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Sketch of the Suggested Solutions for Homework on Mixed Strategies

Exercise 1: (Final 2018) Find all the Nash equilibria (in pure and/or mixed strategies) of the

following game

Player 2

Player 1

Left Right

Top 6; 2 0; 1

Bottom 3; 0 6; 4

Solution 1: (Top; Left) and (Bottom;Right) are the two pure-strategy Nash equilibria. To �nd

the other equilibria, let p be the probability that player 1 will choose top and q be the probability

that player 2 will choose left. Find out the best response functions: Player 1 (strictly) prefers Top to

Bottom if q > 2=3 and Player 2 (strictly) prefers Left to Right if p > 4=5. Accordingly, in addition to

the pure-strategy Nash equilibria (p = 1; q = 1) and (p = 0; q = 0), there is also a mixed-strategy Nash

equilibrium where (p = 4=5; q = 2=3).

(20) Exercise 2: (Final 2017) Consider the following game between the taxpayer and an auditor.

The taxpayer can save x euros by evading taxes. But if a tax-evader is audited, he has to pay a �ne f

which is higher than the taxes saved x. The auditor incurs cost c when she decides to audit. But if she

catches an evasion, she receives a reward r which is higher than the auditing cost c. Assuming that each

player is maximizing the expected monetary returns (ignoring ethical considerations), the payo¤ matrix

can be written as follows:
Audit No Audit

Evade x� f; r � c x; 0

Not Evade 0;�c 0; 0

Find the Nash equilibria of this game. Government o¢ cials want to reduce the rate of tax evasion. What

is your recommendation? Should they change the �ne level? Should they change the reward paid to the

auditor? What should be the direction of the change(s)? Explain brie�y.

Solution: There is no pure-strategy Nash equilibrium: The taxpayer wants to evade taxes if he knows

that the auditor is not auditing. But the auditor would want to audit if she thinks that the taxpayer is

evading. To �nd the mixed-strategy Nash equilibria, let p be the probability that the taxpayer evades

and q be the probability that the auditor audits.

For the taxpayer, the expected payo¤ to evading tax is x� qf , and payo¤ to not evading is zero. For

the auditor, expected payo¤ to auditing is pr � c, and payo¤ to not auditing is zero. Accordingly, the
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best response correspondences are

p =

8>>><>>>:
0 if q > x=f

[0; 1] if q = x=f

1 if q < x=f

for the taxpayer and

q =

8>>><>>>:
1 if p > c=r

[0; 1] if p = c=r

0 if q < c=r

for the auditor. The unique Nash equilibrium of the game is p = c=r and q = x=f . The rate of tax

evasion (p) does not change if we increase the �ne level f . But it is decreasing in the reward r that is

paid to the successful auditor.

(25) Exercise 3: (Midterm 2017) Consider the following game where the pure strategies for Player

1 are U and D, and the pure strategies for Player 2 are L and R:

L R

U 3; 0 1; 0

D 1; 2 3; 1

(5) a) Is there a strictly dominated pure strategy for any of the players? If yes, which one?

No strictly dominated strategy for the players.

(5) b) Is there a weakly dominated pure strategy for any of the players? If yes, which one?

R is weakly dominated by L for player 2.

(5) c) Are there Nash equilibria of this game in pure strategies? If yes, �nd them.

Through circling the payo¤s, you can see that (U,L) is a Nash equilibrium in pure strategies.

(10) d) Find all the Nash equilibria of this game.

The safest way to �nd all the Nash equilibria in mixed strategies is drawing the best response

correspondences. Let�s say p is the probability that player 1 plays U and q is the probability that player

2 plays L. Best response for Player 1 is similar to the best response function in the matching pennies or

the battle of the sexes games:

p =

8>>><>>>:
0 if q < 1=2

[0; 1] if q = 1=2

1 if q > 1=2

Best response for Player 2 is rather non-standard. Notice that playing the weakly dominant strategy of

L is always a part of the best response. When Player 1 plays D with some positive probability (when

p<1), L is the only best response. But when Player 2 is sure that player 1 is playing U (p=1), she is
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indi¤erent between L and R. Accordingly, her best response is

q =

8<: 1 if p < 1

[0; 1] if p = 1

Drawing these two correspondences on the p � q coordinate system identi�es a continuum of mixed

strategy Nash equilibria: f(p; q) : p = 1 and 1=2 � q � 1g. That is, in the Nash equilibria, Player 1

plays U for sure and Player 2 plays L with some probability q, where q can be any number between

1/2 and 1 (including 1/2 and 1). Notice that the pure-strategy Nash equilibrium (U,L) is one of the

identi�ed Nash equilibria (p = 1; q = 1).

