1.42 1.34 1.28 1.21
1.89 1.85 1.82 1.79 1.77 1.68 1.62 1.57 1.45 1.38 1.28
2.43 2.37 2.31 2.27 2.22 2.07 1.97 1.89 1.69 1.57 1.43

1.60 1.58 1.56 1.54 1.52 1.46 1.41 1.38 1.29 1.23 1.14
1.84 1.80 1.77 1.74 1.72 1.62 1.56 1.52 1.39 1.30 1.19
2.34 2.27 2.22 2.17 2.13 1.97 1.87 1.79 1.58 1.45 1.28

1.58 1.55 1.53 1.51 1.49 1.43 1.38 1.35 1.25 1.18 1.06
1.80 1.76 1.73 1.70 1.68 1.58 1.52 1.47 1.33 1.24 1.08
2.27 2.20 2.15 2.10 2.06 1.90 1.79 1.72 1.50 1.35 1.11
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D: Inverse normal table

Critical values for the standard normal
distribution. Table entry for p and C

is the point z with probability p lying
above it and probability C lying
between −z and z.

Z0-Z

Probability pProbability  C

C p z C p z

50% 0.25 0.674 96% 0.02 2.054
60% 0.2 0.842 98% 0.01 2.326
70% 0.15 1.036 99% 0.005 2.576
80% 0.1 1.282 99.5% 0.0025 2.807
90% 0.05 1.645 99.8% 0.001 3.090
95% 0.025 1.960 99.9% 0.0005 3.290
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E: Critical values for χ2 statistic

Table entry is the point X2 with the
probability p lying above it. The first
column gives the degrees of freedom.

X2

Probability p

Probability p

df 0.1 0.05 0.025 0.01 0.005 0.001
1 2.70 3.84 5.02 6.63 7.87 10.83
2 4.60 5.99 7.37 9.21 10.59 13.82
3 6.25 7.81 9.34 11.34 12.83 16.27
4 7.77 9.48 11.14 13.27 14.86 18.47
5 9.23 11.07 12.83 15.08 16.75 20.52
6 10.64 12.59 14.44 16.81 18.54 22.46
7 12.01 14.06 16.01 18.47 20.27 24.32
8 13.36 15.50 17.53 20.09 21.95 26.12
9 14.68 16.91 19.02 21.66 23.58 27.88

10 15.98 18.30 20.48 23.20 25.18 29.59
11 17.27 19.67 21.92 24.72 26.75 31.26
12 18.54 21.02 23.33 26.21 28.30 32.91
13 19.81 22.36 24.73 27.68 29.82 34.53
14 21.06 23.68 26.11 29.14 31.31 36.12
15 22.30 24.99 27.48 30.57 32.80 37.70
16 23.54 26.29 28.84 32.00 34.26 39.25
17 24.76 27.58 30.19 33.40 35.71 40.79
18 25.98 28.86 31.52 34.80 37.15 42.31
19 27.20 30.14 32.85 36.19 38.58 43.82
20 28.41 31.41 34.17 37.56 39.99 45.31
21 29.61 32.67 35.47 38.93 41.40 46.80
22 30.81 33.92 36.78 40.28 42.79 48.27
23 32.00 35.17 38.07 41.63 44.18 49.73
24 33.19 36.41 39.36 42.98 45.55 51.18
25 34.38 37.65 40.64 44.31 46.92 52.62
26 35.56 38.88 41.92 45.64 48.29 54.05
27 36.74 40.11 43.19 46.96 49.64 55.48
28 37.91 41.33 44.46 48.27 50.99 56.89
29 39.08 42.55 45.72 49.58 52.33 58.30
30 40.26 43.77 46.98 50.89 53.67 59.70
40 51.81 55.76 59.34 63.69 66.77 73.40
50 63.17 67.50 71.42 76.15 79.49 86.66
60 74.40 79.08 83.30 88.38 91.95 99.61
70 85.53 90.53 95.02 100.43 104.21 112.32
80 96.58 101.88 106.63 112.33 116.32 124.84
90 107.56 113.15 118.14 124.12 128.30 137.21

100 118.50 124.34 129.56 135.81 140.17 149.45
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F: Values of the Durbin-Watson statistic

Table entry gives DWL and DWU for
a 5% one-sided test of the Durbin-
Watson statistic. n = number of
observations; k = number of
parameters (so number of explanatory
variables is k − 1). DW DW 2 4-DW 4-DWL U U Lk = 2 k = 3 k = 4 k = 5 k = 6n DWL DWU DWL DWU DWL DWU DWL DWU DWL DWU

