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ABSTRACT 
Current literature assumes that non-pharmaceutical interventions (NPIs) reduce COVID-
19 infections irrespective of their strength. The potential role of Economic Support 
Measures (ESM) towards controlling the virus is also overlooked. If anything, NPIs are 
more likely to control infections when economic support is in place. Using a panel 
threshold model of COVID-19 cases in U.S. states, we identify three distinct regimes of 
‘low’, ‘medium’ and ‘high’ severity interventions; the latter being more effective towards 
reducing infections. The implemented NPIs (ESM) reduce the daily average percentage 
growth of infections by 21.4% (2.4%) compared to the case where no government action 
is taken.  
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«Ἤρξατο δὲ τὸ πρῶτον, ὡς λέγεται, ἐξ Αἰθιοπίας τῆς ὑπὲρ Αἰγύπτου, ἔπειτα δὲ 

καὶ ἐς Αἴγυπτον καὶ Λιιβύην κατέβη καὶ ἐς τὴν βασιλέως γῆν [Περσία] τὴν 

πολλήν.» 

 
“It first began, it is said, in the parts of Ethiopia above Egypt, and thence 
descended into Egypt and Libya and into most of the King's country [i.e. Persia]” 

Thucydides, 5th century B.C. 
 

1. Introduction 

The COVID-19 respiratory infection, caused by the SARS-CoV-2 virus first detected in 

Wuhan in late 2019, is continuing to spread globally with more than 167 million infections 

and 3.4 million deaths as of date (World Health Organization, WHO).1 Due to the virus 

rapid spread, Dr. Tedros Adhanom, WHO Director-General, declared COVID-19 a 

pandemic on March 11th, 2020. From the Great Plague of Athens (the first historically 

recorded epidemic in 430 B.C.) to the Black Death (the deadliest pandemic in the 14th 

century estimated to have killed 30% to 60% of Europe's population), humanity has faced 

several such fatal outbreaks. The most recent example of this magnitude is the 1918-19 

influenza pandemic (the so-called “Spanish flu”).  

Lessons from previous pandemics reveal that timeliness and stringency are crucial 

aspects for maximizing the effectiveness of non-pharmaceutical interventions (NPIs) and 

minimizing the adverse social and economic consequences (Hatchett et al., 2007; Martin et 

al., 2007; Dasgupta et al., 2021). Using historical data on the timing of 19 different types of 

NPIs in 17 U.S. cities during the Spanish flu pandemic, Hatchett et al. (2007) show that 

implementation of multiple interventions at an early phase of the epidemic reduced peak 

death rates at a substantial magnitude (~50%). Statistical and epidemiological analyses of 

past data from several U.S. cities also demonstrate a strong association between early, 

sustained, and layered application of public health measures in mitigating the consequences 

of the 1918-19 influenza pandemic in the U.S. (Martin et al., 2007).  

The U.S. is among the countries more severely hit by the COVID-19 pandemic. With 

more than 32.8 million coronavirus cases and 585,000 deaths as of date, the U.S. has the 

highest number of confirmed infections and the highest official death toll in the world 

(WHO; https://covid19.who.int/). The first cases of COVID-19 occurred in January 2020 

in travelers from China. Early travel restrictions imposed on February 2nd to non-U.S. 

citizens from China (later expanding to other countries with widespread transmission) 

failed to contain the virus, as the number of COVID-19 cases increased more than 1,000-

 
1 See at: https://covid19.who.int/ 
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fold during a three-week period in late February to early March (Schuchat, 2020). The early 

epicenter was New York and the Northeastern states (New Jersey, Connecticut, 

Massachusetts), where cases spiked in late March. Social distancing restrictions brought 

infections down; however, their gradual relaxation led to new outbreaks, shifting to the 

South and West regions of the country (i.e. Arizona, Florida, and California) and leading 

to a new countrywide peak in July.  

In the absence of a centralized federal response, there has been extreme variability 

in the timing and intensity of interventions in the U.S. states, and even at a county and city-

level (Adolph et al., 2020). Measures started being implemented only after March 10th, 13 

days after the first report of community transmission. California was the first state to enact 

a lockdown, followed by the Midwest and parts of the Northeast, as well as Louisiana. 

Later adopters were largely concentrated in the Mid-Atlantic and upper Midwest. By April 

20th, 40 out of the 50 states had adopted state-wide lockdowns. Dave et al. (2021) estimate 

a decline of up to 43.7% in COVID-19 cases three weeks after the implementation of 

state-wide quarantine, with significant heterogeneity in the response based on timing of 

the enactment and state characteristics. The social distancing effect of lockdown is 

estimated to be twice as large for early as compared to later-adopting states (2.6% vs 1.3%). 

Dave et al. (2021) provide strong evidence that state-wide lockdowns are far more effective 

at decreasing the rate of coronavirus cases (including declines in the rate of COVID-19-

related mortality) among early adopting states and states with higher population densities.  

Chernozhukov et al. (2021) use data on confirmed COVID-19 cases and deaths for 

the U.S. states to estimate panel data models and find that nationally mandating face masks 

for employees early in the pandemic could have reduced the weekly growth rate of cases 

and deaths by more than 10 percentage points in late April 2020 and could have led to as 

much as 19% to 47% less deaths nationally by the end of May 2020, which roughly 

translates into 19,000 to 47,000 saved lives. Their findings also suggest that in the absence 

of stay-at-home orders, cases would have been larger by 6% to 63% and without business 

closures, cases would have been larger by 17% to 78%. 

Drastic anti-contagion policy actions such as national lockdowns, though effective, 

lead to unprecedented negative economic impact. The U.S. economy experienced its 

deepest decline since official record keeping in 1947; indeed U.S. GDP shrank by an 

annualized rate of 32.9% in the second quarter of 2020 (https://fred.stlouisfed.org/). 

Using high-frequency proxy measures of economic activity (e.g. NOX emissions) for 

Europe and Central Asia, Demirgüç-Kunt et al. (2020) find that national lockdowns are 

associated with a decline in economic activity of around 10%. This economic cost puts 
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governments under enormous pressure to relax the intensity of NPIs. Consequently, 

understanding the exact pairwise relationship between NPIs and the spread of COVID-19 

(considering issues such as threshold effects and model misspecification) is important for 

governments to timely plan effective short-run interventions to tame infections and, at the 

same time, minimize the adverse impact on economic activity.  

However, the current fast-growing literature assesses the effect of NPIs by 

hypothesizing a homogeneous impact, irrespective of their strength (e.g. Hsiang et al. 2020; 

Haug et al. 2020). We extend previous literature in two directions. First, we consider the 

impact of NPIs on infections depending on whether the strength of stringency is too low, 

of medium strength or too strong. Second, we assess the role of the deployed economic 

support measures (ESM) on COVID-19 infections; an issue that has largely been 

overlooked. In particular, we revel the heterogeneous relationship between NPIs and the 

growth of COVID-19 confirmed cases, conditioning on a set of variables such as ESM 

and climatic conditions. To do so, we use U.S. state-level data, and transform all variables 

through backward- or forward-looking rolling averages, thus accounting, to a certain 

extent, for errors in data measurement and most importantly for the endogenous nature 

of NPIs and COVID-19 infections. Moreover, as omitted variable bias may lead to invalid 

inferences, we estimate an augmented specification by including the ESM and the 

prevailing climatic conditions (temperature and relative humidity).2 Indeed, in the presence 

of ESM, government interventions are likely to become more effective in bringing 

infection cases down. This is because employees, and the public in general, are more likely 

than not to stick to government intervention measures when economic support is in place. 

