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INTRODUCTION 
 

 

What is Game Theory1 

 

Game Theory is a particularly useful methodological tool used to analyze and 

predict the outcome of specific types of situations, namely situations of strategic 

interactions or strategic interdependencies. These situations involve the interaction 

of multiple decision makers (agents or players) where (i) each agent -acting rationally- 

is trying to maximize her well-being, and (ii) each agent’s action has consequences on 

other agents’ well-being. This interdependence causes each player to consider the 

other player’s possible decisions when deciding her own strategy/action2. Agents 

might try to resolve the situation by acting individually (non-cooperatively), or they 

might try to coordinate their actions (cooperatively). We will only consider non-

cooperative game theory in this class. The goal is to use Game Theory to ex ante 

identify the (possible) outcome of the game, i.e., the actions/strategies chosen by all 

players and the resulting payoffs for each one of them. We will be calling this predicted 

outcome a solution of the game.  

For instance, consider the market dynamics between two neighboring hot-dog 

vendors, Ms. A and Mr. B., who are located next to each other in a popular place. Their 

close proximity and the similarity of their products result in the situation meeting the 

aforementioned criteria (i) and (ii): Ms. A’s decision over her own price will affect her 

own profits but, by changing her market share, it will also affect the profits of Mr. B. 

Obviously, a similar argument can be made for Mr. B (e.g., Bertrand type competition). 

This illustrates a game set up! 

On the other hand, when there are many firms in a market, all producing an 

identical product, there is no case of strategic interactions: every single firm realizes 

that it has no power to affect the market price and, hence, it cannot affect the profits 

of any other firm (e.g., Perfect Competition). This example should warn you that 

having multiple agents involved in a situation does not necessarily imply that this 

situation is characterized by strategic interdependency, and, in such a case, Game 

Theory is not an appropriate analysis tool. This is not a game! 

 
1 Game Theory is fun but not exactly related to frivolous activities.  
2 In such situations traditional optimization fails. 
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Why is Game Theory important to us? First, we should understand that trying to 

analyze situations involving strategic interdependencies is a complicated task. The 

degree of complexity increases the more the elements of interactions one must 

consider. In the example with the hot-dog sellers, Mrs. A and Mr. B, it is 

understandable that their individual profits will depend on the price choices both 

make. If we assume that each can choose two prices, say “High” or “Low”, there will 

be four possible outcomes3: one where both choose a low price, one where both 

choose a high price, and two outcomes where one of them chooses low while the 

other chooses high price. Therefore, the analysis of this situation involves some short 

of comparison of the four different outcomes4. By changing the price options of the 

two competitors from two to three (for example, setting a “low”, “medium”, or “high” 

price), the number of potential outcomes to be considered in the analysis becomes 

nine while if the price options for each seller are four the potential outcomes become 

sixteen. This exponential growth in the number of potential outcomes underscores 

the challenge of comprehensively evaluating strategic interactions without a formal 

framework. Without Game Theory, analysts risk drowning in the myriad possibilities, 

rendering effective decision-making difficult. Thus, Game Theory offers a systematic 

methodology to disentangle the complexities of strategic interdependencies, enabling 

a more efficient and insightful analysis of such scenarios. 

Moreover, beyond managing complexity, Game Theory provides invaluable 

insights into strategic decision-making processes, offering a roadmap for 

understanding and addressing similar situations in diverse contexts. By dissecting the 

dynamics of strategic interactions and identifying optimal strategies and potential 

outcomes, Game Theory equips decision-makers with a toolkit to anticipate and 

respond effectively to competitive pressures. This systematic approach not only 

enhances decision-making capabilities but also fosters a deeper understanding of the 

underlying mechanisms governing strategic behavior. Consequently, Game Theory 

serves as a powerful tool for both theoretical analysis and practical applications, 

empowering individuals and organizations to navigate the intricate landscape of 

strategic interactions with confidence and clarity. 

 

Applications of Game theory in Economics  
Game Theory, as a branch of applied mathematics, has been widely used in 

economics, the field within social sciences where quantitative methods play a very 

crucial role. Indicatively, the following are some examples where Game Theory is used 

in economics: 

 
3 Two players, each having to choose between two available actions implies 2 × 2 = 4 potential 
outcomes. In general, for a case where two players are involved with one player having 𝑘 and the 
other player having 𝑚 actions, the number of potential outcomes will be 𝑘 × 𝑚. 
4 The “rules” for making such comparisons of the alternative outcomes will be introduced later. 
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• In different types of oligopolistic competition one firm’s price or 

quantity choices affect another firm’s profits through a shared market demand. 

The goal is to identify the firms’ outputs, price(s), and profits that will be realized 

in equilibrium (i.e., the solution of the game). 

• In all kinds of auctions, one bidder’s bid affects another bidder’s profit. 

The goal is to identify the bid of each player (and who gets the auctioned item) 

and the corresponding payoffs in equilibrium. Understanding how bidders behave 

in auctions can help, for example, in the design of appropriate auctioning 

mechanisms to secure the highest revenue for the seller. 

• In bilateral and multilateral bargaining processes (negotiations) 

between firms and trade unions. The goal is to identify the agreed wage, the 

number of hirings, the welfare of the trade union (or of its members) and the 

profits of the firms that will be realized in equilibrium.  

• In cases of pollution externalities where, by definition, one agent’s 

action affects another agent’s well-being. Identifying the way polluting agents 

behave strategically in such situations can help design appropriate policies to 

increase efficiency. 

• In contract theory where contracts must be designed in an incentive 

compatible fashion, that is, the group of buyers targeted by the seller should be 

the one attracted by the terms of the contract (e.g., discounts in car insurance 

contracts should be awarded to the prudent drivers).  

• A situation described as a Moral Hazard problem occurs when the 

actions of one party may change to the detriment of another after a financial 

transaction has taken place (informational asymmetry, principal-agent problem). 

Situations describing a moral hazard are characterized by inefficiency. Game 

theory can analyze the incentives for post-agreement behavior of the agents in the 

absence of complete and perfect information, thus helping to regain efficiency 

losses. 

• Game theory plays an important role in market design, which is the 

process of designing and implementing market mechanisms that allocate goods 

and services efficiently. Game theory provides a framework for understanding the 

strategic interactions between market participants and for designing market 

mechanisms that induce desirable outcomes depending on the type of the market 

(e.g., one-sided/two-sided, one-to-one, many-to-one matchings). 

• In the case of Coalition Formation, players can form groups to 

coordinate their actions. By understanding the strategic interactions between 

players and the benefits of forming coalitions, game theorists can propose policies 

and ways of action that promote cooperation, stability, and efficiency (e.g., 

international environmental agreements against the climate change, economic 

integration, coalitional governments when there is no clear majority) or deter 

coalitions that are socially harmful (e.g., cartels). 
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Representation of Games 
When analyzing situations of strategic interactions (henceforth games) we do it 

not from a specific player’s point of view but from that of a bystander. While pieces 

of information are not available to some player(s) this information is readily available 

to the bystander. As such, and to be able to analyze it, we must clearly define the 

following fundamental elements of a game: 

 

1) all the agents (players) whose decisions must be taken into consideration.   

Not all agents present in a situation of strategic interactions should be 

considered as “players” of the game. According to the description of what Game 

Theory is, an agent involved in a case of strategic interdependencies is a “player” if (i) 

she must choose an action/strategy among many available actions/strategies, and (ii) 

her well-being is affected by the realization of the game (outcome of the game). For 

example, there is a situation involving three people whose well-being is affected by 

the outcome of the game. One of them has only one option (say, to turn her car left). 

Then this person is irrelevant to the game, and she is not considered a player. 

Furthermore, imagine a scenario where an individual has the option to select from a 

multitude of actions, yet regardless of the chosen action, their well-being remains 

constant or non-existent. While this individual's actions hold significance for the 

ultimate outcome of the game, they are not classified as a player. In essence, this 

person could be effectively replaced by a machine that randomly selects one action5. 

 

2) the actions and the information available to them. 

The set of actions available to each player should be known to all players, i.e., 

there are no concealed choices for any participant. However, not all information 

regarding the game should necessarily be available to all players: players might or 

might not be able to observe the actions taken by players preceding them and/or the 

payoffs of the other players in any possible outcome of the game. We will discuss later 

the concepts of complete (and incomplete) and perfect (and imperfect) information. 

 

3) the “protocol” according to which players choose their actions leading to an 

outcome. 

In many games players choose simultaneously (e.g., the game “rock-paper-

scissors”) while in other games players choose their actions/strategies in a sequential 

order. Therefore, there are two ways to represent situations of strategic interactions:  

• strategic (or normal) form games, where players choose “simultaneously,” 

without knowledge of the choices made by others at the same time, and  

 
5 In Bayesian games it is often the case that Nature chooses the type of a player ( 
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• extensive (or sequential) form games, where players choose their actions 

sequentially according to a specific order (i.e., a “protocol”) leading to a sequential 

unfolding of the game. 

 

4) their preferences over all possible outcomes. 

The payoffs of all players in every possible outcome, as well as the preferences 

of the players over their own outcomes, should be known to us to properly analyze 

the game.   

 

In what follows we will be examining four different categories of games. The 

classification of the non-cooperative games into these four categories relates to 

specific traits along two dimensions. First, whether a game is static or extensive and, 

second, according to its information structure. Regarding the latter we should 

distinguish between 

• complete and incomplete information: complete information refers to a situation 

where all players have full knowledge of the game's structure, including the rules, 

the available strategies, and the payoffs associated with each strategy, but some 

information may be unknown to some players about other players’ moves. 

Incomplete information then refers to a case where some information about the 

game's structure, including the rules, the available strategies, and the payoffs 

associated with each strategy.  

