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Abstract

This paper re-examines stock returns predictability over the business cycle

using price-dividend and price-earnings valuation ratios as predictors. Unlike

prior studies that habitually implement long-horizon/predictive regressions,

we conduct a testing framework in the frequency domain. Predictive regres-

sions support no predictability; in contrast, our results in the frequency

domain verify significant predictability at medium and long horizons. To

robustify predictability patterns, the analysis is executed repetitively for

fixed-length rolling samples of various sizes. Overall, the stock returns are pre-

dictable for wavelengths higher than 5 years. This finding is robust and inde-

pendent of time, window size and predictor.
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‘Prediction is very difficult, especially if it's
about the future’

Niels Bohr (Nobel laureate in Physics)

1 | INTRODUCTION

In financial economics among the various financial
assets, the body of work exploring aspects of stock
returns predictability is voluminous (e.g., Boucher, 2007;
Campbell & Hamao, 1992; Dergiades, Milas, &
Panagiotidis, 2020; Henkel, Martin, & Nadari, 2011; Wen,
Lin, Li, & Roca, 2015). The prevailing view is that stock
return variation is predictable, but principally at long
horizons. This view has been communicated very elo-
quently by Cochrane (1999) as one of the most central
New Facts in Finance. Predictive (or long horizon) regres-
sions constitute methodologically the Chevy Cavalier of
this research area (Rapach & Zhou, 2013). In particular,
predictability is assessed by regressing stock returns on
variables that can act as leading indicators. Nevertheless,

for reasons related to the statistical inference emanating
from the predictive regressions and the robustness of the
conducted pseudo-forecasting exercises, the debate on
stock returns predictability is still open (e.g., see
Boudoukh, Israel, & Richardson, 2018; Rapach &
Wohar, 2005).

The current consensus in the existing literature,
regarding the derived statistical inference from predictive
regressions, could be summarized as follows: First, the
Stambaugh (1999) bias that stems in the presence of
small samples and persistent predictors, such as
earnings-price and dividend-price ratios, leads to substan-
tial size distortions, when testing the null hypothesis of
no-predictability (see also Boudoukh et al., 2018). Second,
the Berkowitz and Giorgianni (2001) criticism on the
inherent inconsistency of the linear predictive regression
structure. Rationally, such linear framework should
imply ‘predictability at all horizons or predictability at no
horizon’ (Rapach & Wohar, 2005: p. 328); since, in this
context, long-horizon forecasts are extrapolations of short
horizon forecasts. Third, as Valkanov (2003) argues, the
utilization of overlapping observations intensifies the
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problem of serial-correlation and leads to non-robust
standard-errors and misleading inferences; see also
Boudoukh et al. (2018). For the above reasons,
approaches that lead to more robust inferences than pre-
dictive regressions have been proposed by several
authors, such as Boudoukh, Richardson, and
Whitelaw (2008), among others.

The present paper contributes to literature by aiming
an alternative framework to re-examine stock returns
predictability. To circumvent the concerns and shortcom-
ings associated with predictive regressions, we shift our
analysis to the frequency domain. Econometric methods
in the frequency domain are extensively implemented to
deal with issues related to financial economics
(e.g., Granger, 1969); yet, evidence from such methods is
scant for the predictability of stock returns. Exception is
Sizova (2014: p. 261), who argues that ‘there exist
methods, defined in the frequency domain, that provide a
superior fit for testing the long-run predictability compared
to that provided by long-horizon regressions’.

Across these lines, our testing approach is based on
the frequency analysis of causality proposed by Breitung
and Candelon (2006). We can thus examine whether
stock returns are predictable (via utilizing the informa-
tion inherent in valuation ratios fluctuations) by consid-
ering a different methodological approach. Towards this
direction, we postulate a bivariate vector autoregressive
(VAR) framework to disentangle short, medium and long
run predictability. This is a different frequency domain
framework than the one suggested by Sizova (2014); the
author implements the local Whittle (1962) estimator and
Robinson's (1994) frequency-domain least squares
(FDLS). The methodological framework herein demon-
strates several advantages over existing methods fre-
quently employed to assess stock returns predictability.
For instance, it allows the identification of causal rela-
tionships even if the true inter-dependence between two
variables is non-linear. Moreover, it permits clear differ-
entiation between short-run and long-run predictability.
Last but not least, the test is robust even in the presence
of volatility clustering, a common feature of financial
time series. Therefore, in certain circumstances, the
Breitung and Candelon (2006) test provides an elegant
way to deal with potential hidden channels of causality
that would otherwise go undetected.