15 1.08 1.36 0.95 1.54 0.82 1.75 0.69 1.97 0.56 2.21
16 1.10 1.37 0.98 1.54 0.86 1.73 0.74 1.93 0.62 2.15
17 1.13 1.38 1.02 1.54 0.90 1.71 0.78 1.90 0.67 2.10
18 1.16 1.39 1.05 1.53 0.93 1.69 0.82 1.87 0.71 2.06
19 1.18 1.40 1.08 1.53 0.97 1.68 0.86 1.85 0.75 2.02
20 1.20 1.41 1.10 1.54 1.00 1.68 0.90 1.83 0.79 1.99
21 1.22 1.42 1.13 1.54 1.03 1.67 0.93 1.81 0.83 1.96
22 1.24 1.43 1.15 1.54 1.05 1.66 0.96 1.80 0.86 1.94
23 1.26 1.44 1.17 1.54 1.08 1.66 0.99 1.79 0.90 1.92
24 1.27 1.45 1.19 1.55 1.10 1.66 1.01 1.78 0.93 1.90
25 1.29 1.45 1.21 1.55 1.12 1.66 1.04 1.77 0.95 1.89
26 1.30 1.46 1.22 1.55 1.14 1.65 1.06 1.76 0.98 1.88
26 1.32 1.47 1.24 1.56 1.16 1.65 1.08 1.76 1.01 1.86
28 1.33 1.48 1.26 1.56 1.18 1.65 1.10 1.75 1.03 1.85
29 1.34 1.48 1.27 1.56 1.20 1.65 1.12 1.74 1.05 1.84
30 1.35 1.49 1.28 1.57 1.21 1.65 1.14 1.74 1.07 1.83
31 1.36 1.50 1.30 1.57 1.23 1.65 1.16 1.74 1.09 1.83
32 1.37 1.50 1.31 1.57 1.24 1.65 1.18 1.73 1.11 1.82
33 1.38 1.51 1.32 1.58 1.26 1.65 1.19 1.73 1.13 1.81
34 1.39 1.51 1.33 1.58 1.27 1.65 1.21 1.73 1.15 1.81
35 1.40 1.52 1.34 1.58 1.28 1.65 1.22 1.73 1.16 1.80
36 1.41 1.52 1.35 1.59 1.29 1.65 1.24 1.73 1.18 1.80
37 1.42 1.53 1.36 1.59 1.31 1.66 1.25 1.72 1.19 1.80
38 1.43 1.54 1.37 1.59 1.32 1.66 1.26 1.72 1.21 1.79
39 1.43 1.54 1.38 1.60 1.33 1.66 1.27 1.72 1.22 1.79
40 1.44 1.54 1.39 1.60 1.34 1.66 1.29 1.72 1.23 1.79
45 1.48 1.57 1.43 1.62 1.38 1.67 1.34 1.72 1.29 1.78
50 1.50 1.59 1.46 1.63 1.42 1.67 1.38 1.72 1.34 1.77
55 1.53 1.60 1.49 1.64 1.45 1.68 1.41 1.72 1.38 1.77
60 1.55 1.62 1.51 1.65 1.48 1.69 1.44 1.73 1.41 1.77
65 1.57 1.63 1.54 1.66 1.50 1.70 1.47 1.73 1.44 1.77
70 1.58 1.64 1.55 1.67 1.52 1.70 1.49 1.74 1.46 1.77
75 1.60 1.65 1.57 1.68 1.54 1.71 1.51 1.74 1.49 1.77
80 1.61 1.66 1.59 1.69 1.56 1.72 1.53 1.74 1.51 1.77
85 1.62 1.67 1.60 1.70 1.57 1.72 1.55 1.75 1.52 1.77
90 1.63 1.68 1.61 1.70 1.59 1.73 1.57 1.75 1.54 1.78
95 1.64 1.69 1.62 1.71 1.60 1.73 1.58 1.75 1.56 1.78

100 1.65 1.69 1.63 1.72 1.61 1.74 1.59 1.76 1.57 1.78
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Table entry gives DWL and DWU for
a 1% one-sided test of the Durbin-
Watson statistic. n = number of
observations; k = number of
parameters (so number of explanatory
variables is k − 1).k = 2 k = 3 k = 4 k = 5 k = 6n DWL DWU DWL DWU DWL DWU DWL DWU DWL DWU

