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Abstract. Threshold models are widely used in macroeconomics and financial
analysis for their simple and obvious economic implications. With these models,
however, estimation and inference is complicated by the existence of nuisance
parameters. To combat this issue, Hansen (1999, Journal of Econometrics 93: 345–
368) proposed the fixed-effect panel threshold model. In this article, I introduce
a new command (xthreg) for implementing this model. I also use Monte Carlo
simulations to show that, although the size distortion of the threshold-effect test
is small, the coverage rate of the confidence interval estimator is unsatisfactory. I
include an example on financial constraints (originally from Hansen [1999, Journal
of Econometrics 93: 345–368]) to further demonstrate the use of xthreg.
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1 Introduction

Heterogeneity is a common problem of panel data. That is to say, each individual in a
study is different, and structural relationships may vary across individuals. The classical
fixed effect or random effect reflects only the heterogeneity in intercepts. Hsiao (2003)
considers many varying slope models for this problem. Among these models, Hansen’s
(1999) panel threshold model has a simple specification but obvious implications for
economic policy. Though threshold models are familiar in time-series analysis, their use
with panel data has been limited.

The threshold model describes the jumping character or structural break in the re-
lationship between variables. This model type is popular in nonlinear time series, one
example being the threshold autoregressive (TAR) model (Tong 1983). This model can
capture many economic phenomena. For example, using five-year interval averages of
standard measures of financial development, inflation, and growth for 84 countries from
1960 to 1995, Rousseau and Wachtel (2009) showed that there is an inflation thresh-
old for the finance and growth relationship that lies between 13–25%. When inflation
exceeds the threshold, finance ceases to increase economic growth. Inflation’s effect on
economic growth depends on the inflation level. High levels of inflation are harmful to
economic growth, while low levels of inflation are beneficial to economic growth. As an-
other example, the technical spillover of foreign direct investment (FDI) has been widely
studied. Girma (2005) found that the productivity benefit from FDI increases with ab-
sorptive capacity until some threshold level, at which point it becomes less pronounced.
There is also a minimum absorptive capacity threshold level below which productivity
spillovers from FDI are negligible or even negative.
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This article is arranged as follows. In section 2, I review some basic theories about
fixed-effect panel threshold models. I then describe the new xthreg command in sec-
tion 3. In section 4, I perform Monte Carlo simulations to study test-power distortion
and the coverage rate of confidence interval estimators in finite samples. I illustrate
use of the command with an example from Hansen (1999) in section 5. In section 6, I
conclude the article.

2 Fixed-effect panel threshold models

2.1 Single-threshold model

Consider the following single-threshold model:

yit = μ+Xit(qit < γ)β1 +Xit(qit ≥ γ)β2 + ui + eit (1)

The variable qit is the threshold variable, and γ is the threshold parameter that
divides the equation into two regimes with coefficients β1 and β2. The parameter ui is
the individual effect, while eit is the disturbance. We can also write (1) as

yit = μ+Xit(qit, γ)β + ui + eit

where

Xit(qit, γ) =

{
XitI(qit < γ)
XitI(qit ≥ γ)

Given γ, the ordinary least-squares estimator of β is

β̂ = {X∗(γ)′X∗(γ)}−1 {X∗(γ)′y∗}

where y∗ and X∗ are within-group deviations. The residual sum of squares (RSS) is
equal to ê∗′ê∗. To estimate γ, one can search over a subset of the threshold variable qit.
Instead of searching over the whole sample, we restrict the range within the interval
(γ, γ), which are quantiles of qit. γ’s estimator is the value that minimizes the RSS, that
is,

γ̂ = argmin
γ

S1(γ)

If γ is known, the model is no different from the ordinary linear model. But if
γ is unknown, there is a nuisance parameter problem, which makes the γ estimator’s
distribution nonstandard. Hansen (1999) proved that γ̂ is a consistent estimator for γ,
and he argued that the best way to test γ = γ0 is to form the confidence interval using
the “no-rejection region” method with a likelihood-ratio (LR) statistic, as follows:

LR1(γ) =
{LR1(γ)− LR1 (γ̂)}

σ̂2

Pr−−→ ξ

Pr(x < ξ) =(1− e
−x
2 )2 (2)
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Given significance level α, the lower limit corresponds to the maximum value in the
LR series, which is less than the α quantile, and the upper limit corresponds to the
minimum value in the LR series, which is less than the α quantile. The α quantile can
be computed from the following inverse function of (2):

c(α) = −2 log
(
1−√

1− α
)

For example, for α = 0.1, 0.05, and 0.01, the quantiles are 6.53, 7.35, and 10.59, respec-
tively. If LR1(γ0) exceeds c(α), then we reject H0.

Testing for a threshold effect is the same as testing for whether the coefficients are
the same in each regime. The null hypothesis and the alternative hypothesis (the linear
versus the single-threshold model) are

H0 : β1 = β2 Ha : β1 �= β2

The F statistic is constructed as

F1 =

(
S0 − S1

)
σ̂2

(3)

Under H0, the threshold γ is not identified, and F1 has nonstandard asymptotic
distribution. We use bootstrap on the critical values of the F statistic to test the
significance of the threshold effect. S0 is the RSS of the linear model. Hansen (1996)
suggested the following bootstrap design:

Step 1: Fit the model under Ha and obtain the residual ê∗it.

Step 2: Make a cluster resampling ê∗it with replacement, and obtain the new residual
v∗it.

Step 3: Generate a new series under theHa data-generating process (DGP), y∗it = X∗
itβ+

v∗it, where β can take arbitrary values.

Step 4: Fit the model under H0 and Ha, and compute the F statistic using (3).

Step 5: Repeat steps 1–4 B times, and the probability of F is Pr = I(F > F1), namely,
the proportion of F > F1 in bootstrap number B.

2.2 Multiple-thresholds model

If there are multiple thresholds (that is, multiple regimes), we fit the model sequentially.
We use a double-threshold model as an example.

yit = μ+Xit(qit < γ1)β1 +Xit(γ1 ≤ qit < γ2)β2 +Xit(qit ≥ γ2)β3 + ui + eit

Here, γ1 and γ2 are the thresholds that divide the equation into three regimes with
coefficients β1, β2, and β3. We need to compute this (N×T )2 times using the grid search
method, which is infeasible in practice. According to Bai (1997) and Bai and Perron
(1998), the sequential estimator is consistent, so we estimate the thresholds as follows:
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Step 1: Fit the single-threshold model to obtain the threshold estimator γ1 and the RSS

S1(γ̂1).

Step 2: Given γ̂1, the second threshold and its confidence interval are

γ̂r2 =argmin
γ2

{Sr2(γ2)}

Sr2 =S {min (γ̂1, γ2)max (γ̂1, γ2)}

LR
r
2(γ2) =

{Sr2(γ2)− Sr2 (γ̂
r
2)}

σ̂2
22

Step 3: γ̂r2 is efficient but γ̂r1 is not. We reestimate the first threshold as

γ̂r1 =argmin
γ1

{Sr1(γ1)}

Sr1 =S {min (γ1, γ̂2)max (γ1, γ̂2)}

LR
r
1(γ1) =

{Sr1 (γ1)− Sr1 (γ̂
r
1)}

σ̂2
21

The threshold-effect test is also sequential; that is, if we reject the null hypothesis in
a single-threshold model, then we must test the double-threshold model. The null hy-
pothesis is a single-threshold model, and the alternative hypothesis is a double-threshold
model. The F statistic is constructed as

F2 =
{S1 (γ̂1)− Sr2 (γ̂

r
2)}

σ̂2
22

(4)

The bootstrapping design for this is similar to that in the single-threshold model. In
step 3, we generate a new series under the H0 DGP, y∗it = X∗

itβS + v∗it. The estimator
βS is the estimator in a single-threshold model, that is, under the Ha DGP. We use the
predicted values.