In addition, the spread of COVID-19 occurs predominantly via respiratory droplets and 

aerosols. In this case, temperature and relative humidity can affect transmission through 

virus survival. At lower temperatures, the virus survives longer and, at lower humidity, 

infectious respiratory droplets and aerosols stay suspended in the air for longer.3  

By fitting a two-threshold panel fixed-effects specification, we reach a number of 

findings. First, the impact of government NPIs on infections growth is significant and 

varying, depending on the stringency level. We identify three distinct regimes, i.e. regimes 

of ‘low’, ‘medium’ and ‘high’ severity interventions. A 10% increase in the level of the 

average NPIs (averaged over the previous 14 days) lowers the daily growth rate of 

 
2 As ESM are positively correlated with conducted government interventions, non-inclusion of these 
measures in the specification will lead to biased and inconsistent estimates. 
3 See, for instance, the discussion in Ward et al. (2020). Wu et al. (2020) find that higher temperature and 
higher relative humidity result in lower COVID-19 cases and deaths using daily data for 166 countries. 
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infections by 0.349% in the low regime, by 0.492% in the medium regime, and by 0.546% 

in the high regime. Second, the ESM for employees and the whole population in general 

are statistically significant in bringing COVID-19 cases growth down. Furthermore, a 10% 

increase in the average ESM lowers the daily growth rate of infections by 0.060%. Third, 

we identify a negative and significant impact of climatic conditions on the growth of 

COVID-19 cases. Fourth, counterfactual analysis shows that the actual conducted NPIs 

significantly reduced the daily average percentage growth of infections by 21.4 percentage 

points compared to the scenario of no government action. At the other extreme, had 

government NPIs remained at the highest level throughout the sample, the daily average 

growth of infections would have been lower by 4.9 percentage points compared to the 

impact of the actual conducted NPIs. Fifth, the implemented ESM reduced the average 

daily percentage growth of infections by 2.4 percentage points compared to the scenario 

where no ESM were put in place. Finally, we find that only NPIs classified at the “high” 

regime can trigger a negative growth rate of infections. 

The results suggest that the stronger the NPIs the stronger the reduction in the 

growth rate of infections. This is arguably a desirable strategy not least because such action 

will restrict the chances of the virus mutating and transmitting even further. That said, the 

rolling out of vaccination programmes across the world should reduce the need or urgency 

for new lockdowns. All in all, it looks more likely than not that some NPIs will remain, for 

some time, in place not least because the ability of vaccination programmes to tackle the 

pandemic will depend on the implementation speed and their effectiveness in dealing with 

evolving virus mutations. 

The paper proceeds as follows: section 2 discusses the data and model 

specification; section 3 discusses the model estimates and section 4 presents the  

counterfactual analysis. Finally, section 5 concludes. 

 

2. Data and Model Specification 

Being recently available by the Blavatnik School of Government of the University of 

Oxford, we use data on NPIs and ESM across all U.S. states for the period spanning 

January 1 to August 4, 2020. We focus on the 50 U.S. states using daily observations on (i) 

the strength of the NPIs policies at state level, proxied by the OxCGRT index,4 (ii) the 

strength of the ESM,4 (iii) the number of confirmed COVID-19 cases5 and the state 

 
4 Blavatnik School of Government of the University of Oxford, see: https://www.bsg.ox.ac.uk/ 
5 Centers for Disease Control and Prevention, see: https://www.cdc.gov/ 
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population estimates as of July 2019,6 to construct the number of daily cases per 100,000, 

(iv) the temperature7 and (v) the relative humidity.7 

To deal with endogeneity and measurement error (Raftery et al. 2020), variables are 

transformed through forward- or backward-looking rolling averages using a fixed window 

length.8 We define the forward-looking transformation of a variable, at each time t , as the 

average value calculated by a fixed length rolling window with size equal to the 14 

succeeding days.9 Similarly, we define the backward-looking transformation by using the 

preceding fourteen days. We first calculate the COVID-19 infections per 100,000 people 

and we then define, for each time t  of the total sample, the forward-looking confirmed 

infections per 100,000 as the average of the succeeding 14 days. Based on the above 

transformation, we estimate the respective growth rate as the logarithmic difference of two 

subsequent observations. The forward-looking growth rate of infections per 100,000 (growth 

of infections, hereafter) for selected dates of the sample at state level is illustrated as a heat 

map in Fig. 1. Likewise, we define for each time t  of the sample, the backward-looking 

OxCGRT index (OxCGRT, hereafter) and the backward-looking ESM index (ESM, hereafter) 

as the respective average of the preceding 14 days. The OxCGRT index for selected dates 

of the sample at state level is illustrated as column bars in Fig. 1 (in Fig. 1, regimes are 

signified with a different colour; regime estimation is discussed in Section 3).  

 

  

  

Fig. 1| OxCGRT index and growth rate of COVID-19 cases per 100,000 

Notes: The time-lapse version of the figure is available at: https://youtu.be/EXCo6LZd4w8 

 
6 United States Census Bureau,  see: https://www.census.gov/ 
7 For temperature and relative humidity data, see NASA Langley Research Center, POWER Project, 
https://power.larc.nasa.gov/data-access-viewer/ 

8 Dasgupta et al. (2021) note that under-reporting infectious disease statistics is a common characteristic of 
the current pandemic and the 1665 London plague 350 years ago. 
9 The window size is set to 14 days. Lauer et al. (2020) estimate that the virus incubation period is 14 days. 
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The ESM for selected dates of the sample at a state level is illustrated as column bars 

in Fig. 2 (Fig. 2, presents jointly as a heat map the growth of infections per 100,000). We finally 

define, for each time, t , of the total sample, the backward-looking temperature, as well as the 

backward-looking relative humidity. The backward-looking temperature variable for selected 

dates of the sample at state level is illustrated as column bars in Fig. 3 (Fig 3, presents, as 

a heat map, the growth of infections per 100,000, while the reflection of the temperature 

column bar implies negative temperatures). The backward-looking relative humidity variable 

for selected dates at a state level is illustrated as column bars in Fig. 4 (Fig. 4, presents 

jointly, as a heat map, the growth of infections per 100,000).  

 

  
  

  
  

Fig. 2| ESM index and growth rate of COVID-19 cases per 100,000 

Notes: The time-lapse version of the figure is available at: https://youtu.be/xM6x4PS24YE 
 

  
  

  
  

Fig. 3| Temperature and growth rate of COVID-19 cases per 100,000 

Notes: The time-lapse version of the figure is available at: https://youtu.be/Kc9V-GTyn2I 
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Fig. 4| Humidity and growth rate of COVID-19 cases per 100,000 

Notes: The time-lapse version of the figure is available at: https://youtu.be/1xZQ8MVTPgk 
 

For all constructed forward- and backward-looking variables, we define the effective sample 

for each U.S. state as the period signified by the first day with cumulative confirmed cases 

equal or greater than five, up to the end of the sample. Such treatment leads to a different 

effective sample in terms of time length for each U.S. state (the maximum sample length with 

170 observations corresponds to California, while the minimum sample length with 126 

observations corresponds to Alaska, Hawaii, North Dakota, and West Virginia). As the 

fixed-effect panel threshold model necessitates a balanced sample, we use, from the 

effective sample of each U.S. state, the first 126 observations. Hence, our final feasible sample 

(balanced sample) includes 126 observations for each U.S. state.   

Current literature (in the context of Susceptible-Infected-Recovered epidemiological 

models) assesses the effect of NPIs on COVID-19 infections (or deaths) assuming a 

homogeneous impact of these interventions irrespectively of their strength (see Hsiang et 

al. 2020; Haug et al. 2020; Flaxman et al. 2020; Brauner et al. 2020). Under this strong 

assumption, any attempt to evaluate the exact effect of NPIs at their different levels is 

arguably misspecified. To overcome this limitation, we estimate for the fifty U.S. states a 

panel fixed-effect threshold specification (Hansen, 1999), which remains robust to time-

invariant differences (for the sample of our analysis) among the states (e.g. population 

density or income differences) and reveals the heterogeneous nature of the relationship 

between infections and NPIs. Moreover, as ESM are positively correlated with conducted 

government interventions, non-inclusion of these measures in the specification will lead to 

biased and inconsistent estimates. To reduce the impact of specification bias, the employed 
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model is augmented with the inclusion of the ESM index and two climate variables 

(temperature and relative humidity). The model specification takes the form:   

 

1 1 2 1 2 3 2I( ) I( ) I( )it it it it it it it it i itr p p k p k p k p k p u e              z   (1) 

 

where, itr  is the forward-looking growth rate of infections per 100,000,   and j  are 

parameters to be estimated (j 1,2,3), mk  are the threshold parameters (m  1, 2), itp  is 

the natural logarithm of the backward-looking OxCGRT index (threshold variable), I( )i  is an 

indicator function which receives the value one if the condition in the parenthesis is true 

and zero otherwise, itz  is the matrix of the threshold independent variables (the natural 

logarithm of the backward-looking ESM and the two backward-looking climate variables),   

is a vector of coefficients, iu  is the state individual effect and ite  is the error term.  