15 0.81 1.07 0.70 1.25 0.59 1.46 0.49 1.70 0.39 1.96
16 0.84 1.09 0.74 1.25 0.63 1.44 0.53 1.66 0.44 1.90
17 0.87 1.10 0.77 1.25 0.67 1.43 0.57 1.63 0.48 1.85
18 0.90 1.12 0.80 1.26 0.71 1.42 0.61 1.60 0.52 1.80
19 0.93 1.13 0.83 1.26 0.74 1.41 0.65 1.58 0.56 1.77
20 0.95 1.15 0.86 1.27 0.77 1.41 0.68 1.57 0.60 1.74
21 0.97 1.16 0.89 1.27 0.80 1.41 0.72 1.55 0.63 1.71
22 1.00 1.17 0.91 1.28 0.83 1.40 0.75 1.54 0.66 1.69
23 1.02 1.19 0.94 1.29 0.86 1.40 0.77 1.53 0.70 1.67
24 1.04 1.20 0.96 1.30 0.88 1.41 0.80 1.53 0.72 1.66
25 1.05 1.21 0.98 1.30 0.90 1.41 0.83 1.52 0.75 1.65
26 1.07 1.22 1.00 1.31 0.93 1.41 0.85 1.52 0.78 1.64
27 1.09 1.23 1.02 1.32 0.95 1.41 0.88 1.51 0.81 1.63
28 1.10 1.24 1.04 1.32 0.97 1.41 0.90 1.51 0.83 1.62
29 1.12 1.25 1.05 1.33 0.99 1.42 0.92 1.51 0.85 1.61
30 1.13 1.26 1.07 1.34 1.01 1.42 0.94 1.51 0.88 1.61
31 1.15 1.27 1.08 1.34 1.02 1.42 0.96 1.51 0.90 1.60
32 1.16 1.28 1.10 1.35 1.04 1.43 0.98 1.51 0.92 1.60
33 1.17 1.29 1.11 1.36 1.05 1.43 1.00 1.51 0.94 1.59
34 1.18 1.30 1.13 1.36 1.07 1.43 1.01 1.51 0.95 1.59
35 1.19 1.31 1.14 1.37 1.08 1.44 1.03 1.51 0.97 1.59
36 1.21 1.32 1.15 1.38 1.10 1.44 1.04 1.51 0.99 1.59
37 1.22 1.32 1.16 1.38 1.11 1.45 1.06 1.51 1.00 1.59
38 1.23 1.33 1.18 1.39 1.12 1.45 1.07 1.52 1.02 1.58
39 1.24 1.34 1.19 1.39 1.14 1.45 1.09 1.52 1.03 1.58
40 1.25 1.34 1.20 1.40 1.15 1.46 1.10 1.52 1.05 1.58
45 1.29 1.38 1.24 1.42 1.20 1.48 1.16 1.53 1.11 1.58
50 1.32 1.40 1.28 1.45 1.24 1.49 1.20 1.54 1.16 1.59
55 1.36 1.43 1.32 1.47 1.28 1.51 1.25 1.55 1.21 1.59
60 1.38 1.45 1.35 1.48 1.32 1.52 1.28 1.56 1.25 1.60
65 1.41 1.47 1.38 1.50 1.35 1.53 1.31 1.57 1.28 1.61
70 1.43 1.49 1.40 1.52 1.37 1.55 1.34 1.58 1.31 1.61
75 1.45 1.50 1.42 1.53 1.39 1.56 1.37 1.59 1.34 1.62
80 1.47 1.52 1.44 1.54 1.42 1.57 1.39 1.60 1.36 1.62
85 1.48 1.53 1.46 1.55 1.43 1.58 1.41 1.60 1.39 1.63
90 1.50 1.54 1.47 1.56 1.45 1.59 1.43 1.61 1.41 1.64
95 1.51 1.55 1.49 1.57 1.47 1.60 1.45 1.62 1.42 1.64

100 1.52 1.56 1.50 1.58 1.48 1.60 1.46 1.63 1.44 1.65

Source: The Durbin-Watson tables are taken from J. Durbin and G.S. Watson
(1951) “Testing for serial correlation in least squares regression,” Biometrika, 38,
159–177. Reprinted with the kind permission of the publisher and the authors.
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G: Normally distributed observations

Random independent observations
from a standard normal distribution
(mean 0 and standard deviation 1).