It is well-documented that predictive regressions are
sensitive to parameter instability (see Bansal, Tauchen, &
Zhou, 2004; Kim, Morley, & Nelson, 2005; Lettau &
Nieuwerburgh, 2008; Welch & Goyal, 2008; Yin, 2019).
Rapach and Wohar (2006) find that parameter instability
is present when stock returns are predicted through the
price-dividend ratio. Davidson and Monticini (2010) find
two structural breaks (1959 and 1996) in the long-run

relationship between stock prices and dividends. Further,
Welch and Goyal (2008) demonstrate that, even in the
presence of significant evidence of in-sample predictive
ability, on an out-of-sample basis, popular predictors fail
to forecast the equity risk premium (for instability on
forecasting relationships, see Lettau &
Nieuwerburgh, 2008). To avoid misleading inferences
due to parameter instability, a common approach is to
estimate repetitively the specification of interest on a
rolling basis. But even in this case, there is distrust on the
credibility of the predictive regression results, because of
controversies predominantly associated with the size of
the estimation window. Matters of uncertainty occur
when: (a) the window-size is selected in an ad-hoc man-
ner and hence, researchers neglect potential predictive
patterns that may have been revealed otherwise (Rossi &
Inoue, 2012); (b) researchers present favourable results
after trying various specifications and window sizes; that
is the so-called data snooping bias (Boudoukh
et al., 2008); and (c) the selected window-size does not
accommodate likely parameter instability (Rapach &
Zhou, 2013).

To discount for misleading inferences (due to parame-
ter instability, data snooping and ad-hoc window length
selection), we follow the general proposal of Rossi and
Inoue (2012). Specifically, we test for predictability across
multiple window-lengths of fixed size. The choice of the
estimation window length has always been a concern for
practitioners since model performance is sensitive to the
period under investigation. Rossi and Inoue (2012) rec-
ommend verification of predictability based on a sum-
mary inference, after examining several window lengths
(see also Rapach, Strauss, & Zhou, 2010; Welch &
Goyal, 2008). An attractive feature of this procedure is
the delivery of credible inferences in the presence of
structural breaks, data snooping and/or ignorance over
the optimal length of the fixed window size. Conse-
quently, we partition our sample into fixed size rolling
windows with different lengths; execute the Breitung and
Candelon (2006) test for each of the subsamples and eval-
uate the predictability of stock returns' variations by
obtaining summary statistics. Finally, we provide valu-
able practical insights, by illustrating the evolution of sig-
nificant predictability across different horizons.
Therefore, our findings remain robust to uncertainties
linked to predictive regressions.

By using monthly data for the U.S. economy (1871:1
to 2017:9), we re-examine the predictive content of two
valuation ratios over the U.S. stock returns, that is, the
price-earnings and the price-dividend ratios, which con-
stitute the most frequently encountered predictors. Most
of the empirical results in asset pricing literature corrobo-
rate that the price-dividend and price-earnings ratios
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have limited or no ability in predicting real stock price
growth in the short-run (see also Charles, Darné, &
Kim, 2017), but significant predictive capacity over the
long-run; a pattern that has attracted considerable inter-
est by academics and practitioners alike. There is already
abundant literature demonstrating the predictive power
of valuation ratios on stock returns. For empirical sup-
port on the use of the two measures of fundamental value
see, inter alias, Fama and French (1988), Campbell and
Shiller (1988, 1998) and Rapach and Wohar (2005). None-
theless, recent studies, such as Boudoukh et al. (2018),
cast doubts on the reliability of such predictor variables,
in the context of predictive regressions, concluding that
the potential of long-horizon return predictability should
be considered with scepticism.

A collective view of our findings in the frequency
domain indicates that both considered valuation ratios
significantly contribute to predicting stock returns; not
however in the short-run. The results are surprisingly dif-
ferent compared to the traditional predictive regression
framework, even after controlling for robust standard
errors and nonlinearities for the data generating process
of the predictor variable. The key message is that both
the price-dividend and price-earnings ratios evince pre-
dictive capacity over stock returns for medium and long
horizons; a finding that cannot be revealed when long-
horizon regressions are employed. Our results show that
stock returns are predictable when using the information
content of the price-dividend (price-earnings) ratio for
wavelengths higher, on average, than 17 (35) months.
The observed difference in the timing at which predict-
ability occurs is consistent with Gopalan and
Jayaraman (2012) and Dergiades et al. (2020) who claim
that investors pay more attention to dividends than earn-
ings in valuing stocks, supporting the supremacy of divi-
dends over earnings and bring to the fore the debate on
earnings management, since earnings are prone to infor-
mation manipulation.

Finally, it is worth noting that this finding has impor-
tant implications for portfolio allocation decisions. For
example, Samuelson (1969) shows that for an investor
with power utility who rebalances his portfolio optimally,
investment horizon is irrelevant if asset returns are
i.i.d. However, variation in expected returns over time
can potentially introduce horizon differentiation effects
(Merton, 1973). Given the evidence of predictability in
returns, a long-horizon investor should allocate his
wealth differently from a short-horizon investor
(Barberis, 2000; Merton, 1973).

The remainder of this paper is organized as follows.
Section 2 presents the data used and Section 3 the meth-
odology. Section 4 shows the results on stock returns' pre-
dictability in the frequency domain, compares results to

long-horizon regressions and presents robustness checks
to eliminate the uncertainty on window selection and
parameter instability. Section 5 concludes.