For models with more than two threshold parameters, the process is similar. Chan
(1993) and Hansen (1999) show that the dependence of the estimation and inference of
β on the threshold estimate is not of first-order asymptotic importance, so the inference
of β can proceed because γ is given.
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3 The xthreg command

3.1 Syntax

xthreg depvar
[
indepvars

] [
if
] [

in
]
, rx(varlist) qx(varname)

[
thnum(#)

grid(#) trim(numlist) bs(numlist) thlevel(#) gen(newvarname) noreg

nobslog thgiven options
]

where depvar is the dependent variable and indepvars are the regime-independent vari-
ables.

3.2 Options

rx(varlist) is the regime-dependent variable. Time-series operators are allowed. rx()

is required.

qx(varname) is the threshold variable. Time-series operators are allowed. qx() is
required.

thnum(#) is the number of thresholds. In the current version (Stata 13), # must be
equal to or less than 3. The default is thnum(1).

grid(#) is the number of grid points. grid() is used to avoid consuming too much
time when computing large samples. The default is grid(300).

trim(numlist) is the trimming proportion to estimate each threshold. The number
of trimming proportions must be equal to the number of thresholds specified in
thnum(). The default is trim(0.01) for all thresholds. For example, to fit a triple-
threshold model, you may set trim(0.01 0.01 0.05).

bs(numlist) is the number of bootstrap replications. If bs() is not set, xthreg does
not use bootstrap for the threshold-effect test.

thlevel(#) specifies the confidence level, as a percentage, for confidence intervals of
the threshold. The default is thlevel(95).

gen(newvarname) generates a new categorical variable with 0, 1, 2, . . . for each regime.
The default is gen( cat).

noreg suppresses the display of the regression result.

nobslog suppresses the iteration process of the bootstrap.

thgiven fits the model based on previous results.

options are any options available for xtreg (see [XT] xtreg).

Time-series operators are allowed in depvar, indepvars, rx(), and qx().
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3.3 Stored results

xthreg uses xtreg (see [XT] xtreg) to fit the fixed-effect panel threshold model given
the threshold estimator. Along with the standard stored results from xtreg, xthreg
also stores the following results in e():

Scalars
e(thnum) number of thresholds
e(grid) number of grid search points

Macros
e(depvar) name of dependent variable
e(ix) regime-independent variables
e(rx) regime-dependent variables
e(qx) threshold variable

Matrices
e(Thrss) threshold estimator and confidence interval
e(Fstat) threshold-effect test result
e(bs) bootstrap number
e(trim) trimming proportion
e(LR) LR statistics for single-threshold model
e(LR 2 1) LR statistics for first threshold in double-threshold model
e(LR 2 2) LR statistics for second threshold in double-threshold model
e(LR3) LR statistics for third threshold in triple-threshold model

The fixed-effect panel threshold model requires balanced panel data, which is checked
automatically by xthreg. The estimation and test of the threshold effect are computed
in Mata.

You can fit the model with more thresholds using the previous result. For example,
assume you use xthreg to fit a single-threshold model by using thnum(1), but the
single threshold is not sufficient to capture the nonlinear effect. To now fit a double-
threshold model, you can run the xthreg command using thgiven. Stata will search the
second threshold using the previous result and will not fit the single-threshold model. I
illustrate this in the example below.

4 Monte Carlo simulation

xthreg implements the method by Hansen (1999), in which the bootstrap method is
used to test the null hypothesis of no threshold. Under the null, the distribution is
continuous, so the bootstrap method can be applied. However, there is no formal
justification for using the bootstrap test with a multiple-threshold model. Moreover, if
bootstrap is used to create confidence intervals for the threshold model, then there may
be a problem.