 

3. Threshold Testing and Estimation 

To identify the number of significant thresholds for the OxCGRT index based on our 

benchmark econometric specification (eq. 1), we implement the sequential testing approach 

proposed by Hansen (1999). Thus, for testing sequentially the null hypotheses of zero, one 

and two thresholds, we calculate the respective likelihood ratio jF  statistics (j 1, 2, 3), 

which follow a non-standard asymptotic distribution. To perform an inferential decision, 

within a bootstrap framework, we calculate p-values based on the empirical sampling 

distribution, which prove to remain valid asymptotically (Hansen, 1999). The three jF (j 

1, 2, 3) statistics, along with the associated critical values at the conventional levels of 

significance and the bootstrapped p-values (with 1000 replications), are analytically 

reported in Table 1.  

 

Table 1. Testing for threshold effects within a panel fixed-effects specification   

Threshold  
Threshold 
estimate 

 
Threshold 

at level 
 F-stat  p-value  

10% 
critical 

 
5% 

critical  
1% 

critical 
Single  4.292***  73.149***  73.97  0.002  37.174  43.019  60.213 

Double  3.375***  29.230***  59.25  0.003  29.485  34.552  48.841 

Triple  3.753***  42.657***  41.15  0.283  55.603  65.412  91.846 

Notes: *** denotes the rejection of the null hypothesis over the alternative at the 0.01 significance level. All trimming 
values are set equal to 0.1. The reported critical values along with the respective p-values are derived by implementing 
the bootstrap method with 1,000 replications. As the threshold variable is transformed in logarithmic form, each 
threshold estimate is converted to the level scale by simply calculating the anti-log. 
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Table 1, implies that the null hypothesis of zero thresholds against one threshold 

(p=0.002) is rejected. We proceed by examining the null hypothesis of one threshold 

against two. The respective inference (p=0.002) rejects the second null hypothesis, thus 

providing support for the presence of two thresholds. Finally, to discriminate between the 

presence of two or three thresholds, we test the third null hypothesis of two thresholds in 

favour of three. The resulting evidence (p=0.283) fails to reject the null hypothesis, 

signalling the existence of two significant thresholds. The point estimates for the two 

significant thresholds of the OxCGRT index are shown in Table 1. The first threshold 

estimate is 73.1 units (4.292 for the logarithmic transformation) and the second threshold 

estimate is 29.2 units (3.375 for the logarithmic transformation). Hence, the three resulting 

regimes range between [0-29.2), [29.2-73.1) and [73.1-100]. For our sample, Fig. 5 shows 

the two estimated thresholds (the first and second thresholds are signified by the pink and 

grey surface, respectively) along with the actual OxCGRT index values in a three-

dimensional coordinate system. 

 

 
 

Fig. 5| OxCGRT index and estimated regimes  
Notes: (i) The vertical left-axis depicts the stringency of the OxCGRT index; the bottom horizontal left-axis displays the date, and 
the bottom horizontal right-axis depicts the state by using the two-digit code abbreviation.  
(ii) The two-digit state abbreviations are: Alabama: AL, Alaska: AK, Arizona: AZ, Arkansas: AR, California: CA, Colorado: CO, 

Connecticut: CT, Delaware: DE, Florida: FL, Georgia: GA, Hawaii: HI, Idaho: ID, Illinois: IL, Indiana: IN, Iowa: IA, Kansas: KS, 
Kentucky: KY, Louisiana: LA, Maine: ME, Maryland: MD, Massachusetts: MA, Michigan: MI, Minnesota: MN, Mississippi: MS, 
Missouri: MO, Montana: MT, Nebraska: NE, Nevada: NV, New Hampshire: NH, New Jersey: NJ, New Mexico: NM, New York: 
NY, North Carolina: NC, North Dakota: ND, Ohio: OH, Oklahoma: OK, Oregon: OR, Pennsylvania: PA, Rhode Island: RI, South 
Carolina: SC, South Dakota: SD, Tennessee: TN, Texas: TX, Utah: UT, Vermont: VT, Virginia: VA, Washington: WA, West Virginia: 
WV, Wisconsin: WI, Wyoming: WY. 
(iii) The first and second thresholds of the OxCGRT index are signified by the pink and grey surface, respectively. 
(iv) The surface for the OxCGRT index is colored based on the range of values assigned to each regime.  
(v) Out of the 6300 observations for the OxCGRT index, across the 50 U.S. states, 8%, 62% and 30% of these are classified into 
the ‘low’ regime, ‘medium’ and ‘high’ regime, respectively. 
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Fig. 6| Regime-dependent average forward-looking growth rate of infections per U.S. state 

Notes: (i) Regimes 1, 2 and 3 are defined by the values of the threshold variable (the backward-looking OxCGRT index) that belong to [0-29.2), [29.2-73.1) and [73.1-100], respectively.  
(ii) Regime 1 and Regime 2 include all 50 U.S. states while Regime 3 includes 39 U.S. states. The states that never have entered into Regime 3 are the following: Arkansas, Iowa, Louisiana, Massachusetts, Nevada, North Dakota, Oklahoma, South 
Dakota, Tennessee, Utah and Wyoming.  
(iii) The kernel densities for the forward-looking growth rate of infections belonging in each regime, are presented at the left axis. Kernel density is a non-parametric approach for estimating the probability density function of a variable. 
(iv) The two-digit state abbreviations are: Alabama: AL, Alaska: AK, Arizona: AZ, Arkansas: AR, California: CA, Colorado: CO, Connecticut: CT, Delaware: DE, Florida: FL, Georgia: GA, Hawaii: HI, Idaho: ID, Illinois: IL, Indiana: IN, Iowa: 
IA, Kansas: KS, Kentucky: KY, Louisiana: LA, Maine: ME, Maryland: MD, Massachusetts: MA, Michigan: MI, Minnesota: MN, Mississippi: MS, Missouri: MO, Montana: MT, Nebraska: NE, Nevada: NV, New Hampshire: NH, New Jersey: NJ, 
New Mexico: NM, New York: NY, North Carolina: NC, North Dakota: ND, Ohio: OH, Oklahoma: OK, Oregon: OR, Pennsylvania: PA, Rhode Island: RI, South Carolina: SC, South Dakota: SD, Tennessee: TN, Texas: TX, Utah: UT, Vermont: 
VT, Virginia: VA, Washington: WA, West Virginia: WV, Wisconsin: WI, Wyoming: WY.  
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Given the two estimated thresholds and the resulting three regimes, Fig. 6 shows, 

how the average growth of infections per U.S. state is distributed across each regime. It 

becomes clear that the average growth of infections decreases as the regime level increases, 

confirming the validity of the estimated thresholds. 

For the balanced feasible sample, we fit a fixed-effects panel specification with two 

thresholds by implementing the typical fixed-effects estimator (eq. 1). These estimates, 

along with the associated robust OLS standard errors, are presented in the first column 

(Robust) of Table 2. The second column of Table 2 illustrates the same estimates but with 

bootstrapped standard errors this time. Both approaches result to standard errors of similar 

magnitude. Before executing any statistical inference, we conduct some diagnostic testing.    