(25 points) Exercise 4: (Midterm 2018) Consider the game with the following payo¤matrix, played

by players 1 and 2:

Player 2

Player 1

Left Right

Top x; y 0; 0

Bottom 0; 0 1; 1

where x and y are positive numbers. As usual, the �rst payo¤ in each cell belongs to player 1 - who

chooses between the rows and the second payo¤ belongs to player 2 - who chooses between the columns.

(5) a) Find the pure strategy Nash equilibria of this game.

(Top, Left) and (Bottom, Right) are the two pure-strategy Nash Eq.

For the rest of the exercise, consider the mixed strategies.

(10) b) Write down the best response correspondence of each player in this game.

Let p be the probability that player 1 chooses Top and q be the probability that player 2 chooses Left.

We can refer to p and q as the mixed strategies of these two players. The best response correspondence

of player 1 should give the expected payo¤ maximizing level(s) of p for him for each level of q.

Ev1 (Top) = qx+ (1� q) 0 = qx

Ev1 (Bottom) = q0 + (1� q) 1 = 1� q

qx > 1� q , (1 + x) q > 1, q > 1= (1 + x)

Player 1 strictly prefers playing Top when q > 1= (1 + x), and strictly prefers Bottom when q <

1= (1 + x), and he is indi¤erent between the two options (and any randomization between them) when

q = 1= (1 + x). For player 1, recall that playing Top for sure means setting p = 1 and playing Bottom

for sure is p = 0. Accordingly, the best response correspondence of player 1 is

BR1 (q) = p
� (q) =

8>>><>>>:
0 q < 1= (1 + x)

[0; 1] q = 1= (1 + x)

1 q > 1= (1 + x)
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From symmetry between the payo¤s of the players, the best response correspondence for player 2 is

BR2 (p) = q
� (p) =

8>>><>>>:
0 p < 1= (1 + y)

[0; 1] p = 1= (1 + y)

1 p > 1= (1 + y)

(5) c) Find all the Nash equilibria of this game.

A Nash equilibrium in mixed strategies is de�ned as (p, q) such that p = BR1(q)and q = BR2(p). In

addition to the two pure-strategy Nash equilibria in part (b), there is one Nash equilibrium in completely

mixed strategies:

Player 1 chooses Top with probability 1/(1 + y) and Bottom with probability y/(1 + y).

Player 2 chooses Left with probability 1/(1 + x) and Right with probability x/(1 + x).

To persuade yourself further that these strategies constitute a Nash equilibrium:

If Player 1 randomizes with these probabilities, Player 2 receives expected payo¤ 1
1+yy from playing

left and y
1+y1 from playing right. Since these payo¤s are the same, Player 2 is indi¤erent. It is optimal

for her to play any randomization between the two pure strategies.

If Player 2 randomizes with these probabilities, Player 1 receives expected payo¤ 1
1+xx from playing

top and x
1+x1 from playing bottom. Since these payo¤s are the same, Player 1 is indi¤erent. It is optimal

for her to play any randomization between the two pure strategies.

(5) d) Suppose that the players are playing a Nash equilibrium of this game in completely mixed

strategies (not in pure strategies). How would increasing the payo¤ x change the probability that player

1 choose to play Top? Explain in one or two sentences.

Increasing the payo¤ of player 1 here (x) would not change his equilibrium strategy in a mixed-

strategy Nash equilibrium. The equilibrium probabilities of di¤erent alternatives for player 1 are chosen

in order to keep player 2 indi¤erent between her alternatives.

Exercise 5: (Final 2018) Consider the following game between two players. Each of the players will

simultaneously choose a number. The player who chooses a (strictly) higher number wins and the other

one loses. If they choose the same number, there is a tie between the players. Each player prefers to win

rather than to tie; and he prefers to tie, rather than to lose. Is there a Nash equilibrium of this game?

Reconcile your answer with the existence theorem of Nash.