2 | DATA AND PRELIMINARY
ANALYSIS

We use in real terms monthly data of the S&P 500 stock
prices (St), dividends (Dt) and earnings (Et) for the U.S.
economy, extracted from Shiller's (2005) database.1 The
sample for St and Dt spans from January 1871 to Septem-
ber 2017, that is, almost 146 years, while the sample for
Et extents from January 1871 to June 2017. We calculate
the annual stock returns (rt) as indicated below:

rt = ln St +
X12

i=1
Dt−1

� �
=St−12

h i
, ð1Þ

where
P12

i=1Dt−1 refers to the 12 past monthly periods
sum of Dt. Following Rapach and Wohar (2005), the
price-dividend ratio (dt) and the price-earnings ratio (et)
is calculated by Equations (2) and (3), respectively. The
time series plot of all constructed variables is shown in
Figure 1.

dt = ln St=
X12

i=1
Dt−1

� �h i
, ð2Þ

et = ln St=
X12

i=1
Et−1

� �h i
: ð3Þ

Moreover, in Table 1, we report the typical descrip-
tive statistics of the annual stock returns (rt), the price-
dividend ratio (dt) and the price-earnings ratio (et).
Finally, as the Breitung and Candelon (2006, hence-
forth B&C) methodological framework necessitates
stationarity for the involved variables, we conduct two
commonly used unit-root tests, the augmented Dickey–
Fuller (ADF) test and the generalized least squares
detrending Dickey-Fuller (GLS-DF) test. The results of
both unit-root tests are summarized in Table 2. The
conducted inference reveals that all three variables, at
the conventional levels of significance, are integrated
of order I(0).

3 | ECONOMETRIC
METHODOLOGY

Causality was first put forward by Granger (1969) and
has so far been a useful tool to describe relationships in
the time domain. A key drawback of causality tests is the
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restrictive underlying assumption that a single statistical
measure is sufficient to essentially explain relationships
among variables at all frequencies. In other words, the possi-
bility that causality and feedback mechanisms vary over dif-
ferent frequencies is neglected; this is non-trivial as the
choice of data frequency often has significant impact. For a
discussion on this, see Lemmens, Croux, and Dekimpe (2008)
and Narayan and Sharma (2015), among others.
Geweke (1982) extends the concept of causality by

constructing measures which can be decomposed in time
and frequency (see also Hosoya, 1991). In this study, we
employ the frequency domain causality test introduced by
Breitung and Candelon (2006).

Let ft be some predictor variable; in our case this is a
valuation ratio, that is, either the price-dividend or the
price-earnings ratio. For the stationary zt = (rt ft)

0
two-

dimensional vector, we assume a finite-order vector auto-
regressive (VAR) representation of the form:

FIGURE 1 Price-dividend

ratio, price-earnings ratio and S&P

500 stock returns [Colour figure

can be viewed at

wileyonlinelibrary.com]

TABLE 1 Descriptive statistics

Variable Mean Median Max. Min. SD Skewness Kurtosis

rt 0.432 0.435 1.320 −0.200 0.182 −0.197 3.867

dt 0.742 0.674 1.987 −0.643 0.445 0.579 3.145

et 0.192 0.207 1.980 −0.994 0.371 0.115 4.072

Notes: Given the data transformation presented in Equations (1)–(3), the sample used to compute the above reported statistics extents from February 1872 to
September 2017 (1,748 observations) for the variables of the stock returns and the price-dividend ratio, while the respective sample for the price-earnings ratio
ranges from February 1872 to June 2017 (1,745 observations).

TABLE 2 Unit root tests

Variable

ADF test GLS-DF test

No trend Trend No trend Trend
t-statistic (k) t-statistic (k) t-statistic (k) t-statistic (k)

rt −5.441 (12)*** −6.458 (12)*** −3.545 (12)*** −6.418 (12)***

dt −3.182 (8)*** −4.649 (8)*** −2.139 (5)*** −4.370 (8)***

et −5.135 (5)*** −5.512 (5)*** −4.490 (5)*** −5.489 (5)***

Notes: ADF is the augmented Dickey–Fuller test and GLS-DF is the generalized least squares detrending Dickey–Fuller test. The reported t-statistic for each
test is the test statistic used to conduct the inference for the respective null-hypothesis. For both implemented tests, the lag-length is selected based on the
Akaike information criterion. The reported number k in the parentheses is the selected lag-length of the test. Finally, symbol *** denotes rejection of the unit

root hypothesis at the .01 significance level.
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Θ Lð Þ rt
f t

� �
=

Θ11 Lð Þ Θ12 Lð Þ
Θ21 Lð Þ Θ22 Lð Þ

� �
rt
f t

� �
=

u1t
u2t

� �
, ð4Þ

where Θ(L) = I − Θ1L − Θ2L
2 − … − ΘpL

p is a 2 × 2 lag
polynomial of order p with Ljrt = rt − j and Ljft = ft − j. For
the bivariate white noise process, we define E utu0t

� �
=V ,

as positive and symmetric variance–covariance matrix.
Hence, based on the Cholesky decomposition, H−1 = C