 

Table 2. Threshold panel fixed-effects estimation results  

Variable  
Robust 

(1) 
 

Bootstrapped 
(2) 

 
Driscoll-Kraay  

(3) 
 

FGLS 
(4) 

 
PCSE 

(5) 

Constant  -(0.3736)*** 
-(0.0854)*** 

 
-(0.3736)*** 
-(0.0831)*** 

 
-(0.3736)*** 
-(0.0559)*** 

 
-(0.3451)*** 
-(0.0148)*** 

 
-(0.3307)*** 
-(0.0350)*** 

Humidity 
 -(0.0008)*** 

-(0.0003)*** 
 

-(0.0008)*** 
-(0.0003)*** 

 
-(0.0008)*** 
-(0.0002)*** 

 
-(0.0004)*** 
-(0.0001)*** 

 
-(0.0008)*** 
-(0.0002)*** 

Temperature 
 -(0.0008)*** 

-(0.0004)*** 
 

-(0.0008)*** 
-(0.0004)*** 

 
-(0.0008)*** 
-(0.0002)*** 

 
-(0.0003)*** 
-(0.0001)*** 

 
-(0.0005)*** 
-(0.0002)*** 

ESM 
 -(0.0050)*** 

-(0.0038)*** 
 

-(0.0050)*** 
-(0.0038)*** 

 
-(0.0050)*** 
-(0.0027)*** 

 
-(0.0060)*** 
-(0.0010)*** 

 
-(0.0063)*** 
-(0.0023)*** 

    Regime slopes     

OxCGRTR1
 -(0.0492)*** 

-(0.0264)*** 
 

-(0.0492)*** 
-(0.0259)*** 

 
-(0.0492)*** 
-(0.0192)*** 

 
-(0.0536)*** 
-(0.0038)*** 

 
-(0.0367)*** 
-(0.0092)*** 

OxCGRTR2
 -(0.0635)*** 

-(0.0207)*** 
 

-(0.0635)*** 
-(0.0204)*** 

 
-(0.0635)*** 
-(0.0148)*** 

 
-(0.0639)*** 
-(0.0031)*** 

 
-(0.0516)*** 
-(0.0075)*** 

OxCGRTR3
 -(0.0684)*** 

-(0.0200)*** 
 

-(0.0684)*** 
-(0.0197)*** 

 
-(0.0684)*** 
-(0.0143)*** 

 
-(0.0673)*** 
-(0.0030)*** 

 
-(0.0573)*** 
-(0.0073)*** 

Summary Statistics 
n  6300  6300  6300  6300  6300 

R2-within  0.349  0.349  0.349  -  0.256 
F/Wald X2         0.000  0.000  0.000  0.000  0.000 

Diagnostic testing for the robust specification (column 1) 
Strict exogeneity test (p-value) 0.295  Serial correlation test (p-value)  0.000 

Homoskedasticity test (p-value) 0.000  CSD test (p-value)  0.045 

Notes: ***, ** and * denote statistical significance at the 0.01, 0.05 and 0.1 significance level, respectively. The reported 

values within the (.) are standard errors. The subscripts R1, R2 and R3, linked with the OxCGRT signify the three 

regimes formed after the identification of significant thresholds (see Table 1). The columns titled as Robust, 
Bootstrapped, Driscoll-Kraay, FGLS and PCSE refer to the threshold panel fixed-effects estimates (i) with robust 
standard errors, (ii) with bootstrapped standard errors, (iii) with the Driscoll and Kraay (1998) corrected standard 
errors (robust to heteroskedastic error as well as to general forms of cross-sectional and temporal dependence), (iv) 
with the use of the Feasible Generalized Least Squares approach (allowing robust estimation in the presence of serial 
correlation, heteroskedasticity and cross-sectional dependence) and (v) with the Panel Corrected Standard Errors 
estimation approach (correcting for serial correlation, heteroskedasticity and cross-sectional dependence, 
respectively).  

 

Thus, we test for: (i) the strict exogeneity of the OxCGRT index, (ii) groupwise 

homoskedasticity, (iii) serial correlation, and (iv) cross-sectional independence. The test for 

strict exogeneity proposed by Wooldridge (2010), supports (p=0.295) that the OxCGRT 
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index is strictly exogenous.10 Moreover, we test for groupwise homoskedasticity by the 

modified Wald statistic (see Green, 2000). The respective evidence (p=0.000) implies that 

the error term violates the assumption of homoskedasticity. On top of the above violation, 

the error term appears to be serially correlated as the LM statistic (Born and Breitung, 2016) 

rejects the null hypothesis of uncorrelated residuals of first order. Finally, by implementing 

a parametric testing procedure for examining the cross-sectional independence of the 

residuals (Pesaran, 2021), we find that these are cross-sectionally dependent (p=0.045) at 

the 0.05 significance level. Overall, the diagnostic testing reveals that the OxCGRT index is 

strictly exogenous; nevertheless, it shows that the model suffers from heteroskedasticity, 

serial correlation and cross-sectional dependence.  

As the executed diagnostic testing reveals the existence of a non-spherical error term, 

the initial fixed-effects estimates are expected to be inefficient and their associated standard 

errors biased, rendering all resulting inferences questionable. Hence, we re-estimate our 

specification by implementing approaches that are robust to the above-mentioned forms 

of misspecification. We continue by reporting estimates of the covariance matrix based on 

the Driscoll and Kraay (1998) approach, which delivers standard errors that remain robust 

to heteroskedasticity, as well as to general forms of cross-sectional and temporal 

dependence (column 3). As the mixing conditions to establish asymptotic consistency may 

not hold for the fixed-effects estimator (Vogelsang, 2012), we also present the Parks (1967) 

Feasible Generalized Least Squares estimates (FGLS) (column 4). Finally, provided that the 

FGLS estimator proves to perform poorly in finite samples, we report the Beck and Katz 

(1995) Panel-Corrected Standard Error (PCSE) estimation results (column 5).  

The PCSE estimation results reveal that all explanatory variables are significant at 

the conventional levels of significance (mainly at the 0.01 level). Most importantly, the 

OxCGRT index, throughout its entire range, remains effective at decreasing the growth of 

infections, albeit with a different impact at each regime. Additionally, ESM prove negative 

and significant, a finding which also holds for the two climatic variables. Given the 

presence of the thresholds, the model fits the data satisfactorily, as judged by Fig. 7.a and 

7.b, which show the raw actual values of the the growth of infections per U.S. state and the 

model’s respective fitted values along with the 99% confidence interval.  

 
10 For a linear fixed effect model without strictly exogenous regressors, Nerlove (1967) provide simulation 
evidence that the estimator is biased, while Nickell (1981) analytically characterizes the bias. 
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Fig. 7.a| COVID-19 cases growth rate per U.S. state: actual and fitted values along with respective 99% confidence interval 

Notes: Estimates are based on the Threshold Panel Fixed-Effects model (eq. 1) using the Panel-Corrected Standard Errors (PCSE) estimation approach (see Table 2). 
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Fig. 7.b| COVID-19 cases growth rate per U.S. state: actual and fitted values along with respective 99% confidence interval 

Notes: Estimates are based on the Threshold Panel Fixed-Effects model (eq. 1) using the Panel-Corrected Standard Errors (PCSE) estimation approach (see Table 2). 
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Based on the PCSE estimation results, the growth of infections at all regimes is related 

negatively and in a statistically significant manner (p-value<0.01) to the OxCGRT index. 

More specifically, the regime-dependent coefficients with the associated 95% confidence 

intervals are -0.037 [-0.055, -0.019], -0.052 [-0.066, -0.037], and -0.057 [-0.072, -0.043] for 

the ‘low’, ‘medium’ and ‘high’ regime, respectively. The coefficient for the ‘low’ regime 

(‘medium’ regime), [‘high’ regime] suggests that a 10% increase in the level of the OxCGRT 

index lowers the daily percentage growth of infections, on average, by 0.35%, (0.49%), [0.55%]. 

Overall, the OxCGRT index throughout its entire range remains effective at decreasing the 

growth of infections, albeit with a different impact at each regime.  

Moreover, we find a significant (p-value<0.01) impact of the ESM on the growth of 

infections. ESM can be viewed as an important factor, since the population will more likely 

adhere to government intervention measures when combined with additional economic 

support. Indeed, ESM can partially mitigate the economic losses faced by employees and 

the whole population, following widespread lockdowns. The magnitude of the coefficient 

(Table 2) implies that a 10% increase in the ESM lowers the daily percentage growth of 

infections, on average, by 0.06%. Finally, we identify a negative and statistically significant 

impact of the backward-looking temperature (p-value<0.05) and the backward-looking relative 

humidity (p-value<0.01) on the growth of infections. An increase by one degree Celsius in the 

backward-looking temperature lowers, on average, the daily growth of infections by 0.05%. The 

respective impact for a unit increase in the backward-looking relative humidity is 0.08%.  