Solution 5: There is no Nash equilibrium in this game. Whatever number (or probability distribution

over some numbers) a player chooses, the other one can win the game by just choosing a higher number.

So whatever pair of strategies you pick for the player, there is a pro�table deviation for at least one of

them. This is not a contradiction to Nash�s existence theorem, since the theorem is about �nite games,

where each player has �nitely many pure strategies.
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Exercise 6: (Midterm 2019, 20 points) Bad news. Alex and Chris got separated. It was a painful

breakup and they do not talk to each other anymore. But life goes on. Now each of them has to decide on

which classes to register for the Spring term. There are two options. Option A is a course on Advanced

Game Theory. Option B is Basics of the Astrological Dimensions of Business. Since it will be painful

to see each other in every lecture, Alex and Chris will both get zero payo¤ if they register to the same

class. If they choose to register to di¤erent classes, the payo¤s are positive, but the one who chooses the

advanced game theory course will get x times as much payo¤ as the other.

(10) a) Write down the normal form (with a payo¤ matrix) and �nd all Nash equilibria (in pure and

mixed strategies) of this game.

Chris

Alex

A B

A 0; 0 x; 1

B 1; x 0; 0

pure strategy Nash equilibria: (A;B) and (B;A). To �nd all the Nash equilibria, let p be the probability

that player 1 chooses A and q be the probability that player 2 chooses A. We can refer to p and q as

the mixed strategies of these two players. The best response correspondence of player 1 should give the

expected payo¤ maximizing level(s) of p for him for each level of q.

Ev1 (A) = q0 + (1� q)x = (1� q)x

Ev1 (B) = q1 + (1� q) 0 = q

(1� q)x > q , x > (1 + x) q , q < x= (1 + x)

Player 1 strictly prefers playing A when q < x= (1 + x), and strictly prefers B when q > x= (1 + x), and

he is indi¤erent between the two options (and any randomization between them) when q = x= (1 + x).

For player 1, recall that playing A for sure means setting p = 1 and playing B for sure is p = 0.

Accordingly, the best response correspondence of player 1 is

b1 (q) = p
� (q) =

8>>><>>>:
1 q < x= (1 + x)

[0; 1] q = x= (1 + x)

0 q > x= (1 + x)

From symmetry between the payo¤s of the players, the best response correspondence for player 2 is

b2 (p) = q
� (p) =

8>>><>>>:
1 p < x= (1 + x)

[0; 1] p = x= (1 + x)

0 p > x= (1 + x)

A Nash equilibrium in mixed strategies is de�ned as (p, q) such that p = b1(q)and q = b2(p). In addition

to the two pure-strategy Nash equilibria in part (b), there is one Nash equilibrium in completely mixed
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strategies:

p = q =
x

1 + x

(10) b) You should notice that one of the equilibria you found above is symmetric, i.e. both players

follow the same strategy. Find out if this symmetric equilibrium strategy is evolutionary stable: Assume

that this strategy describes the proportions of players in a large population that are programmed to

make di¤erent choices each time they are randomly matched with another player. Suppose the payo¤s

give the relative survival rates of the players. If the equilibrium proportions are modi�ed, would the

evolutionary forces push them back to the initial state in this game? Why or why not?

Yes, p = x
1+x is an evolutionary stable strategy. If the proportion of players p choosing strategy A is

higher than x
1+x , then players choosing option B would make higher pro�ts:

v (A) = p0 + (1� p)x < x

1 + x
< p+ (1� p) 0 = v (B)

This means that, in the long run, natural selection will lead to a higher survival rate of players choosing

option B, reducing the proportion of players choosing A in the population. This pushes parameter p

towards x
1+x .

Similarly, if p < x
1+x , then

v (A) = p0 + (1� p)x > x

1 + x
> p+ (1� p) 0 = v (B)

which would increase the proportion of players choosing A in the long run.

Exercise 7: (Final 2019, 30 points) Nash Equilibrium. In a tennis match, each time a player serves

the ball, she can choose whether to aim the ball to the right or to the left of her opponent. The receiving

player must also decide whether to be more prepared for a right-directed ball or for a left-directed ball

the very moment the server makes her serve, since the ball travels very fast. The probability that the

server wins the point depends on the strategies chosen by the two players. Assuming that each player

chooses her strategy to maximize the probability that she wins the point, we can write the payo¤matrix

for their interaction as below:

Receiver

Server

Right Left

Right 0:1; 0:9 0:7; 0:3

Left 0:8; 0:2 0:4; 0:6

Find all the Nash equilibria of this game (in pure or mixed strategies). If the players are indeed playing

a Nash equilibrium, what is the probability that the server wins the point?