0.807 0.550 -0.076 0.147 -0.768 -0.022 -0.671 0.395 0.497 1.008
-1.746 2.101 0.473 2.058 -1.133 0.129 -0.251 -0.685 -0.290 0.034
-0.528 -0.121 -1.262 -0.780 1.173 -0.826 -0.698 0.196 1.590 0.019
-0.487 -0.227 -1.218 0.102 0.541 -0.281 0.634 1.226 -1.755 -0.432
0.548 -0.331 -0.163 0.229 -0.915 -0.406 0.028 -1.653 -0.509 0.635

0.946 0.015 2.992 -0.649 -1.070 0.921 1.012 -0.765 -0.506 -0.128
-1.143 -2.068 -0.449 0.111 0.189 -1.488 0.655 -0.958 -0.472 -1.116
-0.508 -0.500 1.207 0.661 -0.428 0.465 0.282 2.406 0.250 0.331
-0.055 -0.708 0.206 -0.247 -1.333 -0.713 -1.803 -0.016 2.784 0.698
1.722 -0.046 0.158 0.753 -1.180 -0.284 -0.101 -0.289 0.679 1.019

-0.775 -1.225 1.163 -0.677 -0.158 0.184 -0.152 -0.149 0.395 -1.486
-0.425 -0.450 -1.267 -0.254 2.049 -0.195 -0.137 -0.629 -0.085 -0.623
0.052 0.571 -0.057 -0.018 0.023 0.342 1.105 0.891 0.957 0.090
-1.568 0.714 0.372 -2.171 0.001 1.457 -1.583 1.199 0.533 -0.595
-0.402 -0.528 1.679 0.102 -0.933 0.691 0.131 -1.041 -0.381 0.704

-0.379 -1.091 0.702 -1.718 1.925 0.608 1.580 0.110 0.595 -0.894
-0.219 2.480 0.876 0.333 -0.748 0.209 0.173 -0.822 -0.428 -0.515
1.102 -0.964 -0.597 -1.281 -0.493 -0.828 1.862 0.076 -0.238 -0.109
-0.067 -0.592 0.532 -0.136 0.673 -0.184 0.698 1.035 -0.740 2.658
-0.766 -0.547 -0.750 0.070 -0.105 2.796 0.521 -0.528 -0.087 -1.108

-0.040 0.244 0.926 -0.163 -0.882 0.686 -0.351 -0.928 1.128 -0.910
-0.840 -0.276 0.063 0.751 2.457 -1.881 -2.265 0.486 0.293 1.080
0.472 0.150 -1.024 1.265 1.163 -1.864 -1.052 -1.258 -0.246 0.212
-0.238 0.306 -1.478 -1.045 -0.314 0.393 0.507 -0.616 -0.624 -1.839
-1.838 1.940 0.836 0.379 0.450 -3.152 -0.251 1.744 1.088 -0.453

-1.347 -0.498 0.928 -2.171 0.227 -0.401 -0.896 2.266 -1.087 1.406
-0.597 -0.337 0.643 -1.093 0.012 0.735 1.313 -0.542 -1.709 0.114
-0.758 1.332 0.177 -0.394 1.939 0.656 -1.052 0.107 2.193 0.314
-0.629 -1.170 -1.099 -0.914 -0.605 0.451 1.529 -0.706 0.053 0.566
-0.127 0.310 0.881 0.385 0.507 -0.724 1.166 -1.139 0.417 0.979

-1.060 0.780 -0.769 0.558 -0.925 -1.875 -1.737 0.601 -0.096 2.050
-0.748 1.106 -0.558 -1.638 -1.830 1.303 0.190 0.374 1.127 -0.934
-0.747 -0.951 -1.259 -0.153 0.104 -0.520 -0.285 0.448 0.871 -0.447
-0.516 0.563 1.507 0.655 -1.207 0.437 -1.498 0.613 -0.357 0.560
-0.111 -0.359 -1.762 0.332 0.000 -0.650 1.212 0.390 -0.868 1.736

0.554 1.107 -0.204 -0.040 -0.114 0.813 -1.071 -0.321 0.974 -1.463
-0.388 0.527 1.205 -0.238 -0.003 -0.138 -0.926 -1.503 -0.464 -0.388
-0.846 -1.411 0.963 1.980 -0.399 0.258 1.279 -1.105 2.107 -0.769
-1.617 -1.017 0.722 -1.925 -0.128 -0.637 0.550 0.485 2.008 1.008
-1.787 -0.691 0.557 -0.856 0.216 0.695 -0.917 -0.500 0.540 0.137