 One could argue that in high-income states, where people are more likely to be 

able to work from home, compliance rates with NPIs are higher (see Singh et al. 2021); this 

argument, however, is taken into consideration by the estimated fixed effects specification. 

In addition, one could argue that if there are heterogeneous responses to NPIs, there are 

also heterogeneous responses to ESM. Our empirical specifications have attempted to use 

ESM as the threshold variable and/or use ESM as a non-linear regressor in each of the 

three regimes but failed to establish a statistically significant relationship. 

 

4. Counterfactual Analysis 

We use the PCSE estimates to run a series of counterfactual scenarios. We hypothesize 

different levels of the OxCGRT index that remain constant across the sample and derive 

their impact. We start by estimating, per U.S. state, the growth of infections assuming no 

government action. We then estimate the respective growth of infections for sequential 
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increase of the OxCGRT index by 10 units and up to 100, creating, this way, the response 

surface illustrated in Fig. 8, which also illustrates the growth of infections across all states at 

the two estimated thresholds.  

 

 
 

Fig. 8| Counterfactual analysis for the OxCGRT index 

Notes: (i) The vertical left-axis depicts the expected growth of infection; the bottom horizontal left-axis displays the stringency of the 
OxCGRT index, and the bottom horizontal right-axis depicts the state by using the two-digit code abbreviation.  
(ii) The two-digit state abbreviations are: Alabama: AL, Alaska: AK, Arizona: AZ, Arkansas: AR, California: CA, Colorado: CO, 
Connecticut: CT, Delaware: DE, Florida: FL, Georgia: GA, Hawaii: HI, Idaho: ID, Illinois: IL, Indiana: IN, Iowa: IA, Kansas: KS, 
Kentucky: KY, Louisiana: LA, Maine: ME, Maryland: MD, Massachusetts: MA, Michigan: MI, Minnesota: MN, Mississippi: MS, 
Missouri: MO, Montana: MT, Nebraska: NE, Nevada: NV, New Hampshire: NH, New Jersey: NJ, New Mexico: NM, New York: 
NY, North Carolina: NC, North Dakota: ND, Ohio: OH, Oklahoma: OK, Oregon: OR, Pennsylvania: PA, Rhode Island: RI, South 
Carolina: SC, South Dakota: SD, Tennessee: TN, Texas: TX, Utah: UT, Vermont: VT, Virginia: VA, Washington: WA, West Virginia: 
WV, Wisconsin: WI, Wyoming: WY. 
(iii) The expected growth of infections for the first and second thresholds of the OxCGRT index are signified by the pink and grey 
surface, respectively. 
(iv) The main response surface for the expected growth of infections is colored based on the magnitude of the responses (e.g. shades 
of blue, turquoise, and yellow refer to a positive growth of infections, white signifies a zero growth of infections and shades of red 
imply negative growth of infections). 

 

 

In the absence of government action, the average daily percentage growth of infections 

for all states is estimated at 24% (Table 3). The analysis suggests that the pursued 

government intervention policies reduced the average daily percentage growth of infections by 

21.4 percentage points (Table 3) compared to the case where no action had taken place. 

This difference is significant (p-value<0.01). Considering the other extreme, i.e. government 

intervention at the highest stringency level, the average daily percentage growth of 

infections is -2.3% (Table 3). Had therefore government intervention remained at its 

highest stringency level throughout the sample, the average daily growth rate of infections 

would have been lower by 4.9 percentage points (Table 3) compared to the impact of the 

actual government intervention policies. The difference is, again, significant (p-value<0.01).  
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Table 3. COVID-19 cases growth rate per U.S. state: mean fitted values and mean 
counterfactual responses for different levels of the OxCGRT index. 

State  
Fitted 
values 

Counterfactual response at OxCGRT level:  Difference between column: 
0 29 50 73 100  (2)-(1) (3)-(1) (4)-(1) (5)-(1) (6)-(1) 

(1) (2) (3) (4) (5) (6)  (7) (8) (9) (10) (11) 

Alabama   0.030 0.237 0.063 0.035 -0.009 -0.027  0.207 0.032 0.005 -0.039 -0.057 
Alaska  0.019 0.244 0.069 0.042 -0.002 -0.020  0.224 0.050 0.022 -0.022 -0.039 
Arizona  0.042 0.243 0.069 0.041 -0.003 -0.021  0.201 0.027 -0.001 -0.045 -0.063 
Arkansas  0.027 0.235 0.060 0.033 -0.011 -0.029  0.208 0.034 0.006 -0.038 -0.056 
California  0.071 0.255 0.081 0.053 0.009 -0.008  0.184 0.010 -0.018 -0.062 -0.080 

Colorado  0.026 0.242 0.068 0.040 -0.004 -0.022  0.216 0.042 0.014 -0.030 -0.048 
Connecticut  0.006 0.230 0.056 0.028 -0.016 -0.034  0.224 0.050 0.022 -0.022 -0.040 
Delaware  0.018 0.253 0.079 0.051 0.007 -0.011  0.235 0.061 0.033 -0.011 -0.029 
Florida  0.045 0.263 0.088 0.061 0.017 -0.001  0.218 0.043 0.016 -0.028 -0.046 
Georgia  0.037 0.248 0.074 0.046 0.002 -0.016  0.211 0.037 0.009 -0.035 -0.053 
Hawaii  0.014 0.238 0.064 0.036 -0.008 -0.026  0.224 0.050 0.022 -0.022 -0.040 
Idaho  0.023 0.238 0.064 0.036 -0.008 -0.025  0.215 0.041 0.013 -0.031 -0.049 
Illinois  0.034 0.252 0.077 0.050 0.006 -0.012  0.218 0.044 0.016 -0.028 -0.046 
Indiana  0.031 0.238 0.064 0.036 -0.008 -0.025  0.207 0.033 0.005 -0.039 -0.056 
Iowa  0.033 0.236 0.062 0.034 -0.010 -0.028  0.203 0.028 0.001 -0.043 -0.061 
Kansas  0.028 0.247 0.073 0.045 0.001 -0.017  0.219 0.044 0.017 -0.027 -0.045 
Kentucky  0.033 0.256 0.082 0.054 0.010 -0.008  0.223 0.048 0.021 -0.023 -0.041 
Louisiana  0.024 0.232 0.058 0.031 -0.013 -0.031  0.208 0.034 0.006 -0.038 -0.056 
Maine  0.003 0.241 0.067 0.039 -0.005 -0.023  0.238 0.064 0.036 -0.008 -0.026 
Maryland  0.032 0.256 0.081 0.054 0.010 -0.008  0.223 0.049 0.021 -0.023 -0.040 
Massachusetts  0.021 0.221 0.047 0.019 -0.025 -0.043  0.201 0.026 -0.001 -0.045 -0.063 
Michigan  0.009 0.237 0.062 0.035 -0.009 -0.027  0.227 0.053 0.025 -0.019 -0.037 
Minnesota  0.026 0.245 0.071 0.043 -0.001 -0.019  0.219 0.044 0.017 -0.027 -0.045 
Mississippi  0.029 0.248 0.074 0.046 0.002 -0.016  0.219 0.045 0.017 -0.027 -0.045 
Missouri  0.024 0.236 0.062 0.035 -0.009 -0.027  0.212 0.038 0.010 -0.034 -0.052 
Montana  0.021 0.241 0.067 0.039 -0.005 -0.023  0.220 0.046 0.018 -0.026 -0.044 
Nebraska  0.030 0.240 0.065 0.038 -0.006 -0.024  0.210 0.036 0.008 -0.036 -0.054 
Nevada  0.032 0.236 0.062 0.034 -0.010 -0.028  0.204 0.030 0.002 -0.042 -0.060 
New Hampshire  0.011 0.237 0.063 0.035 -0.009 -0.027  0.225 0.051 0.023 -0.021 -0.039 
New Jersey  0.010 0.234 0.060 0.032 -0.012 -0.030  0.224 0.050 0.022 -0.022 -0.039 
New Mexico  0.029 0.270 0.096 0.068 0.024 0.006  0.241 0.066 0.039 -0.005 -0.023 
New York  0.023 0.248 0.073 0.046 0.002 -0.016  0.225 0.050 0.023 -0.021 -0.039 
N. Carolina  0.035 0.247 0.073 0.045 0.001 -0.017  0.213 0.038  0.011 -0.033 -0.051 
N. Dakota  0.022 0.217 0.043 0.016 -0.028 -0.046  0.196 0.022 -0.006 -0.050 -0.068 
Ohio  0.027 0.241 0.067 0.039 -0.005 -0.023  0.215 0.040    0.013 -0.031 -0.049 
Oklahoma  0.027 0.223 0.049 0.021 -0.022 -0.040  0.197 0.022 -0.005 -0.049 -0.067 
Oregon  0.030 0.242 0.068 0.040 -0.004 -0.022  0.213 0.039 0.011 -0.033 -0.051 
Pennsylvania  0.029 0.235 0.061 0.033 -0.011 -0.029  0.206 0.032 0.004 -0.040 -0.058 
Rhode Island  0.017 0.247 0.073 0.045 0.001 -0.017  0.229 0.055 0.027 -0.017 -0.034 
S. Carolina  0.035 0.242 0.068 0.041 -0.003 -0.021  0.208 0.033 0.006 -0.038 -0.056 
S. Dakota  0.026 0.227 0.053 0.025 -0.019 -0.037  0.201 0.027 -0.001 -0.045 -0.063 
Tennessee  0.030 0.234 0.060 0.032 -0.012 -0.030  0.204 0.030 0.002 -0.042 -0.059 
Texas  0.046 0.254 0.079 0.052 0.008 -0.010  0.208 0.034 0.006 -0.038 -0.056 
Utah  0.023 0.225 0.051 0.023 -0.021 -0.039  0.201 0.027 -0.001 -0.044 -0.062 
Vermont  -0.007 0.217 0.042 0.015 -0.029 -0.047  0.223 0.049 0.021 -0.023 -0.041 
Virginia  0.032 0.250 0.076 0.048 0.004 -0.013  0.219 0.044 0.017 -0.027 -0.045 
Washington  0.023 0.232 0.058 0.030 -0.013 -0.031  0.210 0.035 0.008 -0.036 -0.054 
W. Virginia  0.019 0.244 0.070 0.042 -0.002 -0.020  0.225 0.050 0.023 -0.021 -0.039 
Wisconsin  0.023 0.233 0.059 0.031 -0.013 -0.031  0.209 0.035 0.007 -0.036 -0.054 
Wyoming  0.015 0.227 0.053 0.025 -0.019 -0.037  0.211 0.037 0.009 -0.034 -0.052 
              