Answer: This exercise is taken from Aviad Heifetz�s Game Theory book and it is based on Walker

and Wooders (2001, AER). No equilibrium in pure strategies. As in the matching pennies and penalty
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kick games, one player wants to do the same thing as the other and the other player wants to do the

opposite of it.

To �nd the equilibria in mixed strategies, let p be the probability that server serves Right and q be the

probability that receiver prepares for Right. Server�s expected payo¤ from the her two pure strategies:

vs (R; q) = q (0:1) + (1� q) (0:7) = 0:7� (0:6) q

vs (L; q) = q (0:8) + (1� q) (0:4) = 0:4 + (0:4) q

Accordingly, the server�s best response function is such that she serves Right if q is low and serves Left

if q is high. To �nd the level of q that makes her indi¤erent, we equate the expected payo¤s above:

q = 0:3.

Receiver�s expected payo¤ from the her two pure strategies:

vr (R; p) = p (0:9) + (1� p) (0:2) = 0:2 + (0:7) q

vr (L; p) = p (0:3) + (1� p) (0:6) = 0:6� (0:3) q

Accordingly, the receiver�s best response function is such that she prepares for Right if p is high and

prepares for Left if p is low. To �nd the level of p that makes her indi¤erent, we equate the expected

payo¤s above: p = 0:4.

When we draw these best response functions, we see that their unique intersection point is at p =

0:4; q = 0:3. This is the unique Nash equilibrium of this game: The server serves right 40% probability

and the receiver prepares for a Right serve with 30% probability.

To �nd the probability of winning for the server, we just look at her expected equilibrium payo¤

from serving Right and serving Left. If we have done our calculations right, these two payo¤s must be

the same:

vs (R; 0:3) = (0:3) (0:1) + (0:7) (0:7) = 0:52

vs (L; q) = (0:3) (0:8) + (0:7) (0:4) = 0:52

Since the game is zero-sum, the receiver�s probability of winning the point is 0:48.

Exercise 8: (Midterm 2020, 25 points) Consider the following case study from 1970s: Polaroid is the

market leader for instant photography. Kodak will choose whether to enter in the instant photography

market or to stay out. Polaroid either accommodates or �ghts a potential entry. The payo¤s are given

by the following payo¤ matrix:

Polaroid

Kodak

Acc F ight

In 2; 1 0; 0

Out 1; 2 1; 2
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(5) a) Find the strictly and weakly dominated pure strategies for both �rms.

No strictly dominated strategy for the players. For Polaroid, Fight is weakly dominated by Accom-

modate.

(10) b) Find all the Nash equilibria of the game (in pure and mixed strategies).

We can �nd the Nash equilibria in pure strategies simply through circling the payo¤s: (In;Acc) and

(Out; F ight) are the two pure-strategy Nash equilibria. The safest way to �nd all the Nash equilibria in

mixed strategies is drawing the best response correspondences. Let�s say p is the probability that player

Kodak plays In and q is the probability that Polaroid plays Acc. Best response for Kodak is similar to

the best response function in the matching pennies or the battle of the sexes games:

p =

8>>><>>>:
0 if q < 1=2

[0; 1] if q = 1=2

1 if q > 1=2

Best response for Polaroid is rather non-standard. Notice that playing the weakly dominant strategy of

Acc is always a part of the best response. When Kodak plays In with some positive probability (when

p > 0), Acc is the only best response. But when Polaroid is sure that Kodak is playing Out (p = 0), it

is indi¤erent between Acc and Fight. Accordingly, Polaroid�s best response is

q =

8<: [0; 1] if p = 0

1 if p > 0

Drawing these two correspondences on the p � q coordinate system identi�es a continuum of mixed

strategy Nash equilibria: f(p; q) : p = 0 and 0 � q � 1=2g and (p = 1; q = 1). In the �rst subset of equi-

libria, Kodak stays out for sure and Polaroid accommodates with some probability q, where q can be any

number between 0 and 1/2 (including 0 and 1/2). Notice that one of the pure-strategy Nash equilibria

(Out; F ight) is an element of this continuum. The second subset corresponds to the other pure-strategy

Nash equilibrium: (In;Acc).