• perfect and imperfect information: perfect information refers to a situation 

where, if there is a sequence of choices made by the players, each player can 

observe the choices made by the players preceding her. Imperfect information 

then refers to the case where some previous moves of players are not visible to 

the ones that follow. 

 

How do we “solve” a game? 
As mentioned before, the goal is to use Game Theory to ex ante identify the 

(possible) outcome of the game, i.e., the actions/strategies chosen by all players and 

the resulting payoffs for each one of them. This requires understanding the way each 

player of the game will choose. However, every player of the game understands that 

the final outcome depends not only on her choice(s) but also on all other players’ 

choices, hence every player should consider how all other players will play! Analyzing 

a game requires that we make assumptions on how the players deal with this 

complexity. While there are various assumptions one could consider, they all must lay 

their foundation on rationality: players are rational individuals striving to maximize 

their own welfare. We will delve deeper into this discussion later on. 
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PART I: STRATEGIC (OR NORMAL FORM) 

GAMES OF COMPLETE INFORMATION 
 

As we have discussed, a strategic situation involves several agents where each 

agent must take at least one action while having specific preferences over the set of 

potential outcomes (every player being able to compare the payoffs that correspond 

to her among all possible outcomes of the game). The payoff each agent receives at 

the end depends not only on her own actions but on the actions of all other players as 

well.  

We first consider strategic or normal form games6 of complete information, that 

is games where 

• the players simultaneously choose actions (static game) 

• each player in the game is aware of the sequence, strategies, and payoffs 

throughout gameplay (complete information) 

It should be noted here that players need not make decisions simultaneously, 

that is the games we consider in this part need not be “static”. The games we analyze 

here can evolve over time having players choosing in a sequential order. However, we 

assume imperfect information, that is, no player knows any choice of any other player 

that preceded her. We then define a strategic form game as  

 
Definition: A strategic form game has a finite set of “players”, 𝑵, and each player 𝒊 ∈

𝑵 has a non-empty actions/strategies set {𝑨𝒊}𝒊∈𝑵. For each 𝒊 ∈ 𝑵 there is a preference 

relation ≽𝒊 on the set  𝑨 =×𝒋∈𝑵 𝑨𝒋. Hence, a game can be stated as 

〈 𝑵, {𝑨𝒊}𝒊∈𝑵 , {≽𝒊}𝒊∈𝑵〉 
 

Some important notes regarding the definition above: 

• In normal form games the terms action and strategy do not differ. This is no longer 

true in extensive form games that we will analyze later. For the moment, we should 

only say that a strategy 𝒔𝒊 ∈ {𝑺𝒊}𝒊∈𝑵 of a player 𝒊 ∈ 𝑵 is a function that assigns an 

action to each point (node or information set) where the specific player must make 

a choice. 

• We define the preference relation of a player 𝒊 not on the set of his actions alone 

but rather on the set 𝑨 =×𝒋∈𝑵 𝑨𝒋, the product of all players’ action sets. The 

reason is because the choices of others affect the payoffs of player 𝒊. 

• If 𝑨𝒊 is finite for all the players 𝒊 ∈ 𝑵 then the game is finite. 

• A utility function 𝒖𝒊: 𝑨 → 𝓡, such that 𝒖𝒊(𝒂) ≥ 𝒖𝒊(𝒃) if and only if 𝒂 ≽𝒊 𝒃, may 

represent preferences. In such a case the game can be stated as 

⟨ 𝑵, {𝑨𝒊}𝒊∈𝑵 , {𝒖𝒊}𝒊∈𝑵⟩.  

 
6 Also called static games.  
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• If a strategic form game consists of 𝑵 ≤ 𝟑 players, then it is analytically convenient 

to be represented using payoff tables (matrices), provided that the game is finite 

and that the number of actions available to each player is not very large. 

In the following examples we will first try to identify the important elements of 

the game, i.e., the players, the set of actions, the information structure, the order of 

the play, and the players’ preferences over the outcomes. 

 

Example 1 – “The prisoner’s dilemma”: Two members of a criminal gang are arrested 

and imprisoned. Each prisoner is in solitary confinement with no means of 

communicating with the other. The prosecutors lack sufficient evidence to convict the 

pair on the principal charge, but they have enough to convict both on a lesser charge. 

Simultaneously, the prosecutors offer each prisoner a bargain. Each prisoner is given 

the opportunity either to betray the other by testifying that the other committed the 

crime, or to cooperate with the other by remaining silent. As we have seen in many 

police movies and TV series, the prisoners are warned that the other might confess, 

and it will be wise for them to harry. Although it does not have to be the case, we 

assume here that these two suspects are totally individualistic, i.e., each one cares 

about his own wellbeing. The possible outcomes are: 

• If prisoners 1 and 2 each betray the other, each of them serves six years in prison. 

• If prisoner 1 betrays prisoner 2 but prisoner2 remains silent, prisoner 1 will be set 

free and prisoner 2 will serve nine years in prison (and vice versa) 

• If prisoners 1 and 2 both remain silent, they will both serve only one year in prison 

(on the lesser charge). 

In the scenario above, we first identify the players, namely prisoners 1 and 2. 

Note that although the story includes prosecutors, they are not players in this set up 

since (i) they do not choose among available actions of theirs, i.e., their strategy set is 

a singleton containing only one action (lead the suspects to separate cells and offer 

each one a specific deal, and (ii) there is no prosecutor’s payoff associate with the 

outcome of this game. It is clear from the story that each player must choose between 

two actions, to confess or not. 

Furthermore, both prisoners understand the situation they are involved in (i.e., 

their own and the other person’s action sets), and what is at stake (i.e., how many 

years of jail time for each one of them in every possible outcome), hence it is a 

complete information game. However, being in separate interrogation rooms, a 

prisoner cannot know the decision the other prisoner has taken, hence it is a game of 

imperfect information.  

Finally, there are four possible outcomes clearly described in the story and the 

payoffs each player receives in each outcome is well defined. Assuming prisoners are 

completely selfish, each prefers less own jail time to more.  

Based on the above, the described typical “prisoner’s dilemma” game can be 

represented in the table below 
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    Player 2 

    Lie Confess 

Player 1 
Lie -1, -1 -9, 0 

Confess 0, -9 -6, -6 

 

Each player has been placed along one dimension (vertically or horizontally) and 

each has two actions to choose from. In the payoff matrix above, this set up has 

created four different cells each referring to one of the potential outcomes.  

In summary, we define all the elements of the game, that is: 

• 𝓝 = {𝟏, 𝟐} 

• 𝑨𝟏 = 𝑨𝟐 = {𝑪,  𝑳} 

• 𝒖𝟏(𝑪, 𝑳) = 𝒖𝟐(𝑳, 𝑪) = 𝟎 

• 𝒖𝟏(𝑳, 𝑪) = 𝒖𝟐(𝑪, 𝑳) = −𝟗 

• 𝒖𝟏(𝑪, 𝑪) = 𝒖𝟐(𝑪, 𝑪) = −𝟔 

• 𝒖𝟏(𝑳, 𝑳) = 𝒖𝟐(𝑳, 𝑳) = −𝟏 

 

Example 2: Consider a duopoly where firms produce an identical product at zero per 

unit cost and simultaneously choose quantities (i.e., à la Cournot competition). Let the 

inverse demand be 𝒑 = 𝟏 − 𝒒𝟏 − 𝒒𝟐. 

Clearly, in this game the players are the two firms competing in the market. Since 

the control variable of a firm in this game is its quantity, the strategy set includes all 

possible quantities that can be produced7. This implies that the strategy set of each 

firm is infinite, hence the game is not a finite game8. Finally, regarding payoffs, we can 

assume here that each firm cares exclusively about its profits. In the absence of any 

costs, as in this example, profits will equal the revenue, i.e., the product of price by the 

quantity. We can define all parts of the game, that is: 

• 𝓝 = {𝟏, 𝟐} 

• 𝑨𝟏 = 𝑨𝟐 = [𝟎,∞)   or  𝑨𝒊 = [𝟎, 𝒒̅𝒊],   𝒊 = 𝟏, 𝟐 

• 𝜫𝒊(𝒒𝒊, 𝒒−𝒊) = (𝟏 − 𝒒𝒊 − 𝒒−𝒊)𝒒𝒊 

 

Dominant and Dominated Strategies 
In some situations of strategic interdependencies, it is possible that the best 

interest of a player is to choose the same action/strategy. We call such an 

action/strategy a dominant strategy. In layman terms, a dominant strategy is a 

strategy that provides a player with the highest payoff regardless of the strategies 

chosen by the other players. In other words, if a player has a dominant strategy, that 

player will always choose that strategy no matter what the other players do. We 

 
7 One can think that the upper limit of production is infinity or that there is a capacity constraint. 
8 In general, non-finite strategic form games are not analyzed using payoff matrices. The analysis 
ought to be more abstract. 
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distinguish between strictly dominant and weakly dominant actions/strategies. 

Letting subscript 𝒊 refer to player 𝒊, and −𝒊 refer to all other players except 𝒊, we 

formally define them as 
 

Definitions: 

• A strategy 𝒔̂𝒊 for player 𝒊 is strictly dominant if 𝒖𝒊(𝒔̂𝒊, 𝒔−𝒊) > 𝒖𝒊(𝒔𝒊, 𝒔−𝒊) for all 𝒔−𝒊 ∈

𝑺−𝒊  and for all 𝒔𝒊 ≠ 𝒔̂𝒊 ∈ 𝑺𝒊   

• A strategy 𝒔̂𝒊 for player 𝒊 is weakly dominant if 𝒖𝒊(𝒔̂𝒊, 𝒔−𝒊) ≥ 𝒖𝒊(𝒔𝒊, 𝒔−𝒊) for all 𝒔−𝒊 ∈

𝑺−𝒊  with at least one case where 𝒖𝒊(𝒔̂𝒊, 𝒔−𝒊
′ ) > 𝒖𝒊(𝒔𝒊, 𝒔−𝒊

′ ) for 𝒔−𝒊
′ ∈ 𝑺−𝒊  and for 

all 𝒔𝒊 ≠ 𝒔̂𝒊 ∈ 𝑺𝒊 
 

The former implies that no matter the choices of all other players, player 𝒊 will always 

get strictly more anytime she plays the (strictly) dominant strategy compared to any 

other strategy available to her. The latter implies that sometimes choosing the 

(weakly) dominant strategy, player 𝒊 will be better off and sometimes as well as when 

choosing some other strategy (but never worse off). 