Average  0.026 0.240 0.066 0.038 -0.006 -0.023  0.214 0.040 0.012 -0.032 -0.049 

Notes: (i) Estimates are based on the Threshold Panel Fixed-Effects model (1) in the main text of the paper using 
the Panel Corrected Standard Errors (PCSE) estimation approach (see Table 2). (ii) For the columns (7), (8), (9), 
(10) and (11), the significant mean differences, for a significance level 0.01, are signified with bold values.   
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Since the increasing strength of NPIs harms economic activity, it is essential to 

identify the minimum level of measures capable of reverting the growth rate of infections 

to negative values. By setting the government interventions level equal to the second 

threshold, the average daily percentage growth of infections turns negative for the first time 

and equal to -0.60% (Table 3). This estimate is lower by 3.2 percentage points (p-

value<0.01) compared to the impact of the actual policies. Overall, the counterfactual 

analysis suggests that while NPIs are effective in reducing the growth of infections at all 

magnitudes, negative growth rates can be achieved only when government stringency is 

set to a level being part of the ‘high’ regime [73.1-100].  

What happens if we switch attention to the individual U.S. states? Had the level of 

government interventions remained at the second threshold, the state of California would 

have achieved the largest reduction in the growth of infections by a daily average of 6.2 

percentage points (p-value<0.01), followed by North Dakota (reduction of 5 percentage 

points; p-value<0.01) and Oklahoma (reduction of 4.9 percentage points; p-value<0.01; 

Table 3). Our model implies that these U.S. states would have achieved even larger 

reductions in the average daily growth of infections (8, 6.8 and 6.7 percentage points for 

California, North Dakota, and Oklahoma, respectively and in all cases with a p-value<0.01) 

had government intervention remained at its highest stringency level throughout the 

sample, compared to the actual implemented policies. 

We proceed by running a set of counterfactual scenarios for the ESM index. We 

report in Fig. 9, per U.S. state, the growth of infections for a 10-unit sequential increase of the 

ESM index from 0 to 100. In the absence of economic support, the average daily 

percentage growth of infections is estimated at 5% (Table 4). At the opposite extreme, the 

respective percentage growth is estimated at 2.1% (Table 4). When compared to the actual 

government economic interventions, both scenarios illustrate statistically significant 

differences (p-value<0.01). Specifically, actual deployed ESM reduced the average daily 

percentage growth of infections by 2.4 percentage points compared to no ESM. In addition, 

had ESM been implemented at their highest level, the average daily percentage growth of 

infections would have been lower by 0.5 percentage points. Overall, government ESM act 

complementarily to NPIs in significantly reducing further the growth of infections.  
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Table 4. COVID-19 cases growth rate per U.S. state: mean fitted values and mean 
counterfactual responses for different levels of the ESM index.  

State  
Fitted 
values 

Counterfactual response at ESM level:  Difference between column: 

0 20 50 80 100  (2)-(1) (3)-(1) (4)-(1) (5)-(1) (6)-(1) 
(1) (2) (3) (4) (5) (6)  (7) (8) (9)  (10)   (11) 