(10) c) Trembling-Hand-Perfect Nash Equilibrium: Consider a modi�cation of the game where the

two players are not allowed to follow pure strategies: Suppose each player is required to choose a mixed

strategy where probability of playing either pure strategy has to be at least ", where " is a strictly

positive but very small number. Find the set of Nash equilibria of this modi�ed game. What happens

to this set as " converges to zero?

Now the players can choose their mixed strategies p and q from set ["; 1� "] instead of set [0; 1].

Best response functions should be updated accordingly. For Kodak, this would require changing best
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responses 0 and 1 with the closest allowed mixed strategies " and 1� " :

p =

8>>><>>>:
" if q < 1=2

["; 1� "] if q = 1=2

1� " if q > 1=2

For Polaroid, the modi�cation to the game breaks the potential tie between the options of accommoda-

tion and �ght: Against any allowed mixed strategy of Kodak, the unique best response of Polaroid is

maximizing the possibility of accommodation:

q = 1� " for all p 2 ["; 1� "]

Accordingly, the unique Nash equilibrium of the modi�ed game is (p = 1� "; q = 1� "), which converges

to (p = 1; q = 1) or (In;Acc) as " converges to zero.

Remark: (In;Acc) is the unique Trembling-Hand-Perfect Nash Equilibrium (due to Selten) of the

original game. The underlying idea for trembling hand perfection is the possibility that players can make

mistakes. Fight is a best response for Polaroid only when Polaroid is sure that Kodak will choose out.

But when Polaroid considers the possibility that Kodak could make a mistake with a small probability

and enter in, it will be reluctant to choose fight. Weakly dominated strategies are never played in

trembling hand perfect equilibria.

We will use this entry game as a motivating example for the introduction of a solution concept that

we will use for sequential games, where decisions are made in a sequence (rather than simultaneously).

Exercise 9: (Final 2020, 15 points) Players 1, 2, and 3 face the risk of catching a new viral disease.

The disease will be avoided by all if at least two out of the three players follow the rules of "social

distancing." Avoiding the disease in this way increases the payo¤ of each of the three players by 100

units. The individual cost of following social distancing for a player is 18 units of payo¤. Consider the

simultaneous move game where each of the three players simultaneously decides whether to respect the

rules of social distancing or not.

(3) a) Are there any dominated (weakly or strictly) strategies in this game? Either tell what these

strategies are, or explain brie�y why they do not exist.

Neither of the two strategies (follow social distancing, do not follow social distancing) is a dominated

strategy. Social distancing is a best response if only one of the other players is doing the same, and no

social distancing is a best response if both of the other players are following social distancing (or if both

of them are not following it).

(5) b) Find all the pure-strategy Nash equilibria of this game.

There are 4 such equilibria. A) None of them follow social distancing. (Notice that there is no

pro�table deviation. They all get sick, but none of them can change the outcome with a unilateral
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deviation. B) Players 1 and 2 follow social distancing and 3 does not. C) 1 and 3 follow, 2 does not. D)

2 and 3 follow, 1 does not.

The rest of the question is about construction of an equilibrium in completely mixed strategies. Suppose

each of the players 2 and 3 obeys social distancing with probability p.

(2) c) What is player 1�s expected payo¤ (as a function of p) if he does not follow social distancing

measures?

p2100 + 2p (1� p) 0 + (1� p)2 0

(3) d) What are the values of p that will make player 1 indi¤erent between following social distancing

or not following it?

p2100 = p2100 + 2p (1� p) 100 + (1� p)2 0� 18

18 = 2p (1� p) 100

p (1� p) = 0:09

Two solutions to the last equation: p = 0:9 and p = 0:1.

(2) e) In light of your answer to the question above, �nd the symmetric mixed-strategy equilibria of

this game.

Everybody following social distancing with probability p = 0:9 is a Nash equilibrium. Everybody

following it with probability p = 0:1 is another one. (For completeness, notice also that the pure-strategy

equilibrium A where none of the players observe social distancing is also a symmetric Nash equilibrium

of this game.)
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