Similarly, in some situations of strategic interdependencies, it is possible that 

the best interest of a player is never to choose a specific action/strategy. We call such 

an action/strategy a strictly dominated strategy. A strictly dominated strategy is a 

strategy that provides a player with a strictly lower payoff than some other strategy, 

regardless of the strategies chosen by the other players. In other words, if a player has 

a strictly dominated strategy, that player should never choose that strategy. It is worth 

to be noted that a strategy, say 𝒔̂𝒊, being strictly dominated implies that there is 

another strategy, say 𝒔̅𝒊, that dominates it9! We distinguish between strictly 

dominated and weakly dominated actions/strategies. We formally define them as 
 

Definitions: 

• A strategy 𝒔̂𝒊 ∈ 𝑺𝒊 for player 𝒊 is a strictly dominated strategy if 𝒖𝒊(𝒔̂𝒊, 𝒔−𝒊) <

𝒖𝒊(𝒔𝒊, 𝒔−𝒊) for all 𝒔−𝒊 ∈ 𝑺−𝒊  and for all 𝒔𝒊 ≠ 𝒔̂𝒊 ∈ 𝑺𝒊   

• A strategy 𝒔̂𝒊 ∈ 𝑺𝒊 for player 𝒊 is a weakly dominated strategy if 𝒖𝒊(𝒔̂𝒊, 𝒔−𝒊) ≤

𝒖𝒊(𝒔𝒊, 𝒔−𝒊) for all 𝒔−𝒊 ∈ 𝑺−𝒊  with at least one case where 𝒖𝒊(𝒔̂𝒊, 𝒔−𝒊
′ ) < 𝒖𝒊(𝒔𝒊, 𝒔−𝒊

′ ) 

for 𝒔−𝒊
′ ∈ 𝑺−𝒊  and for all 𝒔𝒊 ≠ 𝒔̂𝒊 ∈ 𝑺𝒊 

 

The latter implies that most of the times choosing the weakly dominated strategy 

player 𝒊 will be getting strictly less than under some other specific strategy. However, 

sometimes by choosing the weakly dominated strategy, player 𝒊 will be as well as 

when choosing that other strategy. It is worth to be noted that a strategy, say 𝒔̂𝒊, being 

strictly (weakly) dominated implies that there is another strategy, say 𝒔̅𝒊, that strictly 

(weakly) dominates it10! 
 

 
9 Note that a strategy might be dominated by either a pure or a mixed strategy (we will discuss mixed 
strategies later). 
10 In case we consider only pure strategies, a strategy is strictly dominated if it is never chosen by a 
player. The requirement of that strategy being dominated by another strategy is redundant. 
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Example 3: Consider the 2-player game described by the payoff matrix below. 
  

Player 2   
Left Center Right 

Player 1 
Up 0, 4 2, 2 1, 3 

Down 4, 2 5, 1 0, 0 

First, let us think of the strategies of player 1. For any possible action of player 

2, namely “Left”, “Center”, or “Right”, we will be checking player 1’s payoff for each 

of the two actions available to her, namely “Up” and “Down”. Observe below that, if 

player 2 plays “Left”, player 1 will get a payoff of 0 by choosing “Up” or a payoff of 4 

by choosing “Down”. To put it more formally, 

𝐮𝟏(𝐃𝐨𝐰𝐧, 𝐋𝐞𝐟𝐭) = 𝟒 > 𝐮𝟏(𝐔𝐩, 𝐋𝐞𝐟𝐭) = 𝟎 

Obviously, this is not enough to characterize player 1’s strategy “Down” as strictly 

dominant, or “Up” as strictly dominated. “Down” must yield more compared to “Up” 

for player 1 no matter what player 2 is choosing. Observe then, that if player 2 plays 

“Center”, player 1 will get a payoff of 2 by choosing “Up” or a payoff of 5 by choosing 

“Down”. To put it more formally, 

𝒖𝟏(𝑫𝒐𝒘𝒏,𝑪𝒆𝒏𝒕𝒆𝒓) = 𝟓 > 𝒖𝟏(𝑼𝒑, 𝑪𝒆𝒏𝒕𝒆𝒓) = 𝟐 

Finally, note that if player 2 plays “Right”, player 1 will get a payoff of 1 by choosing 

“Up” or a payoff of 0 by choosing “Down”. To put it more formally,  

𝒖𝟏(𝑫𝒐𝒘𝒏,𝑹𝒊𝒈𝒉𝒕) = 𝟎 < 𝒖𝟏(𝑼𝒑, 𝑹𝒊𝒈𝒉𝒕) = 𝟏 

Our analysis shows that sometimes it is better for player 1 to choose “Up” and 

sometimes it is better to choose “Down” depending on what player 2 is assumed to 

be doing. Hence, there aren’t any strictly (or weakly) dominant or dominated 

strategies for player 1. 

Now, let us think of the strategies of player 2. For any possible action of player 

1, namely “Up” and “Down”, we will be checking player 2’s payoff for each of the two 
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actions available to him, namely “Left”, “Center”, or “Right”. Observe below that, if 

player 1 plays “Up”, player 2 will get a payoff of 4 by choosing “Left”, a payoff of 2 by 

choosing “Center” or a payoff of 3 by choosing “Right”. To put it more formally, 

𝒖𝟐(𝑳𝒆𝒇𝒕,𝑼𝒑) = 𝟒 > 𝒖𝟐(𝑹𝒊𝒈𝒉𝒕,𝑼𝒑) = 𝟑 > 𝒖𝟐(𝑪𝒆𝒏𝒕𝒆𝒓,𝑼𝒑) = 𝟐 

Obviously, this is not enough to characterize player 2’s strategy “Left” as strictly 

dominant, or “Center” as strictly dominated. For “Left” to be strictly dominant it must 

yield more compared to both “Center” and “Right” for player 2 no matter what player 

1 is choosing. For “Center” to be strictly dominated it must yield strictly less compared 

to either “Left” and/or “Right” (or any combination of the two) for player 2 no matter 

what player 1 is choosing. Observe then, that if player 1 plays “Up”, player 2 will get a 

payoff of 2 by choosing “Left”, a payoff of 1 by choosing “Center” or a payoff of 3 by 

choosing “Right”. To put it more formally, 

𝒖𝟐(𝑳𝒆𝒇𝒕,𝑫𝒐𝒘𝒏) = 𝟐 > 𝒖𝟐(𝑹𝒊𝒈𝒉𝒕,𝑫𝒐𝒘𝒏) = 𝟏 > 𝒖𝟐(𝑪𝒆𝒏𝒕𝒆𝒓,𝑫𝒐𝒘𝒏) = 𝟎 

Our analysis shows that it is always better for player 2 to choose “Left” no matter what 

player 1 is assumed to be doing. Hence, player 2’s strategy “Left” is strictly dominant 

and, consequently, strategies “Center” and “Right” strictly dominated. 
 

In general, the discussion above clearly shows that analyzing strategies in a game 

entails a complex process that necessitates considering the strategies of all players 

and their potential responses to various strategies. More importantly though it should 

be intuitively clear that the outcome of a situation that involves strategic interactions 

can never include choices (i.e., strategies) of the agents involved that are strictly 

dominated, hence all strictly dominated strategies can be eliminated. Any prediction 

about the final outcome of a game should not include any player choosing some 

strictly dominated action11. Similarly, if a player has a strictly dominant strategy, then 

any prediction about the final outcome of the game should definitely include strictly 

dominant action of the respective player12. In the context of Example 3, this implies 

that our predictions about the final outcome of the game should include the prediction 

that player 2 will definitely choose “Left” (and, consequently, never choose “Center” 

or “Right”).  

How important is this? Consider again the game of Example 3. Knowing that 

player 2 will definitely choose “Left” simplifies our analysis by reducing the payoff 

 
11 However, a solution may very well include weakly dominated strategies. 
12 However, it is possible a solution not to include a weakly dominant strategy. 
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matrix from a 2x3 to a 2x1 table! So, instead of having to analyze six possible outcomes 

we only must consider two. As a matter of fact, observe now that making a prediction 

about the final outcome in the above reduced form table is fairly simple: It is only 

player 1 who has to make a choice and doing so requires just a simple optimization! 

A natural question can be: Can we do the same if a strategy is weakly dominant? 

The answer is unfortunately no. In the context of Example 3 assume a small change in 

the payoffs. Specifically, let the payoff of player 2 under the strategy profile (“Down”, 

“Center”) to be 2 instead of 1. Then it is easy to show that player 2’s strategy “Left” is 

weakly dominant. But the strategy “Center” is not strictly dominated, as it sometimes 

yields the same payoff as the strategy “Left”. Therefore, we can only 

eliminate “Right” as strictly dominated and the payoff matrix reduces to the one above 

with four remaining possible outcomes instead of six. 