0
C

with C a lower and C0 an upper triangular matrix. This
leads to:

rt
f t

� �
=Ψ Lð Þ η1t

η2t

� �
=

Ψ11 Lð Þ Ψ12 Lð Þ
Ψ21 Lð Þ Ψ22 Lð Þ

� �
η1t
η2t

� �
, ð5Þ

where Ψ(L) = Θ(L)−1C−1 and η1t η2tð Þ0 =C u1t u02t
� �

, so that
var η1tð Þ=var η2tð Þ=1 and cov η1t,η2tð Þ. At frequency ω, it
is said that ft does not Granger cause (no predictive
power) rt if the predictive component of the spectrum of
rt is zero. Hence, causality can be evaluated by:

Md!r ωð Þ= ln 1+
Ψ12 e− iωð Þj j2
Ψ11 e− iωð Þj j2

" #
: ð6Þ

B&C further show that the predictive content of ft on
rt can be tested through a Fourier transformation on the
moving average coefficients (see also Geweke, 1982;
Hosoya, 1991). In particular, for predictability at fre-
quency ω, Ψ12 e− iωð Þj j2 should be equal to zero. As
Ψ12 e− iωð Þj j2 is a complicated non-linear function, B&C
propose to test the same hypothesis using the linear
restrictions specified below:

Xp

k=1
θ12,kcos kωð Þ=0 and

Xp

k=1
θ12,ksin kωð Þ=0: ð7Þ

Hence, we can test the null hypothesis of no predict-
ability by examining the validity of the above restrictions
at frequency ω∈ 0,πð Þ; that is, by comparing the B&C pro-
posed statistic with the 0.05 critical value from the χ22ð Þ
distribution.2

4 | EMPIRICAL RESULTS

4.1 | Predictability in the frequency
domain

Table 3 presents the results of the B&C frequency domain
causality test for the full sample and a set of selected sub-
samples. We first analyse the joint null hypothesis of no

predictability for different frequency intervals within the
range 0,πð Þ Starting with the very short-run, we consider
the high frequencies ωi∈ π=3,πð Þ (between 0 and
6 months). Then, the frequencies are partitioned to
prespecified monthly intervals, that is, 6-month incre-
ments up to year 4 (48months) and 12-month increments
thereafter up to year 7 (84months); after which all fre-
quencies are aggregated, that is, (84, +∞) or ωi < π=41 To
convert the frequency ωi to time, the transformation
2π=ωi is carried out.

To provide a conservative assessment towards the ver-
ification of predictability, we show the maximum p-value
of the B&C test for each selected frequency range in
Table 3. A low p-value (lower than the commonly
implemented significance levels) implies rejection of the
null hypothesis within the corresponding frequency
interval. The second column of Panel A reports the full
sample results using the price-dividends ratio as a predic-
tor. The maximum p-value for each sub-range of frequen-
cies indicates that the null hypothesis cannot be rejected
at horizons lower than a year. For all other horizons, pre-
dictability is verified at the 0.01 significance level. Similar
is the inference when the price-earnings ratio is used as
predictor (Table 3, Panel B).

For robustness, we also split the sample into sub-
periods. Hence, the remaining columns of Table 3 con-
tain the testing results for six sub-samples (1922–2017,
1952–2017, 1962–2017, 1972–2017, 1982–2017 and 1992–
2017). For the price-dividends ratio (Table 3, Panel A),
the results reveal identical predictive pattern as in the full
sample; that is, no differentiation can be identified across
the examined sub-samples. Looking at the price-earnings
ratio (Table 3, Panel B), the overall inference is qualita-
tively like the price-dividends ratio. In terms of predictive
horizons and level of significance, for the first three sub-
samples (1922–2017, 1952–2017, 1962–2017) the revealed
predictive pattern is undistinguishable to the respective
pattern of the full sample. For the last three sub-samples,
while predictability can be justified approximately for the
same time horizons, this occurs mainly at higher levels of
significance (e.g., 0.05 or 0.1). In summary, the B&C test-
ing procedure implies strong predictability patterns in
the medium and long run.

4.2 | Comparison with predictive
regressions

Traditionally, stock return predictability is assessed by
regressing equity returns on variables that can potentially
explain future movements in stock prices; see Fama and
French (1988) and Valkanov (2003) among others. A sub-
sequent step is to contrast the findings of the previous
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section with estimates derived by standard predictive
regressions, using the same dataset for the same hori-
zons. The adopted specification is presented below:

rht+ h = a+ bhf t + uht+ h: ð8Þ

Table 4 reports the OLS estimates of bh for the full sam-
ple and the corresponding t-statistics for each predictor.
Given the overlapping structure for the observations of
rht+ h, standard errors are corrected for heteroscedasticity
and serial correlation, using the Newey and West (1987)
adjustment based on the Bartlett kernel. Like the previ-
ous section, the examined horizons span from 1 to

84months. Contrary to the results of the frequency
domain causality test, the t-statistics in Table 4 fail to ver-
ify significant predictability for either valuation ratio for
all horizons.