Alabama   0.030 0.053 0.034 0.028 0.025 0.024  0.022 0.004 -0.002 -0.005 -0.007 
Alaska  0.019 0.047 0.028 0.022 0.019 0.017  0.027 0.008 0.002 0.000 -0.002 
Arizona  0.042 0.064 0.045 0.039 0.037 0.035  0.023 0.004 -0.002 -0.005 -0.006 
Arkansas  0.027 0.050 0.031 0.025 0.022 0.020  0.023 0.004 -0.002 -0.005 -0.006 
California  0.071 0.091 0.072 0.066 0.063 0.062  0.019 0.000 -0.005 -0.008 -0.010 
Colorado  0.026 0.050 0.031 0.025 0.022 0.021  0.024 0.005 -0.001 -0.004 -0.005 
Connecticut  0.006 0.032 0.013 0.008 0.005 0.003  0.026 0.007 0.001 -0.002 -0.003 
Delaware  0.018 0.043 0.024 0.019 0.016 0.014  0.026 0.007 0.001 -0.002 -0.003 
Florida  0.045 0.068 0.049 0.043 0.040 0.039  0.023 0.004 -0.002 -0.005 -0.006 
Georgia  0.037 0.060 0.041 0.035 0.032 0.031  0.024 0.005 -0.001 -0.004 -0.006 
Hawaii  0.014 0.037 0.018 0.012 0.009 0.008  0.023 0.004 -0.002 -0.005 -0.006 
Idaho  0.023 0.047 0.028 0.022 0.019 0.017  0.023 0.004 -0.001 -0.004 -0.006 
Illinois  0.034 0.058 0.039 0.033 0.030 0.029  0.024 0.005 -0.001 -0.004 -0.005 
Indiana  0.031 0.056 0.037 0.031 0.028 0.027  0.025 0.006 0.000 -0.003 -0.004 
Iowa  0.033 0.058 0.039 0.034 0.031 0.029  0.025 0.006 0.000 -0.003 -0.004 
Kansas  0.028 0.052 0.033 0.027 0.024 0.023  0.024 0.005 -0.001 -0.004 -0.005 
Kentucky  0.033 0.060 0.041 0.035 0.033 0.031  0.027 0.008 0.002 -0.001 -0.002 
Louisiana  0.024 0.051 0.032 0.026 0.023 0.022  0.027 0.008 0.002 -0.001 -0.002 
Maine  0.003 0.026 0.007 0.001 -0.002 -0.003  0.023 0.004 -0.002 -0.005 -0.006 
Maryland  0.032 0.057 0.038 0.032 0.029 0.027  0.025 0.006 0.000 -0.003 -0.005 
Massachusetts  0.021 0.042 0.023 0.017 0.014 0.013  0.021 0.002 -0.004 -0.007 -0.008 
Michigan  0.009 0.033 0.014 0.008 0.005 0.004  0.023 0.004 -0.001 -0.004 -0.006 
Minnesota  0.026 0.049 0.030 0.024 0.021 0.019  0.023 0.004 -0.002 -0.005 -0.007 
Mississippi  0.029 0.051 0.032 0.026 0.023 0.022  0.022 0.004 -0.002 -0.005 -0.007 
Missouri  0.024 0.047 0.028 0.023 0.020 0.018  0.023 0.004 -0.002 -0.005 -0.006 
Montana  0.021 0.044 0.025 0.019 0.016 0.015  0.023 0.004 -0.002 -0.005 -0.006 
Nebraska  0.030 0.054 0.035 0.029 0.026 0.025  0.024 0.005 -0.001 -0.004 -0.005 
Nevada  0.032 0.056 0.037 0.031 0.028 0.027  0.024 0.005 -0.001 -0.004 -0.005 
New Hampshire  0.011 0.038 0.019 0.013 0.010 0.009  0.026 0.007 0.002 -0.001 -0.003 
New Jersey  0.010 0.035 0.016 0.011 0.008 0.006  0.026 0.007 0.001 -0.002 -0.003 
New Mexico  0.029 0.053 0.034 0.028 0.025 0.024  0.023 0.005 -0.001 -0.004 -0.006 
New York  0.023 0.049 0.030 0.024 0.021 0.020  0.026 0.007 0.001 -0.002 -0.003 
N. Carolina  0.035 0.059 0.040 0.034 0.031 0.029  0.024 0.005 -0.001 -0.004 -0.005 
N. Dakota  0.022 0.047 0.028 0.022 0.019 0.017  0.025 0.006 0.000 -0.003 -0.004 
Ohio  0.027 0.050 0.031 0.026 0.023 0.021  0.024 0.005 -0.001 -0.004 -0.005 
Oklahoma  0.027 0.051 0.032 0.026 0.023 0.022  0.024 0.005 -0.001 -0.004 -0.005 
Oregon  0.030 0.054 0.035 0.029 0.026 0.025  0.024 0.006 0.000 -0.003 -0.005 
Pennsylvania  0.029 0.052 0.033 0.027 0.024 0.023  0.023 0.004 -0.002 -0.005 -0.006 
Rhode Island  0.017 0.045 0.026 0.021 0.018 0.016  0.028 0.009 0.003 0.000 -0.001 
S. Carolina  0.035 0.059 0.040 0.034 0.031 0.029  0.024 0.005 -0.001 -0.004 -0.005 
S. Dakota  0.026 0.050 0.031 0.026 0.023 0.021  0.024 0.005 -0.001 -0.004 -0.005 
Tennessee  0.030 0.052 0.033 0.027 0.024 0.023  0.022 0.003 -0.003 -0.006 -0.007 
Texas  0.046 0.068 0.049 0.043 0.040 0.039  0.022 0.003 -0.002 -0.005 -0.007 
Utah  0.023 0.046 0.027 0.021 0.018 0.017  0.022 0.004 -0.002 -0.005 -0.007 
Vermont  -0.007 0.018 -0.001 -0.006 -0.009 -0.011  0.025 0.006 0.000 -0.003 -0.004 
Virginia  0.032 0.056 0.037 0.032 0.029 0.027  0.025 0.006 0.000 -0.003 -0.005 
Washington  0.023 0.047 0.028 0.022 0.019 0.018  0.024 0.005 -0.001 -0.004 -0.005 
W. Virginia  0.019 0.043 0.024 0.018 0.015 0.014  0.024 0.005 -0.001 -0.004 -0.006 
Wisconsin  0.023 0.048 0.029 0.023 0.020 0.019  0.024 0.005 0.000 -0.003 -0.005 
Wyoming  0.015 0.039 0.020 0.015 0.012 0.010  0.024 0.005 -0.001 -0.004 -0.005 
              

Average  0.026 0.050 0.031 0.025 0.022 0.021  0.024 0.005 -0.001 -0.004 -0.005 

Notes: (i) Estimates are based on the Threshold Panel Fixed-Effects model (1) in the main text of the paper using 
the Panel Corrected Standard Errors (PCSE) estimation approach (see Table 2). (ii) For the columns (7), (8), (9), 
(10) and (11), the significant mean differences, for a significance level 0.01, are signified with bold values.  
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Fig. 9| Counterfactual analysis for the ESM index 

Notes: (i) The vertical left-axis depicts the expected growth of infection; the bottom horizontal left-axis displays the ESM index, and 
the bottom horizontal right-axis depicts the state by using the two-digit code abbreviation.  
(ii) The two-digit state abbreviations are: Alabama: AL, Alaska: AK, Arizona: AZ, Arkansas: AR, California: CA, Colorado: CO, 
Connecticut: CT, Delaware: DE, Florida: FL, Georgia: GA, Hawaii: HI, Idaho: ID, Illinois: IL, Indiana: IN, Iowa: IA, Kansas: KS, 
Kentucky: KY, Louisiana: LA, Maine: ME, Maryland: MD, Massachusetts: MA, Michigan: MI, Minnesota: MN, Mississippi: MS, 
Missouri: MO, Montana: MT, Nebraska: NE, Nevada: NV, New Hampshire: NH, New Jersey: NJ, New Mexico: NM, New York: 
NY, North Carolina: NC, North Dakota: ND, Ohio: OH, Oklahoma: OK, Oregon: OR, Pennsylvania: PA, Rhode Island: RI, South 
Carolina: SC, South Dakota: SD, Tennessee: TN, Texas: TX, Utah: UT, Vermont: VT, Virginia: VA, Washington: WA, West Virginia: 
WV, Wisconsin: WI, Wyoming: WY. 
(iii) The response surface for the expected growth of infections is colored based on the magnitude of the responses (responses (e.g. 
shades of blue, turquoise, and yellow refer to a positive growth, white signifies a zero growth and shades of red imply negative 
growth). 

 

 

5. Conclusions 

We examine, for the U.S. states, the pairwise relationship between NPIs and the growth 

of COVID-19 confirmed cases by allowing government interventions to affect infections 

in a heterogeneous manner based on their varying strength. Using a two-threshold panel 

fixed-effects specification and conditioning on a set of regime independent variables, such 

as ESM and climatic conditions, we reach a number of findings. First, we identify three 

distinct regimes of ‘low’, ‘medium’ and ‘high’ severity interventions; interventions have a 

stronger impact in reducing infections at the ‘high’ regime. Second, ESM are significant in 

reducing COVID-19 cases growth down over and above the impact of NPIs. Third, we 

identify a negative and significant impact of the climatic conditions on the growth of 

COVID-19 cases. Fourth, counterfactual analysis shows that the actual conducted NPIs 

significantly reduced the daily average percentage growth of infections by 21.4 percentage 

points compared to the scenario of no government action. At the other extreme, had 

government NPIs remained at the highest stringency level throughout the sample, the daily 
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average growth of infections would have been lower by 4.9 percentage points. Fifth, the 

implemented ESM reduced the average daily percentage growth of infections by 2.4 

percentage points compared to the scenario of no economic support. Finally, we find that 

only NPIs classified at the high regime can reverse the growth rate of infections to a 

negative one.  

Our paper contributes to the understanding of the exact pairwise regime-dependent 

relationship between containment measures and confirmed cases by quantifying in a 

heterogeneous manner the impact of government interventions on COVID-19 infections. 

Our findings seek to allow policymakers to timely plan more effective short-run 

interventions towards handling infections. In addition, our findings seek to inform 

policymakers of how to minimize the negative impact of government stringency on 

economic activity and achieve cost savings in the health sector and efficient allocation of 

existing (but nonetheless limited) resources.  