What if every player in a game has a strictly dominant strategy? Then, as we 

have claimed, the “solution”13 of the game should predict every player choosing her 

strictly dominant strategy. For example, considering the game of the Prisoner’s 

Dilemma, it is easy to confirm that each prisoner has a strictly dominant strategy to 

“Confess”. Denoting with 𝑪𝒊 and 𝑳𝒊 player 𝒊’s strategies “Confess” and “Lie”, 

respectively, and using the familiar  −𝒊 for the strategy of the “other” player, we have  

𝒖𝒊(𝑪𝒊, 𝑳−𝒊) = 𝟎 > 𝒖𝒊(𝑳𝒊, 𝑳−𝒊) = −𝟏 

𝒖𝒊(𝑪𝒊, 𝑪−𝒊) = −𝟔 > 𝒖𝒊(𝑳𝒊, 𝑪−𝒊) = −𝟗 

In other words, the strategy “Lie” of both players is strictly dominated and can be 

eliminated. By only keeping the strictly dominant actions of the two players in the 

Prisoner’s Dilemma game, the payoff matrix reduces to the one above and there is 

only one potential outcome: we have found the equilibrium in the Prisoner’s Dilemma 

game! In equilibrium both prisoners will choose to “Confess”, and each will be 

sentenced for six years. Is this enough to solve any game? Unfortunately, no. As we 

have already discussed, in most of the games there is no strictly dominant strategy for 

every player. Is there anything more to say about strict dominance? According to what 

follows there is. 

 
13 Henceforth, we will be using the term “equilibrium” of a game. 
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Iterated Elimination of Strictly Dominated Strategies 
We have established that the existence of strictly dominant strategies for some 

players and/or the existence of strictly dominated strategies can significantly reduce 

the “size” of the game. Is there something more we can do after eliminating any 

strictly dominated strategy in a game? The answer is yes! Once we eliminate such 

strategies, say for player 1, we should go and check again about dominances on player 

2’s strategies in the reduced payoff matrix. This process can reveal that, although 

previously player 2 did not have any strictly dominant or dominated actions, after the 

elimination of some strategies of player 1 and the derivation of the reduced payoff 

matrix, player 2 might have strictly dominated actions. If yes, strictly dominated 

actions in the reduced game must be eliminated and the process continues by 

checking again player 1, and so on so forth. This process is called Iterated Elimination 

of Strictly Dominated Strategies and simplifies strategic interactions between rational 

players. The idea is to eliminate from consideration all strategies that are strictly 

dominated by another strategy, and then iterate the process until only a single 

strategy or a set of strategies that are not dominated remains. 

 

Example 4:  

Consider the game described by the payoff matrix below. Following the analysis used 

in Example 3 for identifying dominances, you can easily confirm that player 1 does not 

have a strictly dominant 

and/or strictly dominated 

actions, since her strategy 

“Up” yields a higher 

payoff for her when 

player 2 choose “Left” or “Middle” but her strategy “Down” is better for her when 

player 2 chooses “Right”. Moving on to player 2, we can again easily confirm that his 

strategy “Middle” yields always a higher payoff to him compared to his strategy 

“Right”, hence the latter is a strictly dominated strategy and it can be eliminated (1st 

round of elimination of 

strictly dominated 

strategies). The reduced 

game can now be 

represented by the payoff 

matrix on the right. In this reduced form game note now that by re-examining player 

1’s strategies for dominances shows that her strategy “Up” is strictly dominating over 

her strategy “Down”, 

hence the latter can be 

eliminated (2nd round of 

elimination). The new 

reduced game can now 
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be represented by the payoff matrix on the left. In this reduced form game note now 

that by re-examining player 2’s strategies for dominances shows that his strategy 

“Middle” strictly dominates over his strategy “Left”, hence the latter can be eliminated 

(3nd round of elimination). This leaves us with a clear prediction about the final 

outcome of the game as 

it is shown in the new 

reduced payoff matrix 

below. Specifically, we 

can predict with a very 

high probability14 that player 1 will choose “Up” and player 2 will choose “Middle”. 

 

It appears, as shown in Example 4, that this process of iterated elimination of 

strictly dominated strategies can lead to identifying the equilibrium of the game. 

However, we should be warned about a few things.  

• First, this process can only be used for strict dominances, implying that we should 

not ever eliminate weakly dominated strategies. The reason we should avoid the 

elimination of weakly dominated strategies is because there is no guarantee that 

a weakly dominated strategy will not be part of the equilibrium strategy profile. 

This is true only for strictly dominated strategies. 

• Second, the iteration of strictly dominated strategies can stop at any round if a 

player does not have a strictly dominated strategy in a reduced form game. Hence, 

although the process can help to reduce the complexity of the analysis required to 

reach a prediction about the final outcome (i.e., an equilibrium) by reducing the 

number of potential outcomes, it does not need to lead to the equilibrium of the 

game. 

• Third, and most importantly, this process requires additional assumptions about 

the behavior of the players. We have assumed that the players are rational 

implying that, as individuals, are trying to maximize their wellbeing. In the process 

of iterative elimination of strictly dominated strategies moving from one round to 

the next requires not only that players are rational but that their rivals know that 

they are rational. In Example 4, moving from the first round to the second, this 

assumption implies that player 2 is rational (hence he eliminates “Right”) and 

player 1 knows that player 2 is rational so that player 1 is now facing a reduced 

form payoff matrix. This might not sound like anything special but there is more! 

Player 2 knows that player 1 knows that player 2 is rational, hence in round three 

player 2 eliminates “Left”. If this “chain” of knowledge of rationality breaks at any 

point before the last (where player 2 knows that player 1 that player 2 is rational) 

the iterative elimination of strictly dominated strategies will stop and there will be 

no way to identify the equilibrium/solution of the game. In Game Theory we 

 
14 We are almost sure that this will be the final outcome. However, we cannot exclude even a very tiny 
little probability that one of the players makes a mistake! 
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overcome this situation of requiring constant reassurance about the players’ 

rationality by assuming that players possess “common knowledge rationality”. 

Nash Equilibrium 
What should be an admittable characteristic of an equilibrium? We can claim 

that an equilibrium situation is characterized by inertia, that is a tendency to do 

nothing or to remain unchanged. In other words, a possible outcome resulting from a 

strategy profile combining one strategy for every player, can be an equilibrium of a 

game if there is not a single player wishing to change her strategy for the given 

strategies of the other players. Alternatively, a possible outcome cannot be an 

equilibrium of a game if there is at least one player wishing to change her strategy 

given the strategies of the others. This is the idea behind the Nash Equilibrium (NE) 

concept: given the choices of all other players (no matter if these choices are “best,” 

“rational,” etc.) should I change my choice? No, I shouldn’t if I have chosen the action 

that yields what is best for me (i.e., best response) for the given choices of others. 

Formally, player 𝒊’s best response is defined for every possible combination of the 

strategies of all other players, denoted as −𝒊, as 
 

Definition:  A best response function (or correspondence) is defined as 

𝑩𝒊(𝒂−𝒊) = {𝒂𝒊 ∈ 𝑨𝒊|(𝒂𝒊
 , 𝒂−𝒊

 ) ≽𝒊 (𝒂𝒊′, 𝒂−𝒊
 ),  ∀𝒂𝒊′ ∈ 𝑨𝒊} 

 

According to the definition above, a best response is a “rule” (i.e., a function or 

correspondence) that assigns an action that yields the best result to player i for some 

given set of actions of all the other players. Consider again the “Prisoner’s dilemma” 

game. What is the best response correspondence of player 1 for example? Since 

“other players” from the perspective of player 1 is only player 2 we will identify the 

best response of player 1 for any given choice of player 2. If player 2 plays “Lie” then, 

according to the payoff matrix below (where “Confess” of player 2 is hidden) player 1 

can either get -1 (by choosing “Lie”) or 0 (by choosing “Confess”). Therefore, when 

player 2 plays “Lie”, player 1’s best response is “Confess” since 0 is greater than -1. 

Formally,  

𝑼𝟏(𝑪𝟏
 , 𝑳𝟐

 ) = 𝟎 > 𝑼𝟏(𝑳𝟏
 , 𝑳𝟐

 ) = −𝟏
 
⇔ (𝑪𝟏

 , 𝑳𝟐
 ) ≽𝟏 (𝑳𝟏

 , 𝑳𝟐
 ) 

hence   

𝑩𝟏(𝑳𝟐) = 𝑪𝟏 
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Working similarly, if player 2 plays “Confess” then, according to the payoff matrix 

below (where “Lie” of player 2 is hidden) player 1 can either get -9 (by choosing “Lie”) 

or -6 (by choosing “Confess”). Therefore, when player 2 plays “Confess”, player 1’s 

best response is “Confess” since -6 is greater than -9. Formally,  

𝑼𝟏(𝑪𝟏
 , 𝑪𝟐

 ) = −𝟔 > 𝑼𝟏(𝑳𝟏
 , 𝑪𝟐

 ) = −𝟗
 
⇔(𝑪𝟏

 , 𝑪𝟐
 ) ≽𝟏 (𝑳𝟏

 , 𝑪𝟐
 ) 

hence   

𝑩𝟏(𝑪𝟐) = 𝑪𝟏 

Note that, in general, this level of formality is not required when discussing best 

responses. In strategic form games represented by a payoff matrix there is a fast way 

of identifying best responses.  

Following the discussion above, if every player is choosing a best response to 

the given strategies of the others, there will be no unilateral incentive to deviate, i.e., 

no one will want to change her strategy. It is therefore straightforward to define Nash 

Equilibrium in terms of best responses as  
 

Definition: A Nash Equilibrium of a strategic (normal) form game is a strategy profile 

𝒂∗ ∈ 𝑨 =×𝒊∈𝓝 𝑨𝒊 such that (𝒂𝒊
∗, 𝒂−𝒊

∗ ) ≽𝒊 (𝒂𝒊, 𝒂−𝒊
∗ ) for all 𝒂𝒊 ∈ 𝑨𝒊 and for all 𝒊 ∈ 𝓝. 