Enders, Falk, and Siklos (2007) compared the finite-sample performance of the fol-
lowing three methods in TAR: inverting the LR statistic using the asymptotic critical
values, using the bootstrapped distribution of the LR to determine the critical values,
and using the bootstrap percentile method. They found that none of the three meth-
ods performs satisfactorily for the discontinuous-TAR model. All three methods are
too conservative, creating confidence intervals that are too wide. Of the methods, the
bootstrapped LR method performs the worst.
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However, new bootstrap methods for the TAR model have recently been introduced.
Gonzalo and Wolf (2005) proposed to use a subsampling method—like that introduced
by Politis, Romano, and Wolf (1999)—to improve the finite-sample performance of the
threshold estimator in the self-exciting TAR model. Andrews and Guggenberger (2009)
then introduced a hybrid subsampling method and size-corrected methods of construct-
ing tests and confidence intervals that have correct asymptotic size. However, literature
concerning the panel threshold model is still very limited, and there is still no theoret-
ical development for overcoming wide confidence intervals. Following Hansen (1999), I
invert the LR statistic to construct the confidence interval of the threshold estimator.
Hansen (1999) did not perform Monte Carlo simulations to study the coverage rate for
this method.

In this section, I perform simulations to study the size of the threshold-effect test
and the coverage rate of the threshold estimator. For the real significance level of the
threshold-effect test, the DGP for the null hypothesis (without the threshold effect) is
simply a linear regression model, that is,

yit = 1 + zit + xit + ui + eit

The variables are generated according to zit, xit ∼ χ2(1), ui ∼ χ2(1) − 1, and eit ∼
N(0, 1), where z is regime independent and x is regime dependent. The alternative
hypothesis is that the coefficient of x is regime dependent on some threshold variable q.
We set n = 50, 100, 200, 500 and T = 5, 20, 50. The bootstrap iteration number is set
to 300 for this single-threshold model. The iteration number of Monte Carlo simulation
is set to 500.

The simulation is time consuming because bootstrap is used to test the threshold
effect for each simulation. On a computer with Inter Core i7, 2.22 GHz processor, and
8 GB RAM, the simulation takes about 26 hours. Table 1 lists the result.

The test size distortion is small, even for small n and T . However, there is no con-
vergence of the bias with increasing sample sizes. As Hansen (1997) noted, “the boot-
strap procedure attains the first-order asymptotic distribution, so p-values constructed
from the bootstrap are asymptotically valid. Because the asymptotic distribution is
nonpivotal, bootstrap size will not have an accelerated rate of convergence relative to
conventional asymptotic approximations.”
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Table 1. Simulation result of the size of the threshold-effect test

n T 1% 5% 10%

50 5 0.010 0.064 0.118
100 5 0.024 0.062 0.114
200 5 0.022 0.058 0.094
500 5 0.008 0.048 0.106
50 20 0.012 0.050 0.108
100 20 0.016 0.046 0.090
200 20 0.008 0.040 0.098
500 20 0.014 0.058 0.122
50 50 0.014 0.058 0.108
100 50 0.012 0.044 0.114
200 50 0.010 0.048 0.102
500 50 0.014 0.056 0.122

The following DGP is used to simulate the coverage rate where qit ∼ χ2(1):

yit = 1 + zit + xit(qit < 1) + 2xit(qit ≥ 1) + ui + eit

The iteration number of Monte Carlo simulation is set to 500. The result is given in
table 2.

Table 2. Simulation result of the coverage rate

n T RMSE Rate n T RMSE Rate n T RMSE Rate

50 5 0.0103 0.460 50 20 0.00040 0.808 50 50 0.00010 0.952
100 5 0.0026 0.636 100 20 0.00005 0.920 100 50 0.00005 0.994
200 5 0.0005 0.768 200 20 0.00003 0.988 200 50 0.00003 1.000
500 5 0.0001 0.948 500 20 0.00001 0.998 500 50 0.00002 1.000

Obviously, the root of the mean squared error decreases with larger n or larger T .
Figure 1 is the kernel density plot of the estimators for n = 50, 100, 200, 500 and T = 5,
which demonstrates the consistency of the estimator. Because of the consistency of the
threshold estimator, the estimators of the regression coefficient given the threshold are
consistent with the ordinary linear fixed-effect model. However, as n or T increases,
the confidence interval gets wider and the coverage rate of the threshold estimator gets
bigger than the nominal level. This means that the confidence interval gets too wide
for large n and T , because the inverse LR method is not a very efficient method for
constructing confidence intervals. As previously discussed, this problem is not specific
to the panel threshold model; it is common to almost all threshold models. In sum, the
inverse LR method does not perform that well for small sample sizes, and more research
is needed to improve the coverage rate for the panel threshold model.
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Figure 1. Kernel density of threshold estimator for different samples with real γ = 1

5 Example

Financing constraints are widely researched. The basic idea is that a firm’s cash flow
will be positively related to its investment rate only when the firm faces constraints
on external financing. If a firm is free to borrow on external financial markets, cash
flow will be irrelevant for investment. The dividend-to-income ratio is often used as an
indicator; that is, a financially constrained firm will choose to retain earnings rather
than pay dividends. Hence, the firms that have low levels of dividend payments are the
financially constrained firms.