For robustness, we also resort to bootstrap simulation
methods; see, among others, Kilian (1999) and Rapach
and Wohar (2005). In this setting, we calculate
bootstrapped p-values under the following procedure. Ini-
tially, we estimate the data generating process for the
returns of stock prices under the null hypothesis of no
predictability based on the actual data. We then assume a
first order autoregressive (AR) process for the two valua-
tion ratios of interest. Having at our disposal the above

TABLE 3 Frequency domain causality test (max p-values)
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estimates, we construct pseudo samples for the stock
returns and the two valuation ratios by randomly draw-
ing with replacement from the corresponding residuals,
that is, random walk for rt and AR(1) for dt or et. To pre-
serve the contemporaneous correlation structure, resid-
uals are drawn in tandem for both processes. Next, for
the horizons of interest, we re-estimate the predictive
regression of Equation (8), storing the Newey and
West (1987) adjusted t-statistics. The above procedure is
repeated 1,000 times to generate an empirical distribution
of t-statistics for each horizon under the null hypothesis
of no predictability. For more technical details, the reader
is referred to Rapach and Wohar (2005). As inferred from
Table 4, the reported bootstrapped p-values (in brackets)
confirm the findings so far, that is, the null hypothesis of
no predictability cannot be rejected at the conventional
significance levels.

The pattern evident in Table 4 is in line with the view
that under a linear setting, it is not justified to observe
diverse patterns of predictability over different horizons.
For example, Berkowitz and Giorgianni (2001) argue that
the assumption of linearity implies either predictability
or no predictability, irrespective of the horizon. The pre-
dictive regression results thus draw a very different pic-
ture of predictability compared to the evidence presented
in Table 3. Considering this, to further validate our infer-
ences, we relax the assumption of a linear DGP for the
two valuation ratios considered. That is, instead of an AR
process we adopt the Exponential Smooth-Transition AR
(ESTAR) modelling specification, proposed by Kilian and
Taylor (2003); for a similar application with annual data,
see Rapach and Wohar (2005). Table 4 shows that the
tabulated bootstrapped p-values (in square brackets)
retain the same significance pattern under the

TABLE 4 Predictive regression estimates
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assumption of a nonlinear DGP, that is, the tests preclude
predictability at all horizons.

The predictive regression results with monthly data fail
therefore to find significance for either valuation ratio (dt
and et) at the conventional significance levels. Whilst this is
consistent with the results of Boudoukh et al. (2008) using
annual data, our findings contrast the inference of Camp-
bell and Shiller (1998) and Rapach and Wohar (2005). Both
studies use annual data and find that valuation ratios are
useful for forecasting stock price changes at long horizons.
For example, Rapach and Wohar (2005) confirm the strong
ability of valuation ratios to forecast real stock price growth
after the fifth year and above.

Finally, the results in Tables 3 and 4 construe mixed
assessments. The inference derived from the causality
tests in the frequency domain supports the predictability
of stock returns. It can be argued that methods that
match the frequency spectrum of the data may enclose
valuable information content, as causal influences are
not uniform across the short-, medium- and long-term
horizons. In contrast, when judging predictability solely
by predictive regressions conducted in the time domain,
part of this information is inevitably lost (Sizova, 2014).
Taken together, successful implementation of frequency
domain causality can minimize the risk of distorted infer-
ence and overcome the limitations associated with the
predictive regression framework. Hence, under certain
conditions, the B&C test may expose hidden channels of
predictability that otherwise would go undetected.

4.3 | Robustness on the predictability
patterns

This section builds on the results derived by the frequency
domain testing approach, with purpose to robustify the
identified predictive pattern for both employed valuation
ratios. Acting so is more than imperative, as substantial
changes in the market dynamics are expected to have
occurred, given that the start of the sample is dated back
to 1871.3 When dealing with such an extended sample,
concern is the presence of structural breaks and their
impact on the estimation process. Hence, in the context of
Rossi and Inoue (2012), we repetitively test for predictabil-
ity by adopting a testing framework on a rolling basis over
a wide range of windows lengths. This way, we discount
the uncertainty over the identified full sample predictabil-
ity patterns in the presence of breaks.

To this end, the ensuing experiments are conducted
using a rolling window estimation scheme as follows. We
start with the shortest fixed window-length considered,
covering the period from 1871:1 to 1913:8 (500 monthly
observations or ≈42 years). This window is used to

estimate the parameters of the bivariate VAR specifica-
tion using annualized rt and one valuation ratio each
time (i.e., either dt or et). To ensure that the estimated
specification is kept parsimonious, the optimal VAR lag-
length is selected each time based on the AIC criterion.
Once the estimation is conducted, we then perform the
B&C test. Next, we reconduct the same steps for the sub-
sequent rolling sample, which is constructed by removing
the first observation of the previous sample and adding
one extra observation at the end of the sample
(i.e., 1871:2 to 1913:9). The testing is repeated until the
full sample of observations is exhausted; in this case, the
final sample is 1976:2 to 2017:9 (in total the B&C test is
conducted 1,250 times). The above described testing pro-
cess is repeated for a set of fixed-length rolling windows
comprising of 600, 700, 800, 900, 1,000, 1,100 and 1,200
observations. Using a range of different window sizes
minimizes the likelihood of our findings being subjected
to a window size selection bias. This way, the results offer
insights on the dynamic patterns and intensity of stock
return predictability throughout time.