Alternatively, A Nash Equilibrium is a profile 𝒂∗ ∈ 𝑨 such that 𝒂𝒊
∗ ∈ 𝑩𝒊(𝒂−𝒊) ∀𝒊 ∈ 𝓝 

 

According to this definition, a Nash equilibrium contains one strategy for every 

player such that every strategy is a Best Response. Continuing the example with the 

“Prisoner’s Dilemma” game, we showed that player 1’s best response can be 

summarized as  

• if player 2 plays “Lie”, player 1’s best response is “Confess”, i.e., 𝑩𝟏(𝑳𝟐) = 𝑪𝟏 

• if player 2 plays “Confess”, player 1’s best response is “Confess”, i.e., 𝑩𝟏(𝑪𝟐) = 𝑪𝟏 

Due to the symmetry of the game, it is straightforward to confirm that player 2’s best 

response function can be summarized as  

• if player 1 plays “Lie”, player 2’s best response is “Confess”, i.e., 𝑩𝟐(𝑳𝟏) = 𝑪𝟐 

• if player 1 plays “Confess”, player 2’s best response is “Confess”, i.e., 𝑩𝟐(𝑪𝟏) = 𝑪𝟐 

Combining the best responses from above, there is only one set of strategies where 

each strategy is a best response to the other. Specifically, we have 

𝑩𝟏(𝑪𝟐) = 𝑪𝟏 

 

𝑩𝟐(𝑪𝟏) = 𝑪𝟐 

that is, both players choose “Confess”. Note, that when player 2 chooses “Confess” is 

best for player 1 to choose “Confess” and, moreover, when player 1 chooses “Confess” 

is best for player 2 to choose “Confess”. Therefore, the strategy profile {𝑪𝟏, 𝑪𝟐} is a 
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Nash Equilibrium of the Prisoner’s Dilemma game. As a counterexample, consider the 

combination of strategies below: 

𝑩𝟏(𝑳𝟐) = 𝑪𝟏 

 

𝑩𝟐(𝑪𝟏) = 𝑪𝟐 

where when player 2 chooses “Lie” is best for player 1 to choose “Confess” BUT when 

player 1 chooses “Confess” is best for player 2 to choose “Confess” and not “Lie”. 

Note again that, in general, this level of formality is not required when discussing 

Nash Equilibria in this class. We ought to do couple of things though when finding a 

Nash Equilibrium. First, a suggested Nash Equilibrium requires us to report that many 

strategies as the number of players. In the Prisoner’s dilemma example above two 

strategies must be reported. Second, we must explain (in words or using math) why 

the specific strategy profile is indeed a Nash Equilibrium.15  

An immediate implication of the definition of Nash Equilibrium as a collection of 

best responses is that no player wishes to do something different! If a player has 

chosen the best strategy for her (given the choices of the others) then she has no 

incentive to change her decision. This gives rise to an alternative way of identifying if 

a strategy profile is a Nash Equilibrium. We must check that specific strategy profile if 

a player wants to deviate from that state for fixed choices others (i.e., unilateral 

deviation). If, for that given profile, there is at least one player that wants to change 

her action the given profile CANNOT be a Nash Equilibrium. If, for that given profile, 

no player wants to change his action then the given profile is a Nash Equilibrium.  
 

Example 5: Consider the game described by the payoff matrix below. What is (are) the 

Nash Equilibrium (Equilibria) in pure strategies? Explain your answer. 

 
Here, we are going to find the NE using the best responses approach. We will 

not be formal in the way we describe the best responses (no math!) but we will be 

using underlines in the payoff matrix! First, we consider player 1.  We fix the strategy 

of player 2 to “Left.” Then it is best 

for player 1 to choose “Down”, 

since 5 is greater than 4 and 1, 

hence we underline the payoff of 

player 1 in the respective cell: 

 
15 In some cases, we must also explain why other strategy profiles Nash Equilibria are not. 
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Then we fix the strategy of player 2 

to “Center.” Then it is best for player 

1 to choose “Down”, since 2 is 

greater than 0 and 1, hence underline 

the payoff of player 1 in the 

respective cell: 

Finally, we fix the strategy of player 2 

to “Right.” Then it is best for player 1 

to choose “Up”, since 3 is greater 

than 0 and 1, hence underline the 

payoff of player 1 in the respective 

cell: 

Now, we consider player 2. We fix 

the strategy of player 1 to “Up.” 

Then it is best for player 2 to choose 

“Left”, since 4 is greater than 3 and 

2, hence underline the payoff of 

player 2 in the respective cell: 

Then, we fix the strategy of player 1 

to “Middle.” Then it is best for 

player 2 to choose “Left”, since 3 is 

greater than 0 and 1, hence 

underline the payoff of player 1 in 

the respective cell: 

Finally, we fix the strategy of player 1 

to “Down.” Then it is best for player 

2 to choose “Center”, since 3 is 

greater than 0 and 1, hence 

underline the payoff of player 1 in 

the respective cell: 

Putting everything together, the 

payoff matrix with “best 

responses” as underlines appears 

on the left. Note that only in the 

cell (Down, Center) both payoffs 

are underlined. Hence, the Nash Equilibrium is {“Down”, “Center”}. 

 

Note that when describing the equilibrium of the game presented in Example 5 

we do not use the payoffs (i.e., we do not write “the equilibrium is (2,1)”) but we 

specify the actions/strategies chosen by the players. This should be a rule for you: we 

describe the solution of the game by identifying what each player will do! 
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In Example 5 we used the best responses approach to identify the Nash 

Equilibrium of the game. In the same example we can also use the “no unilateral 

deviation” rule to find the Nash Equilibrium. Consider, for example, the encircled cell 

below that corresponds to the strategy profile {Up, Center}. Does player 1 have an 

incentive to unilaterally change 

her decision given the choice of 

player 2? Player 1 can only move 

along the vertical axis on this table 

(i.e., it can only change rows). 

Therefore, for her to move, a higher payoff than 1 is required. But if player 1 changes 

her choice to “Down” (and given player 2’s choice “Center”) her payoff will increase 

to 2. Therefore, player 1 wishes to unilaterally deviate and the strategy profile {Up, 

Center} is not a Nash Equilibrium. One must follow the same “checking” procedure for 

unilateral deviation to every one of the nine cells of example 5’s payoff matrix. This is 

left to the students as an exercise. However, we will confirm, using the no unilateral 

deviation rule that the strategy profile {Down, Center} is a Nash Equilibrium. Checking 

the options of player 1 we can confirm that moving away from {Down, Center} and 

going to either {Middle, Center} 

or {Up, Center} she will receive a 

lower payoff (0 or 1 instead of 2 

as shown on the table to the 

right). Therefore, player 1 does 

not want to unilaterally deviate. Similarly, checking the options of player 2 we can 

confirm that moving away from {Down, Center} and going to either {Down, Left} or 

{Down, Right} he 1 will receive a 

lower payoff (of 0 in either case 

instead of 1 as shown on the table 

to the left). Therefore, player 2 

doesn’t want to unilaterally 

deviate. Since no player has an incentive to unilaterally deviate, the strategy profile 

{Down, Center} is a NE. 

Which approach is better? There is no “rule” on what approach one should use 

to identify Nash Equilibria with the lowest possible effort. It all depends on the type 

of the problem and the experience one has by solving many different games. However, 

we can consider a few key facts: 

• For strategic form games described by a payoff matrix the best responses 

approach seems to be a little less tiring compared to the “no unilateral 

deviation” rule when the number of cells in the payoff matrix is large.  

• When in a game the preferences of players are appropriately described by 

differentiable objective functions (e.g., differentiable utility and/or profit 

functions) it is usually more convenient to use the best responses approach. 
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Be aware though that this approach, if not used with caution, might not lead 

to the identification of all Nash Equilibria (we will see that in an example that 

follows).  

• In games with a higher level of abstractness it is more common to use the 

“no unilateral deviation” rule to identify the Nash Equilibria (we will see a 

few examples that fall into this category). 

As we saw before, strategic form games cannot always be represented by a 

payoff matrix. Payoff matrices are convenient when the number of players is no 

greater than 3 (preferably only 2) and the players have a limited number of strategies 

to choose from. What if, as we have seen in Example 2, the players of the game have 

infinitely many actions/strategies to choose from?  

 

Example 6: Consider again a duopoly where firms produce an identical product (at zero 

per unit cost) and “simultaneously” choose quantities (i.e., competition à la Cournot). 

Let the inverse market demand be 𝒑 = 𝟏 − 𝒒𝟏 − 𝒒𝟐. 

 

Under the usual assumption that firms are profit maximizers, the optimization 

problem facing a firm 𝒊 ∈ {𝟏, 𝟐} in this duopoly setup is expressed by 

𝐦𝐚𝐱
𝒒𝒊 

{𝜫𝒊 = (𝟏 − 𝒒𝒊 − 𝒒−𝒊)𝒒𝒊} 

with first order condition of 

𝝏𝜫𝒊

𝝏𝒒𝒊 
= 𝟎

 
⇒ 𝟏 − 𝟐𝒒𝒊 − 𝒒−𝒊 = 𝟎

 
⇒𝒒𝒊 = 𝟎. 𝟓 − 𝟎. 𝟓𝒒−𝒊 

The above expression defines the best response function of firm 𝒊. Solving the reaction 

functions of the two firms as a system yields the strategy profile that is a Nash 

Equilibrium: 

𝒒𝟏
∗ = 𝒒𝟐

∗ = 𝟏/𝟑 

 Given the optimal quantities above one can easily confirm that the equilibrium price 

is 𝒑∗ = 𝟏/𝟑 and equilibrium profits are 𝜫𝒊
∗ = 𝟏/𝟗. 