Hansen (1999) applied the fixed-effect panel threshold model to a 15-year sample of
565 U.S. firms to test whether financial constraints affect investment decisions. Hansen
fit the following model:

Iit = β0 + β1qit−1 + β2q
2
it−1 + β3q

3
it−1 + β4dit−1 + β5qit−1dit−1 + β6cit−1I(dit−1 < γ1)

+ β7cit−1I(γ1 ≤ dit−1 < γ2) + β8cit−1I(dit−1 ≥ γ2) + ui + eit

The variable Iit is the investment-to-capital ratio, qit is the ratio of total market value
to assets, cit is the ratio of cash flow to assets, and dit is the long-term debt-to-asset
ratio.

First, we fit a single-threshold model. The threshold variable d1 is trimmed off 5%
at both sides to be searched for the threshold estimator. We use grid(400) to reduce
the computation cost. The bootstrap number is set to bs(300).
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. use hansen1999, clear
(The Value and Performance of U.S. Corporations (B.H.Hall & R.E.Hall, 1993))

. xthreg i q1 q2 q3 d1 qd1, rx(c1) qx(d1) thnum(1) grid(400) trim(0.01) bs(300)
Estimating the threshold parameters: 1st ...... Done
Boostrap for single threshold
.................................................. + 50
.................................................. + 100
.................................................. + 150
.................................................. + 200
.................................................. + 250
.................................................. + 300

Threshold estimator (level = 95):

model Threshold Lower Upper

Th-1 0.0154 0.0141 0.0167

Threshold effect test (bootstrap = 300):

Threshold RSS MSE Fstat Prob Crit10 Crit5 Crit1

Single 17.7818 0.0023 35.20 0.0033 11.9749 14.0259 22.8402

Fixed-effects (within) regression Number of obs = 7910
Group variable: id Number of groups = 565

R-sq: within = 0.0951 Obs per group: min = 14
between = 0.0692 avg = 14.0
overall = 0.0660 max = 14

F(7,7338) = 110.21
corr(u_i, Xb) = -0.3972 Prob > F = 0.0000

i Coef. Std. Err. t P>|t| [95% Conf. Interval]

q1 .0105555 .0008917 11.84 0.000 .0088075 .0123035
q2 -.0202872 .0025602 -7.92 0.000 -.025306 -.0152683
q3 .0010785 .0001952 5.53 0.000 .0006959 .0014612
d1 -.0229482 .0042381 -5.41 0.000 -.031256 -.0146403
qd1 .0007392 .0014278 0.52 0.605 -.0020597 .0035381

_cat#c.c1
0 .0552454 .0053343 10.36 0.000 .0447885 .0657022
1 .0862498 .0052022 16.58 0.000 .076052 .0964476

_cons .0628165 .0016957 37.05 0.000 .0594925 .0661405

sigma_u .03980548
sigma_e .04922656

rho .39535508 (fraction of variance due to u_i)

F test that all u_i=0: F(564, 7338) = 6.90 Prob > F = 0.0000
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The output consists of four parts. The first part outputs the estimation and boot-
strap results. The second part outputs the threshold estimators and their confidence
intervals. Th-1 denotes the estimator in single-threshold models. In the threshold

estimator table, Th-21 and Th-22 denote the two estimators in a double-threshold
model. Sometimes, Th-21 is the same as Th-1. The third part lists the threshold-
effect test, including the RSS, the mean squared error (MSE), the F statistic (Fstat),
the probability value of the F statistic (Prob), and critical values at 10%, 5%, and 1%
significance levels (Crit10, Crit5, and Crit1, respectively). The fourth part outputs
the fixed-effect regression.