The B&C testing results for dt and et, using rolling
windows with fixed size of 500 and 1,000 observations,
are presented in Figures 2 and 3, which illustrate the dis-
tribution of the estimated p-values in a three-dimensional
coordinate system.4 The vertical axis depicts the magni-
tude of the p-values; the bottom horizontal left-axis dis-
plays the end date of every rolling sample, and the
bottom horizontal right-axis depicts the frequency at
which the p-values refer to.

The produced surface is coloured according to the
magnitude of the reported p-values (see the colour bar in
Figure 2). Shades of blue imply rejection of the null-
hypothesis of no-predictability at α = 0.01 and α = 0.05,
while all other colour shades signify the reverse.
Figures 2b and 3b portray, for each of the 3D figures, the
respective contour plot in the two-dimensional space.
The time-frequency plane of the contour plot toggles tints
according to the magnitude of each p-value, following
the same colouring pattern as in the 3D Figures.5

Concentrating on the first set of rolling windows with
500 observations (Figure 2a,b), we estimate for the fre-
quency range 0,πð Þ, 311,250 p-values from 1,250 rolling
samples (first sample 1872:1 to 1913:8 and last sample
1976:2 to 2017:9). At low frequencies, for α = 0.01, the
hypothesis of no-predictability is consistently rejected
across almost all samples. As we progressively move to
higher frequencies, inference is again robust but reverse,
meaning that the null hypothesis is not rejected for most
samples. The price-dividends ratio exhibits predictive
power towards stock returns only for long and medium-
run horizons, while not in the short-run. For all rolling
samples jointly, the null-hypothesis is rejected at α = 0.01
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when ωi∈ 0,0:17ð Þ, implying that predictability is verified
for wavelengths higher than 36months; note that we
focus on whether predictability is verified jointly at the
100% of the implemented rolling samples.

In addition, post-World War II and notably after the
60s, predictability becomes more and more evident at
slightly higher frequencies (contour plot of Figure 2b). In
particular, for α = 0.01 there is weaker evidence of pre-
dictability for wavelengths between 12 and 36 months
ωi∈ 0:17,0:53½ �. Therefore, from the two plots (Figure 2a,
b), we can deduce that stock return predictability is not
constant throughout time but depends on the idiosyn-
cratic characteristics of the underlying period. Hence,
there might be significant time-varying patterns, a find-
ing that is consistent with various studies, such as
Chen (2009) and more recently Devpura, Narayan, and
Sharma (2018), among others.

For example, for the 500-window length, considering
the rolling samples that end within the 70s or later, that
is, first sample spanning from 1928:6 to 1970:1 (573 sam-
ples in total), the resulting inference indicates that the

null-hypothesis (for all rolling samples jointly) is rejected
at α = 0.01 when ωi∈ 0,0:41ð �. That is, for this set of sam-
ples, predictability can be verified for wavelengths of
15months or more. Instead, when we account for rolling
samples that start from the 70s or later, that is, beginning
sample from 1970:1 to 2011:8 (74 in total; not overlapping
with the set of samples mentioned previously), the time-
varying nature of stock return predictability is confirmed.
The null-hypothesis is now rejected (for all rolling sam-
ples jointly) at α = 0.01 for ωi∈ 0,0:69ð �, implying that
predictability is verified for wavelengths of less than a
year, that is, 9 months or more. Overall, these findings
provide robust evidence of significant time-varying pat-
terns in the predictability of stock returns.

Figure 3a,b presents the results for the windows with
length equal to 1,000 observations. For this window size,
we estimate in total more than 0.37 million p-values from
750 rolling samples. Based on the distribution of the esti-
mated p-values, a qualitatively equivalent inference as for
Figure 2a,b is deduced. Namely, p-values for low-sized
frequencies steadfastly corroborate stock returns

FIGURE 3 Left graph: p-values distribution 3D plot (price-dividends, 1000 obs.); Right graph: p-values contour plot (1000 obs.) [Colour

figure can be viewed at wileyonlinelibrary.com]

FIGURE 2 Left graph: p-values distribution 3D plot (price-dividends, 500 obs.); Right graph: p-values contour plot (500 obs.) [Colour

figure can be viewed at wileyonlinelibrary.com]
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predictability, with the respective p-values at high-
frequencies showing the opposite. Overall, for the lower
length window (500 observations), the observed variabil-
ity (across the rolling samples) in the frequency level at
which predictability is verified (α = 0.01), reduces as the
window length increases. This is expected, provided that
small length rolling samples are more sensitive to struc-
tural breaks (Rossi & Inoue, 2012); as opposed to large
length samples that smooth out the effects of breaks.