 

Previously, we have found a distinct Nash Equilibrium in each example that we 

discussed. Does this hold true for all cases? Absolutely not, because there are certain 

games that do not have any Nash equilibrium at all, and there are also others that have 

multiple Nash equilibria. Determining whether a game possesses a Nash equilibrium 

is of great significance in many cases. There are several theorems about the existence 

of at least one Nash Equilibrium in different categories of strategic form games16 and, 

in general, existence did not seem to be an insurmountable obstacle. On the other 

hand, multiplicity of Nash Equilibria is a far more serious issue. If a particular strategy 

profile is a Nash Equilibrium, it means that no player has an incentive to unilaterally 

change their strategy. What Nash Equilibrium doesn't explain is how or why players 

 
16 Perhaps the most prominent existence theorem establishes that there is at least one Nash 
equilibrium in any strategic game with a finite number of players, each having a finite set of actions. 
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select their strategies. Of course, if there is only one Nash Equilibrium, we can rely on 

logical analysis and assume that common knowledge rationality suffices to explain 

how players choose their strategies. In cases, however, where there are several Nash 

Equilibria, relying solely on common knowledge rationality may not be enough to 

explain why one Nash Equilibrium prevails over another. Consequently, predictions 

about the outcome of the game may be entirely incorrect. Interestingly, in some 

situations with multiple Nash Equilibria, the outcome of the game could even be one 

that isn't a Nash Equilibrium (for example, the "Battle of the Sexes" game, as explained 

later). In what immediately follows, Example 7 is a game without a Nash Equilibrium 

and Example 8 shows a game with two Nash Equilibria. 

 

Example 7 (Matching the Pennies) Consider the game described by the payoff matrix 

below. It is straightforward to confirm, as shown on the payoff matrix with the 

underlying identifying best responses, that this game has no Nash Equilibrium in pure 

strategies. This seems to contradict a fundamental theorem in Game Theory (see 

footnote 13). However, as we will see later, this game has a Nash Equilibrium in mixed 

strategies. 

 

Example 8 (Battle of the Sexes) Consider the game described by the payoff matrix 

below. Just as an underlying story, accept that the players are Mary (player 1) and Peter 

(player 2), a couple that is crazy in love. In a specific evening, and while they have no 

way of communicating with each other, two major events are taking place in their city. 

Each knows that the other will be in one of the two events (but does not know which). 

They are not the same characters (opposites attract!) so Mary, a dynamic and athletic 

woman, prefers to attend a boxing match while Peter, a sensitive artist, prefer to listen 

to the Opera. However, they both prefer being together at any event to being alone. It 

is straightforward to confirm, as shown on the payoff matrix with the underlying 

identifying best responses, that this game has two Nash Equilibria in pure strategies, 

namely one where they both go the Boxing Match (i.e., 𝑵𝑬 = {Boxing, Boxing}) and 

the other where both go to the Opera (i.e., 𝑵𝑬 = {Opera, Opera}). The uncertainty in 

this scenario arises from the fact that there's no basis for choosing one Nash 

Equilibrium over the other. In other words, both Nash Equilibria are equally probable. 

For example, if Peter is more adaptable (and Mary is aware of this, and Peter is aware 

that Mary is aware of this, etc.), then it's more likely that Peter will give in and go to 
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the boxing match, where Mary is eagerly waiting for him. Conversely, if Peter is 

unresponsive (and Mary is aware of this, and Peter is aware that Mary is aware of this, 

etc.), then it's more likely that Mary will give in and go to the boxing match, where 

Peter is waiting for her! This situation may not seem concerning since, ultimately, the 

outcome is a Nash Equilibrium. The critical factor is determining who is more likely to 

compromise. One objection to this situation is that this information (regarding who is 

more likely to compromise) should be included in the payoffs. However, even if we 

accept the payoffs as they are, the issue persists. What if both individuals make 

incorrect assumptions about their partner's emotional state? What if they both 

compromise because they want to make the other happier? In such a scenario, Peter 

will attend the boxing match, and Mary will attend the opera (and both will feel very 

unhappy). This is a typical example of coordination failure (that we will discuss later). 
 

 There are two more factors to consider when it comes to Nash Equilibrium. 

Firstly, Nash Equilibria may be challenging to identify (sometimes they hide in … the 

corners; see Example 9 below). Secondly, Nash Equilibrium is a theoretical concept, 

and its ability to predict outcomes must be tested when possible. Researchers have 

conducted experiments demonstrating that in some cases, the theoretical predictions 

of Nash Equilibrium do not align with the actual outcomes (see Example 10 below). 

 
 

Example 9 Consider a Cournot triopoly where firms have zero marginal and zero fixed 

costs, and the inverse demand is described by 

𝒑 = {
𝑨 − 𝒒𝟏 − 𝒒𝟐 − 𝒒𝟑,          𝒊𝒇 ∑ 𝒒𝒊 < 𝑨

𝟑

𝒊=𝟏

 
 𝟎,                                                   𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

 

Under the usual assumption that firms are profit maximizers, the optimization 

problem facing a firm 𝒊 ∈ {𝟏, 𝟐, 𝟑} in this triopoly setup is expressed by 

𝐦𝐚𝐱
𝒒𝒊 

{𝜫𝒊 = (𝟏 − 𝒒𝒊 −∑ 𝒒𝒋
𝟑

𝒋≠𝒊
)𝒒𝒊} 

with first order condition of 

𝝏𝜫𝒊

𝝏𝒒𝒊 
= 𝟎

 
⇒𝟏 − 𝟐𝒒𝒊 −∑ 𝒒𝒋

𝟑

𝒋≠𝒊
= 𝟎

 
⇒𝒒𝒊 = 𝟎. 𝟓 − 𝟎. 𝟓∑ 𝒒𝒋

𝟑

𝒋≠𝒊
 

The above expression defines the best response function of firm 𝒊. Solving the reaction 

functions of the three firms as a system yields the strategy profile that is a Nash 

Equilibrium {𝒒𝟏
∗ , 𝒒𝟐

∗ , 𝒒𝟑
∗ } = {𝟏/𝟒, 𝟏/𝟒, 𝟏/𝟒}. Given the optimal quantities above one 

can easily confirm that the equilibrium price is 𝒑∗ = 𝟏/𝟒 and equilibrium profits are 

𝜫𝒊
∗ = 𝟏/𝟏𝟔. However, note that this is not a unique Nash Equilibrium. In fact, there 

are infinitely many Nash Equilibria in this game. A more careful reader will notice that, 

since the price zeros when total quantity in the market is no less than 𝑨, the reaction 

function of firm 𝒊 is actually given by 
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{
 
 

 
   𝒒𝒊 = 𝟎. 𝟓 − 𝟎. 𝟓∑ 𝒒𝒋

𝟑

𝒋≠𝒊
,      𝒊𝒇 ∑ 𝒒𝒌 < 𝑨

𝟑

𝒌=𝟏 
 

𝒒𝒊 ∈ [𝟎,∞)  ,                                      𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

 

It is then straightforward to verify that any strategy combination {𝒒𝟏
∗∗, 𝒒𝟐

∗∗, 𝒒𝟑
∗∗} where 

the sum of any two strategies is at least 𝑨 is also a Nash Equilibrium.17 

 

Example 10 Consider the following scenario describing the “Traveler’s Dilemma” 

game, as it was formulated by K. Basu (1994): An airline loses two identical suitcases 

belonging to two different travelers. Both suitcases contain identical antiques. The 

airline manager responsible for settling the claims of both travelers explains that the 

airline is only liable for a maximum of $100 per suitcase and is unable to determine 

the exact value of the antiques. To determine a fair appraised value of the antiques, 

the manager separates the travelers so that they cannot communicate with each 

other. He then instructs both travelers to write down the value of their antiques, 

which must be between $2 and $100. If both travelers write down the same value, the 

manager will consider that value as the true dollar value of both suitcases and 

reimburse both travelers that amount. However, if one traveler writes down a lower 

value than the other, the lower value will be considered as the true dollar value, and 

both travelers will receive that amount along with a bonus/malus: the traveler who 

wrote down the lower value will receive an additional $2, while the traveler who wrote 

down the higher amount will be charged a $2 deduction. What strategy should both 

travelers adopt to decide the value they should write down? 

It is easy to confirm that the game described above can be represented by the 

payoff matrix below and that this game has a unique Nash Equilibrium, namely one 

where both players 

claim just $2 each 

(highlighted in blue 

the best response of 

player 1 and 

highlighted in yellow 

the best responses of 

player 2)! However, in 

experiments 

conducted by various researchers, individuals were asked to play the “Traveler’s 

Dilemma” game. When they were facing a large bonus/malus parameter (i.e., the 

 
17 A reader who pays close attention will verify that in all these situations, the profit for each 

company is equal to zero. On the other hand, in the interior Nash Equilibrium where 𝒒𝟏
∗ =

𝒒𝟐
∗ = 𝒒𝟑

∗ = 𝟏/𝟒 the profits of each equal 𝟏/𝟏𝟔. It is possible to assert that the players’ 

rational behavior will lead them to select the only viable solution with a positive profit.  
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“penalty” if you claim higher amount than the other player was large, say $20) Nash 

Equilibrium was a relatively good predictor of the individuals’ behavior. When, 

however, they were facing a small bonus/malus parameter (i.e., the “penalty” if you 

claim higher amount than the other player was small, say $2 like in our example) most 

players tend to choose a value that is higher than the Nash equilibrium and closer to 

$100, thus making Nash Equilibrium a bad predictor of the individuals’ behavior. 

Coordination Failure 
Consider a scenario reminiscent of two drivers navigating toward each other on 

a narrow roadway. Each driver faces the critical decision of swerving either left or right 

to avoid a potential collision. If both drivers opt to swerve in the same direction (e.g., 

each driver swerves to her right) a collision can be averted, resulting in a preferable 

outcome for both parties. However, should they swerve in opposing directions, a 

collision becomes inevitable, leading to adverse consequences for both drivers. In this 

scenario, there exist two potential Nash equilibria: one where both drivers swerve left, 

and another where both swerve right. However, in the absence of effective 

communication or coordination between the drivers, the risk of swerving in conflicting 

directions looms, ultimately culminating in a collision and an unfavorable outcome for 

all involved parties. 