In this example, the single-threshold model’s estimator is 0.0154 with 95% confidence
interval [0.0141, 0.0167]. The F statistic is highly significant. Therefore, we reject the
linear model and fit a double- or triple-threshold model.

Next, we directly fit a triple-threshold model based on the result above. The trim-
ming values are set to be 0.01 and 0.05 for the estimation of the second and third
thresholds. Note that the trimming proportion (0.01) for the single-threshold model
still needs to be set because xthreg searches the second threshold using the trimmed
series in the single-threshold model. We set the bootstrap number to 300 for the double-
and triple-threshold models; however, we set this to 0 for the single-threshold model
because there is no need to use bootstrap for it again (the full option is bs(0 300 300)).
We suppress the output of bootstrap replications and the fixed-effect regression.

. xthreg i q1 q2 q3 d1 qd1, rx(c1) qx(d1) thnum(3) grid(400) trim(0.01 0.01 0.05
> ) bs(0 300 300) thgiven nobslog noreg
Estimating the threshold parameters: 2nd ...... 3rd ...... Done
Boostrapping for threshold effect test: 2nd ...... 3rd ...... Done

Threshold estimator (level = 95):

model Threshold Lower Upper

Th-1 0.0154 0.0141 0.0167
Th-21 0.0154 0.0141 0.0167
Th-22 0.5418 0.5268 0.5473
Th-3 0.4778 0.4755 0.4823

Threshold effect test (bootstrap = 0 300 300):

Threshold RSS MSE Fstat Prob Crit10 Crit5 Crit1

Single 17.7818 0.0023 35.20 0.0033 11.9749 14.0259 22.8402
Double 17.7258 0.0022 24.97 0.0133 10.8901 12.8409 27.6450
Triple 17.7119 0.0022 6.20 0.5933 16.8006 21.8740 31.6187

Note that xthreg gets a similar but not identical F statistic because of the ran-
domness of bootstrap sampling. Of course, this does not affect the conclusion. In the
threshold-effect test table, Single corresponds to H0 (linear model) and Ha (single-
threshold model), Double corresponds to H0 (single-threshold model) and Ha (double-
threshold model), and so forth. Obviously, the double-threshold model is accepted with
probability value 0.59.
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We can view the threshold confidence interval by plotting the LR statistic.

. _matplot e(LR21), columns(1 2) yline(7.35, lpattern(dash))
> connect(direct) msize(small) mlabp(0) mlabs(zero)
> ytitle("LR Statistics") xtitle("First Threshold") recast(line) name(L
> R21) nodraw

. _matplot e(LR22), columns(1 2) yline(7.35, lpattern(dash))
> connect(direct) msize(small) mlabp(0) mlabs(zero)
> ytitle("LR Statistics") xtitle("Second Threshold") recast(line) name(
> LR22) nodraw

. graph combine LR21 LR22, cols(1)

In figure 2, the dashed line denotes the critical value (7.35) at the 95% confidence level.
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Figure 2. LR statistic of two thresholds

We can also directly fit a triple-threshold model by using the following command:

. xthreg i q1 q2 q3 d1 qd1, rx(c1) qx(d1) thnum(3) grid(400)
> trim(0.01 0.01 0.05) bs(300 300 300) nobslog noreg

(output omitted )

6 Conclusion

The threshold model is a valuable tool for studying many economic phenomena, and
the panel threshold model has been widely used in financial and macroeconomic fields.
In this article, I introduced the new xthreg command, which fits the fixed-effect panel
threshold model—a threshold model that could also be a useful tool in financial and
economic research. I performed Monte Carlo simulations to exemplify the effectiveness
of using the bootstrap method in the threshold model, as originally suggested by Hansen
(1999). When using these methods, the significance test level of the threshold effect
is very near to the nominal significance test level. I also showed that the threshold
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estimator is consistent but the confidence interval gets wider and the coverage rate of
the threshold estimator gets bigger than the nominal level as n or T increases.
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