Table 5 summarizes the B&C testing results for all
examined fixed size rolling windows, that is, 500, 600,
700, 800, 900, 1,000, 1,100 and 1,200. From this set of
fixed size rolling windows, 2.84 million p-values are esti-
mated from 7,200 rolling samples. Panel A in Table 5
illustrates descriptive information for each window size,
while Panel B reports the maximum p-value (among all
rolling samples of the same size) for selected segments of

the frequency range 0,πð Þ, which are further mapped to
the time domain. Hence, for the rolling samples of
500 observations, we may infer (using α = 0.01) that on
aggregate, stock returns are predictable at wavelengths
that are approximately longer than 3 years. For all rolling
samples jointly and for each window-length, the intervals
of ω, at which the no predictability hypothesis is rejected
for α = 0.01, range between (0, 0.17] and (0, 0.67]. A col-
lective view of the results suggests that stock returns are
predictable for wavelengths higher on average than
17months. Hence, predictability is evidenced only for
medium and long-run horizons.

Next, the same testing strategy is conducted for the
price-earnings ratio. The B&C test is executed on a rolling
basis for eight different windows sizes, starting from 500 to
1,200 observations. The estimated p-values for two win-
dow sizes, 500 and 1,000, are illustrated in Figures 4a,b

TABLE 5 Rolling sample summary results for the price-dividend ratio
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and 5a,b, respectively, while a summary of results for the
remaining window sizes is provided in Table 6. Overall,
the resulting inference does not differ qualitatively from
the case of the price-dividend ratio. The no predictability
hypothesis for the stock returns is primarily rejected at
low frequencies, while the opposite is true at high frequen-
cies. We also observe a relative reduction in the variability
(across the rolling samples) of the frequency level at which
predictability is verified (α = 0.01) as the window length
progressively increases. The results again indicate that pre-
dictability occurs for medium and long-run horizons.

Nevertheless, even though our findings remain robust,
we may note a differentiation in the identified predictability
pattern of stock returns which is naturally attributed to the
choice of predictor (price-dividends ratio or price-earnings
ratio). In the case of the price-earnings ratio, focusing
jointly on all rolling samples of 500 observations (see
Figure 4a), the null hypothesis is rejected (α = 0.01) when
ωi∈ 0,0:11ð �, implying predictability for wavelengths of
more than 57months. The time period at which predict-
ability exists is higher by 21months compared to the

respective predictive ability of the price-dividends ratio
(see Figure 2a). What is more, based on all rolling sam-
ples jointly for every window size, the intervals of ω at
which the null hypothesis is rejected (α = 0.01) range
between (0, 0.11] and (0, 0.38] (see Table 6). Thus, stock
returns are predictable on average at wavelengths higher
than 35months, that is, 18months more than the respec-
tive mean for the price-dividends ratio. To this end, the
price-dividends ratio offers predictability at shorter hori-
zons compared to the price-earnings ratio. This difference
is attributed to the quality of the information content
conveyed by each valuation ratio. Although both valua-
tion ratios provide valuable signals for pricing stocks,
these very signals may be blurred by noise, which may be
of a heterogeneous degree in each case.

As earnings are more prone to information manipula-
tion (see Aharony & Swary, 1980; Gopalan & Jayaraman,
2012), a lower signal-to-noise ratio for earnings relative
to dividends is expected. Hence, investors will pay more
attention to dividends than earnings in valuing stocks as
the signal is stronger, and a non-uniform predictive

FIGURE 4 Left graph: p-values distribution 3D plot (price-earnings, 500 obs.); Right graph: p-values contour plot (500 obs.) [Colour

figure can be viewed at wileyonlinelibrary.com]

FIGURE 5 Left graph: p-values distribution 3D plot (price-earnings, 1000 obs.); Right graph: p-values contour plot (1000 obs.) [Colour

figure can be viewed at wileyonlinelibrary.com]
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capacity over the stock prices is anticipated. Overall, this
empirical finding is consistent with Aharony and
Swary (1980) who find that dividends convey information
over and above earnings and Dergiades et al. (2020), who
attribute the observed difference in the timing at which
predictability occurs for the two valuation ratios in that
investors pay more attention to dividends than earnings
in valuing stocks.

Focusing again on the low length windows (e.g., in
Figures 2a and 4a with 500 observations), the observation
of a general increase in the predictive ability over the
post-World War II period cannot be supported now, in
contrast to the price-dividends ratio. Instead, time-
variation seems to be higher for the price-earnings ratio,
confirming that alternative predictors might bring about
diverse patterns of predictability. However, the finding
that predictability occurs for medium and long-run hori-
zons is still preserved and is robust.

Finally, Table 6 summarizes the B&C testing results
for all examined fixed length rolling windows, that is,
500, 600, 700, 800, 900, 1,000, 1,100 and 1,200. From this
set of fixed size rolling windows, 2.84 million p-values
are estimated from 7,176 rolling samples. Panels A and B
report the same information as the respective panels in
Table 5. From the results of Table 6, we infer that the
horizon at which predictability is verified reduces pro-
gressively with the increase of the window size (ranging
from 4.76 years and above to 1.38 years and above). Over-
all, for all rolling samples, independent of size, the stock
returns predictability at short horizons is rejected.