The scenario described above exemplifies a case of coordination failure, where 

players in a game encounter challenges in aligning their actions effectively, thus 

resulting in a suboptimal outcome for all participants. To discuss the concept of 

coordination failure we first describe Pareto efficiency (or Pareto optimality) as a 

situation (e.g., an allocation of resources) where the circumstances of an individual 

cannot be improved by moving to a different situation without making at least another 

individual worse off. 

So, what Is Coordination Failure then? We define coordination failure in terms 

of Pareto efficiency. Specifically, a coordination failure is a situation where the 

outcome of the interaction is not Pareto efficient. This happens when the objectives 

of the players are not aligned. In ascending order of objectives alignment, we have the 

following strategic situations: 

1. “Prisoner's dilemma” type of games 

The unique Nash equilibrium does not coincide with the Pareto Efficient 

outcome. As a result, non-cooperative players will never reach Pareto Efficiency. 
 

Example 11: Coordination failure in Prisoner’s Dilemma 

Consider again the typical “prisoner’s dilemma” presented in the table below for 

which we know that the unique Nash Equilibrium strategy profile is {Confess, Confess}. 

What can one tell 

about the outcome 

of the strategy 

profile {Lie, Lie} and 
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the possibility of moving to a different strategy profile? Specifically, if we move from 

the strategy profile {Lie, Lie}, where both prisoners receive a payoff of -1, to the 

strategy profile {Confess, Lie}, we improve the wellbeing of prisoner 1 (whose payoff 

becomes 0 instead of -1) but we hurt prisoner 2 (whose payoff becomes -9 instead of 

-1). Similarly, if we move from the strategy profile {Lie, Lie} to the strategy profile 

{Lie, Confess}, we improve the wellbeing of prisoner 2 (whose payoff becomes 0 

instead of -1) but we hurt prisoner 1 (whose payoff becomes -9 instead of -1). Finally, 

if we move from the strategy profile {Lie, Lie} to the strategy profile {Confess, Confess} 

we hurt both prisoners (whose payoffs become -6 instead of -1). In other words, 

examining whether there exists an alternative to the {Lie, Lie} strategy profile whose 

outcome clearly improves one prisoner's wellbeing while avoiding harm to the other, 

reveals that no such alternative exists. This implies that the strategy profile {Lie, Lie} is 

Pareto efficient. Working similarly and comparing any specific strategy profile against 

all alternative strategy profiles, we can confirm that the strategy profiles {Confess, Lie} 

and {Lie, Confess} also are Pareto efficient.  

On the other hand, the strategy profile {Confess, Confess}, where each 

prisoner receives a payoff of -6, is not Pareto efficient since if we move to the strategy 

profile {Lie, Lie}, where each prisoner receives a payoff of -2, we improve the 

wellbeing of both prisoners. In other words, examining whether there exists an 

alternative to the {Confess, Confess} strategy profile whose outcome clearly improves 

one prisoner's wellbeing while avoiding harm to the other, reveals that such 

alternative exists: it is the strategy profile {Lie, Lie} is a Pareto improvement to the 

strategy profile {Confess, Confess}, hence the latter is not Pareto efficient. 

What is the outcome of this game? As we know the Nash Equilibrium of the 

prisoner’s dilemma game is unique. This allows us to assume with confidence that the 

outcome of the game will be the NE strategy profile {Confess, Confess}. However, this 

outcome is not Pareto efficient, hence there is the problem of coordination failure in 

the prisoner’s dilemma game. 
     

Note that the prisoner’s dilemma game has three strategy profiles that are 

Pareto efficient but, in general, they are not interpersonally comparable. Prisoner 1’s 

most and least preferred outcomes are the ones resulting from the strategy profiles 

{Confess, Lie} and {Lie, Confess}, correspondingly. On the other hand, the order of 

preferences for prisoner 2 is the reverse: most and least preferred outcomes are the 

ones resulting from the strategy profiles {Lie, Confess} and {Confess, Lie}, 

correspondingly. Can we find a means to evaluate and contrast the three Pareto 

efficient outcomes? One common approach is to examine the payoffs or well-being 

levels associated with each outcome. By comparing the numerical values of these 

payoffs, we can determine which outcome provides a higher level of overall wellbeing 

or utility. Additionally, we can analyze the distribution of payoffs between the 

individuals involved to assess the fairness or equity of each outcome. Other factors, 

such as the preferences or priorities of the individuals, could also be taken into 
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consideration when comparing the three outcomes. Ultimately, the specific method of 

comparison may depend on the context and the criteria used to evaluate wellbeing or 

utility. We are not going to examine these approaches here. 

Most importantly, in prisoner's dilemma type of games, coordination failure is 

inevitable as individual interests clash with the Pareto Efficient allocation, resulting in 

a collectively unfavorable outcome despite rational behavior on an individual level. In 

such scenarios, coordination can be attained by implementing mechanisms that 

enforce cooperation and discourage players from straying from the Pareto Efficient 

outcome. This concept echoes the strategies employed by Cartels. Such mechanisms 

may involve repetitive gameplay or adjustments to payoffs to transform the Pareto 

Efficient outcome into a Nash Equilibrium, albeit altering the game's fundamental 

nature away from a prisoner's dilemma. 

 

2. “Battle of sexes” type of games 

There are multiple Nash Equilibria, and they are all Pareto efficient. However, 

none of them Pareto dominates the others: different players prefer different Nash 

equilibria. As a result, non-cooperative players might choose actions that constitute a 

strategy profile that it is not a Nash equilibrium (so, not Pareto efficient either). 
 

Example 12: Coordination failure in Battle of sexes 

Consider again the typical “battle of sexes” game presented in the table below for 

which we know that it has two Nash Equilibria in pure strategies, namely one where 

they both go the Boxing Match (i.e., NE = {Boxing, Boxing}) and the other where 

both go to the Opera (i.e., NE = {Opera, Opera}). What can one tell about the 

outcome of the strategy profile {Opera, Opera} and the possibility of moving to a 

different strategy profile? If we move from the strategy profile {Opera, Opera}, where 

players 1 and 2 receive a payoff of 1 and 2, respectively, to the strategy profile 

{Boxing, Boxing}, we improve the wellbeing of player 1 (whose payoff becomes 2 

instead of 1) but we hurt player 2 (whose payoff becomes 1 instead of 2). Furthermore, 

if we move from the strategy profile {Opera, Opera} to the strategy profile 

{Opera, Boxing} or the {Boxing, Opera}, both players become worse off by receiving a 

payoff of zero. In other words, examining whether there exists an alternative to the 

{Opera, Opera} strategy profile whose outcome clearly improves one prisoner's 

wellbeing while avoiding harm to the other, reveals that no such alternative exists. This 

implies that the strategy profile {Opera, Opera} is Pareto efficient. Working similarly 

and comparing any specific strategy profile against all alternative strategy profiles, we 

can confirm that the strategy profile {Boxing, Boxing} also is Pareto efficient. On the 
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other hand, the strategy profiles {Opera, Boxing} and {Boxing, Opera} are not Pareto 

efficient, as one can easily confirm that any Nash equilibrium in this game is Pareto 

superior (i.e., improves the wellbeing of both players) to these strategy profiles. 
   

Coordination failure is a common challenge in battle-of-the-sexes types of 

games due to strategic uncertainty, where players face the risk of selecting conflicting 

strategies—like one choosing A while the other opts for B. In these games, players 

often have preferences for different Nash equilibria as there's no clear Pareto 

Dominance, leading to uncertainty about the final outcome. Each pure Nash 

Equilibrium can be perceived as somewhat "unfair" in layman’s terms, as it will be the 

most preferred by some but not by all players! 

To address these inefficiencies, one potential solution is to explore correlated 

equilibrium. In a correlated equilibrium, players receive signals or guidance that 

influence their strategy choices, fostering better coordination and potentially yielding 

more favorable outcomes for all players involved. However, we won’t be discussing 

this equilibrium concept further. 

 

3. Pure coordination games 

There are multiple Nash Equilibria, but only one is Pareto efficient. Despite the 

multiplicity of Nash equilibria, players’ objectives are perfectly aligned. As a result, all 

players will, almost certainly, end up choosing their strategy that corresponds to the 

Nash equilibrium that Pareto dominates18 all other Nash equilibria.  

It may seem that coordination failure isn't a significant concern in such games, 

but is that really the case? While payoff dominance plays a significant role in such 

games, it's not the sole determinant. Consider this scenario: you're a participant in a 

game where one specific Nash Equilibrium clearly outshines all others in terms of 

Pareto dominance. Consequently, you opt for a strategy aligned with the outcome 

associated with that particular Nash Equilibrium, expecting rational players to do the 

same. However, even if you're fully confident that your opponents are rational, there's 

always a slight chance that someone might make an error and select a different 

strategy than the one consistent with the specific Nash Equilibrium. This risk should 

be factored in when comparing Nash Equilibria. 

Thus, alongside the notion of Pareto dominance, the concept of risk dominance 

emerges as a means of evaluating different Nash Equilibria. Risk dominance evaluates 

equilibria based on their risk levels, considering the uncertainty surrounding 

opponents' actions. An equilibrium is deemed risk-dominant if it entails less risk 

compared to all other Nash Equilibria in the game. To gauge and compare risks across 

different Nash Equilibria, one must calculate the product of deviation losses. The 

higher the product of deviation losses is, the more likely that the player will be 

 
18 A Nash Equilibrium where each player obtains a payoff higher than what they receive in another Nash 
Equilibrium is referred to as Pareto dominant over that other Nash Equilibrium. 
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“careful” when choosing and the less likely to make a mistake, hence the risk is 

reduced. Examples 13 and 14 provided subsequently will elucidate this concept 

further. 