Based on the results of our paper, it might be tempting to argue that stronger 

government interventions, in excess of the high threshold, might have to be put in place 

in order to reduce the growth rate of COVID-19 infections not least because such action 

will arguably restrict the chances of the virus evolving even further. That said, our results 

do not consider the rolling out of the vaccination programme which took effect from 

December 2020 onwards. The emergence of mutated Covid-19 variants with higher 

transmissibility (Kupferschmidt, 2021) seems to suggest that the success of the vaccination 

programme towards controlling the pandemic will depend, among other things, (a) on how 

fast the virus mutates, (b) on whether new versions of the approved vaccines can be rolled 

out in a speedy manner to tackle the variants of the virus, and (c) on vaccine acceptance.11 

All in all, it makes sense to expect that some NPIs measures will remain in place even as 

the vaccination programme ‘attacks’ the pandemic. 

References  
Adolph, C., K. Amano, B. Bang-Jensen, N. Fullman, and J. Wilkerson (2020). Pandemic 

Politics: Timing State-Level Social Distancing Responses to COVID-19. Journal of 

Health Politics Policy Law, 8802162. https://doi.org/10.1215/03616878-8802162.  

Beck, N. and J.N. Katz (1995). What to do (and not to do) with time series cross-section 
data. American Political Science Review 89, 634-647. 

 
11 In collaboration with Facebook, the Delphi group at Carnegie Mellon University conducts research surveys 
to monitor vaccine acceptance (percentage of people who either have already received a COVID vaccine or 
would definitely or probably choose to receive one if it were offered to them today) in the U.S. In May 2021, 
vaccine acceptance stood at 86.2% compared to 77.5% in January 2021 
(https://delphi.cmu.edu/covidcast/survey-results/?date=20210512).  



23 
 

Born, B., and J. Breitung (2016). Testing for serial correlation in fixed-effects panel data 

models. Econometric Reviews 35, 1290-1316. 

Brauner, J.M., S. Mindermann, M. Sharma, D. Johnston, J. Salvatier, T. Gavenčiak, A.B. 

Stephenson, G. Leech, G. Altman, V. Mikulik, A.J. Norman, J.T. Monrad, T.  

Besiroglu, H. Ge, M.A. Hartwick, Y. Whye, L. Chindelevitch, Y. Gal and J. Kulveit 

(2020). Inferring the effectiveness of government interventions against COVID-19. 

Science. https://doi.org/10.1126/science.abd9338.  

Chernozhukov, V., H. Kasahara and P. Schrimpf (2021). Causal impact of masks, policies, 
behavior on early covid-19 pandemic in the U.S. Journal of Econometrics 220, 23-62. 

Dasgupta, U., C.K. Jha and S. Sarangi (2021). Persistent Patterns of Behavior: Two 

Infectious Disease Outbreaks 350 years Apart. Economic Inquiry 59, 848-857. 

Dave, D., A.I. Friedson, K. Matsuzawa, and J.J. Sabia (2021). When Do Shelter-in-Place 

Orders Fight COVID-19 Best? Policy Heterogeneity Across States and Adoption 

Time. Economic Inquiry 59, 29-52.  

Demirgüç-Kunt, A., M. Lokshin and I. Torre (2020). The sooner, the better: The early 

economic impact of non-pharmaceutical interventions during the COVID-19 

pandemic. Policy Research Working Paper Series 9257, The World Bank. 

Driscoll, J.C., and A.C. Kraay (1998). Consistent covariance matrix estimation with 
spatially dependent panel data.  Review of Economics and Statistics 80, 549-560. 

Durbin, J. (1954). Errors in variables. Review of the International Statistical Institute 22, 23-32. 

Flaxman, S., S. Mishra, A. Gandy, H.J.T. Unwin, T.A. Mellan, H. Coupland, C. Whittaker, 

H. Zhu, T. Berah, J.W. Eaton, M. Monod, Imperial College COVID-19 Response 

Team, A.C. Ghani, C.A. Donnelly, S. Riley, M.A.C. Vollmer, N.M. Ferguson, L.C. 

Okell and S. Bhatt (2020). Estimating the effects of non-pharmaceutical 
interventions on COVID-19 in Europe. Nature 584, 257-261. 

Greene, W. (2000). Econometric Analysis. Upper Saddle River, NJ: Prentice-Hall. 

Hansen, B.E. (1999). Threshold effects in non-dynamic panels: Estimation, testing, and 

inference. Journal of Econometrics 93, 345-368. 

Haug, N., L. Geyrhofer, A. Londei, E. Dervic, A. Desvars-Larrive, V. Loreto, B. Pinior, S. 

Thurner and P. Klimek (2020). Ranking the effectiveness of worldwide COVID-19 
government interventions. Nature Human Behaviour 4, 1303-1312. 

Hausman, J. (1978). Specification tests in econometrics. Econometrica 46, 1251-1271. 

Hatchett, R.J., C.E. Mecher and M. Lipsitch (2007). Public health interventions and 

epidemic intensity during the 1918 influenza pandemic. Proceedings of the National 

Academy of Sciences 104, 7582-7587. 

Hsiang, S., D. Allen, S. Annan-Phan, K. Bell, I. Bolliger, T. Chong, H. Druckenmiller, L.Y. 

Huang, A. Hultgren, E. Krasovich, P. Lau, J. Lee, E. Rolf, J. Tseng and T. Wu (2020). 

The effect of large-scale anti-contagion policies on the COVID-19 pandemic. Nature 
584, 262-267. 



24 
 

Kupferschmidt, K. (2021). Viral evolution may herald new pandemic phase. Science 371, 

108-109. 

Lauer, S., K.H. Grantz, BA, Qifang Bi, F.K. Jones, Q. Zheng, H.R. Meredith, A.S. Azman, 
N.G. Reich, J. Lessler (2020). The Incubation Period of Coronavirus Disease 2019 
(COVID-19) from Publicly Reported Confirmed Cases: Estimation and Application. 
Annals of Internal Medicine 172, 577-582. 

Martin, C., J. Bootsma and N.M. Ferguson (2007). The effect of public health measures 

on the 1918 influenza pandemic in U.S. cities. Proceedings of the National Academy of 

Sciences 104, 7588-7593. 

Nerlove, M. (1967). Experimental evidence on the estimation of dynamic economic 

relations from a time series of cross-section. The Economic Studies Quarterly (Tokyo. 

1950) 18, 42-74. 

Nickell, S. (1981). Biases in dynamic models with fixed effects. Econometrica 49, 1417-1426. 

Parks, R. (1967). Efficient estimation of a system of regression equations when 

disturbances are both serially and contemporaneously correlated. Journal of the 

American Statistical Association 62, 500-509.  

Pesaran, M.H. (2021). General diagnostic tests for cross section dependence in panels. 

Empirical Economics 60, 13-50. 

Raftery, A.E., J. Currie, M.T. Bassett and R. Groves (2020). Evaluating data types: A Guide 

for Decision Makers using Data to Understand the Extent and Spread of COVID-19. 
Washington, DC: The National Academies Press. https://doi.org/10.17226/25826. 

Schuchat, A. (2020). Public Health Response to the Initiation and Spread of Pandemic 

COVID-19 in the United States, February 24-April 21, 2020. Morbidity and Mortality 

Weekly Report 69, 551-556.  

Singh, S., M. Shaikh, K. Hauck and M. Miraldo (2021). Impacts of introducing and lifting 

nonpharmaceutical interventions on COVID-19 daily growth rate and compliance 

in the United States. Proceedings of the National Academy of Sciences, 118, 1-9. 

Vogelsang, T.J. (2012). Heteroskedasticity, autocorrelation, and spatial correlation robust 

inference in linear panel models with fixed-effects. Journal of Econometrics 166, 303-

319. 

Ward, M.P., S. Xiao and Z. Zhang (2020). Humidity is a consistent climatic factor 

contributing to SARS‐CoV‐2 transmission. Transboundary and Emerging Diseases, DOI: 

10.1111/tbed.13766.  

Wooldridge, J.M. (2010). Econometric Analysis of Cross Section and Panel Data, 2nd 
Edition. The MIT Press, Cambridge, Massachusetts. 

Wu, D.M. (1973). Alternative tests of independence between stochastic regressors and 

disturbances. Econometrica 41, 733-750. 

Wu, Y., W. Jing, J. Liu, Q. Ma, J. Yuan, Y. Wang, M. Du and M. Liu (2020). Effects of 

temperature and humidity on the daily new cases and new deaths of COVID-19 in 

166 countries. Science of the Total Environment 729, 139051.  