5 | CONCLUSIONS

This paper revisits the popular issue of stock return pre-
dictability using data for the period spanning from 1872

TABLE 6 Rolling sample summary results for the price-earnings ratio
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to 2017. In doing so, it contributes to the extant literature
via examining the usefulness of frequency domain
methods based on valuation ratios for horizons that
extent over and above the business-cycle. The wide
implementation of long-horizon regressions to investigate
the above hypothesis, involves complications linked to
the robustness of the derived statistical inference and the
conducted pseudo-forecasting exercises. Unlike prior
studies, we re-examine the hypothesis that stock returns
are predictable from a new angle, in the sense that apart
from the traditionally implemented predictive regres-
sions, we assess the same hypothesis by working in the
frequency domain. To this end, based on the work of
Breitung and Candelon (2006), we adopt a frequency
domain causality test for exploring predictability at
predefined frequencies.

Our results reveal that the statistical inference criti-
cally depends on the choice of method. With predictive
regressions, there is no evidence of predictability at long
horizons, even when we correct for heteroscedasticity and
serial correlation and/or after re-assessing the significance
levels based on bootstrap simulation methods; as in, inter
alias, Kilian (1999) and Rapach and Wohar (2005). The
same inference persists no matter if we consider a linear
or nonlinear structure for the stock returns' data generat-
ing process. Interestingly, the frequency domain causality
approach reveals strong evidence in support of stock
return predictability for medium to long-term horizons.

Within the frequency domain framework, our analy-
sis is executed in a dynamic manner, as the verification
of predictability is investigated in a rolling basis. Our tests
are conducted repetitively for fixed size rolling windows
across different lengths. Our general findings remain
robust to the choice of window length. Specifically, to
investigate the hypothesis of no predictability we esti-
mate in total 5.68 million p-values from 14,376 rolling
samples. Moreover, the general predictive inference
remains robust to the choice of predictor variable, that is,
price-dividends or price-earnings. Still, the former predic-
tor is more persistent in predictive ability in the short
and medium-term horizons. This implies that investors
pay more attention to dividends than earnings in valuing
stocks. In addition, the price-dividends ratio ability to
predict stock returns appears stronger today compared to
the pre-World War II era. Overall, the overarching find-
ing of this work is that both price-earnings and price-
dividends ratios evince predictive power towards stock
returns only for medium- and long-horizons.

Our research postulates that higher levels of predict-
ability are to be expected at longer horizons. This finding
has a certain economic significance in the asset pricing
literature (see Campbell, Lo, & MacKinlay, 1997;
Cochrane, 2001). Such empirical evidence forms the basis

to formulate theoretical asset pricing models and active
portfolio management strategies.6 Contrary to the results
of the frequency domain causality test, the traditional
predictive regression framework fails to verify significant
predictability, even after controlling for robust standard
errors and nonlinearities. Therefore, practitioners
should be cautious on the methods employed to identify
predictability and assess model selection procedures.
The reason is that potential gains to long-term dynamic
investment strategies are likely to be hard to detect;
when implementing, inter alia, tactical asset allocation
strategies, market timing and performance evaluation.
Instead, this paper provides an appropriate approach
based on the frequency domain framework, that allows
clear differentiation between short-run and long-run
predictability and is robust to volatility clustering and
nonlinearities.

Directions for future research include the implemen-
tation of the proposed approach to examine predictability
of returns using different predictors and financial vari-
ables, considering the extensive set of potential stock
return predictors. Alternatively, evidence for predictabil-
ity associated with equity portfolios sorted based on, for
example, size or book-to-market, will allow to shed new
light on potential differentiation in the power and persis-
tence of predictability across time and frequencies.

ENDNOTES
1 Available at: http://www.econ.yale.edu/�shiller/data.htm
2 Note that, Breitung and Schreiber (2018) propose a framework
where the non-causal hypothesis can be tested for a predefined
frequency range instead of single frequencies.

3 These changes may be attributed to several coexisting reasons
such as the market depth, market liquidity, number of firms, trad-
ing system etc.

4 For brevity, we present only the results based on the rolling win-
dows with fixed size of 500 and 1,000 observations. The respective
figures for rolling windows with fixed size of 600, 700, 800, 900,
1,100 and 1,200 observations are available upon request.

5 The contour-plot spots clusters of p-values not visible in the 3D
figure (e.g., troughs surrounded by peaks).

6 For instance, Barberis (2000) examines the effects of asset return
predictability on optimal portfolio choice. The author shows that
sensible portfolio allocations for short- and long-horizon investors
can be very different in the context of predictable returns while
predictability remains important in the presence of estimation
risk; with the exception of buy-and-hold portfolios with horizons
of many years (see also Cochrane, 1999; Stambaugh, 1999).
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