 

Example 13 

Two firms produce complementary products. However, for the products to be used 

together there must be technologically compatible. Before launching the products in 

the market, the two firms simultaneously choose one of two available technologies, A 

or B. If the technologies are incompatible, both products will fail and the firms will 

make no profits. Conversely, if the technologies are compatible, profits will be 

generated. Nevertheless, both firms receive higher profits when technology A is 

chosen. The payoff matrix is presented below where the best responses are indicated 

by underlines. It is straightforward to 

confirm that this game possesses two Nash 

Equilibria, namely, 𝑵.𝑬.𝟏= {𝑨𝟏; 𝑨𝟐} and 

𝑵.𝑬.𝟐= {𝑩𝟏; 𝑩𝟐}. That is, in equilibrium we 

are expecting the two firms to choose the 

same technology. Why is there a possibility 

for coordination failure? As there are multiple (two) Nash Equilibria there is always a 

chance that firm 1, for example, will choose technology A (expecting that firm 2 will 

do the same) while firm 2 will choose technology B (expecting, of course, that firm 1 

will choose technology B). The possibility of this happening can be evaluated by 

checking for (a) Pareto Dominance, and (b) Risk Dominance. 

(a) Note that both firms are getting higher profits should 𝑵.𝑬.𝟏 becomes the final 

outcome of the game. Specifically, firm 1 earns a profit of €𝟏𝟎 under 𝑵.𝑬.𝟏 

instead of a profit of €𝟔 under 𝑵.𝑬.𝟐. Similarly, firm 2 earns a profit of €𝟖 

under 𝑵.𝑬.𝟏 instead of a profit of €𝟓 under 𝑵.𝑬.𝟐. Therefore, 𝑵. 𝑬.𝟏 Pareto 

dominates 𝑵.𝑬.𝟐.  

(b) To analyze risk dominance, we need to consider the potential losses a firm 

might incur when erroneously deviates from a specific Nash Equilibrium while 

the other firm selects an action aligned with that equilibrium. For instance, let's 

take Nash Equilibrium 1 where both firms are expected to choose technology 

A, and suppose firm 2 correctly selects 𝑨𝟐. If firm 1 mistakenly chooses 𝑩𝟏 

instead of 𝑨𝟏, the game's outcome will be {𝑩𝟏; 𝑨𝟐}, resulting in firm 1 receiving 

€𝟎 instead of the anticipated €𝟏𝟎. This translates to a loss of (𝟏𝟎 –  𝟎)  =  𝟏𝟎 

for firm 1 due to this error. Similarly, assuming firm 1 correctly selects 𝑨𝟏, if 

firm 2 erroneously chooses 𝑩𝟐 instead of 𝑨𝟐, the game's outcome will be 

{𝑨𝟏; 𝑩𝟐}, causing firm 2 to receive €𝟎 instead of the expected €𝟖. 

Consequently, firm 2 experiences a loss of (𝟖 –  𝟎)  =  𝟖 due to this mistake. 

Therefore, the combined loss resulting from deviations for Nash Equilibrium 1 

(i.e., the product of deviation losses) is 𝟏𝟎 ×  𝟖 =  𝟖𝟎. 
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Now, let's turn our attention to Nash Equilibrium 2 where both firms are 

expected to choose technology B. If firm 2 correctly chooses 𝑩𝟐, but firm 1 

mistakenly chooses 𝑨𝟏  instead of 𝑩𝟏, the outcome will be {𝑨𝟏; 𝑩𝟐}, resulting 

in firm 1 receiving €𝟎 instead of the anticipated €𝟔. This leads to a loss of 

(𝟔 –  𝟎)  =  𝟔 for firm 1 due to this error. Similarly, assuming firm 1 correctly 

selects 𝑩𝟏, if firm 2 erroneously chooses 𝑨𝟐 instead of 𝑩𝟐, the outcome will be 

{𝑩𝟏; 𝑨𝟐}, causing firm 2 to receive €𝟎 instead of the expected €𝟓. 

Consequently, firm 2 experiences a loss of (𝟓 –  𝟎)  = 𝟓 due to this mistake. 

Therefore, the combined loss resulting from deviations for Nash Equilibrium 2 

is 𝟔 ×  𝟓 =  𝟑𝟎.  

Clearly, the combined loss resulting from deviations for Nash Equilibrium 1 

exceeds that of Nash Equilibrium 2 (i.e., 80 versus 30), indicating that the two 

firms stand to lose more (and thus will be more cautious) if something goes 

wrong with Nash Equilibrium 1. In other words, Nash Equilibrium 1 exhibits risk 

dominance over Nash Equilibrium 2. 
 

Example 13 is a typical example of pure coordination games where the possibility 

of coordination failure is slim. This is since one and the same Nash Equilibrium both 

Pareto and Risk dominates the other Nash Equilibrium. Example 14 that follows 

presents a slightly different picture with one Nash Equilibrium being Pareto Dominant 

and the other Nash Equilibrium being Risk Dominant. Consequently, in that case the 

likelihood of coordination failure becomes more pronounced. 

 

Example 14: (assurance or stag-hunt game) 

Now consider a slight modification in the previous game. Two firms produce 

complementary products. However, for the products to be used together they must 

be technologically compatible. Firms choose (simultaneously) to introduce a new 

technology A or to stick with the traditional technology B prior to introducing the 

product in the market. If technologies do not match the product that adopts the new 

tech fails while the other earns some profit. If technologies match, profits are earned. 

However, both firms receive higher profits 

when new technology A is chosen. The 

payoff matrix is presented to the left where 

the best responses are indicated by 

underlines. It is again straightforward to 

confirm that this game possesses two Nash 

Equilibria, namely, 𝑵.𝑬.𝟏= {𝑨𝟏; 𝑨𝟐} and 𝑵.𝑬.𝟐= {𝑩𝟏; 𝑩𝟐}. We will be checking again 

for (a) Pareto Dominance, and (b) Risk Dominance. 

(a) Note that both firms are getting higher profits should 𝑵.𝑬.𝟏 becomes the final 

outcome of the game. Specifically, firm 1 earns a profit of €𝟏𝟎 under 𝑵.𝑬.𝟏 

instead of a profit of €𝟔 under 𝑵.𝑬.𝟐. Similarly, firm 2 earns a profit of €𝟖 
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under 𝑵.𝑬.𝟏 instead of a profit of €𝟓 under 𝑵.𝑬.𝟐. Therefore, 𝑵. 𝑬.𝟏 Pareto 

dominates 𝑵.𝑬.𝟐.  

(b) First, consider Nash Equilibrium 1 where both firms are expected to choose 

technology A, and suppose firm 2 correctly selects 𝑨𝟐. If firm 1 mistakenly 

chooses 𝑩𝟏 instead of 𝑨𝟏, the game's outcome will be {𝑩𝟏; 𝑨𝟐}, resulting in 

firm 1 receiving €𝟓 instead of the anticipated €𝟏𝟎. This translates to a loss of 

(𝟏𝟎 –  𝟓)  =  𝟓 for firm 1 due to this error. Similarly, assuming firm 1 correctly 

selects 𝑨𝟏, if firm 2 erroneously chooses 𝑩𝟐 instead of 𝑨𝟐, the game's outcome 

will be {𝑨𝟏; 𝑩𝟐}, causing firm 2 to receive €𝟒 instead of the expected €𝟖. 

Consequently, firm 2 experiences a loss of (𝟖 –  𝟒)  =  𝟒 due to this mistake. 

Therefore, the combined loss resulting from deviations for Nash Equilibrium 1 

(i.e., the product of deviation losses) is 𝟓 ×  𝟒 =  𝟐𝟎. 

Now, let's turn our attention to Nash Equilibrium 2 where both firms are 

expected to choose technology B. If firm 2 correctly chooses 𝑩𝟐, but firm 1 

mistakenly chooses 𝑨𝟏  instead of 𝑩𝟏, the outcome will be {𝑨𝟏; 𝑩𝟐}, resulting 

in firm 1 receiving €𝟎 instead of the anticipated €𝟔. This leads to a loss of 

(𝟔 –  𝟎)  =  𝟔 for firm 1 due to this error. Similarly, assuming firm 1 correctly 

selects 𝑩𝟏, if firm 2 erroneously chooses 𝑨𝟐 instead of 𝑩𝟐, the outcome will be 

{𝑩𝟏; 𝑨𝟐}, causing firm 2 to receive €𝟎 instead of the expected €𝟓. 

Consequently, firm 2 experiences a loss of (𝟓 –  𝟎)  = 𝟓 due to this mistake. 

Therefore, the combined loss resulting from deviations for Nash Equilibrium 2 

is 𝟔 ×  𝟓 =  𝟑𝟎.  

Clearly, the combined loss resulting from deviations for Nash Equilibrium 2 

exceeds that of Nash Equilibrium 1 (i.e., 30 versus 20), indicating that the two 

firms stand to lose more (and thus will be more cautious) if something goes 

wrong with Nash Equilibrium 2. In other words, Nash Equilibrium 2 exhibits risk 

dominance over Nash Equilibrium 1. 

 

Mixed Strategies 
In numerous strategic scenarios, players typically opt for singular actions from a 

predefined set of options, a concept known as pure strategies. However, there arise 

situations where a player might find it advantageous to introduce an element of 

randomness into their decision-making process, particularly in scenarios where 

players face uncertainty or lack perfect information about their opponents' actions. 

When a player decides to distribute their choices probabilistically across available 

actions, they engage in what is termed a mixed strategy, contrasting with the certainty 

of a pure strategy. 

In essence, while pure strategies entail players committing to specific actions 

with certainty, mixed strategies introduce a degree of unpredictability by allowing 

players to assign probabilities to their potential actions. This introduces a layer of 
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complexity and strategic flexibility, as players strategically allocate probabilities to 

various actions, considering both their own preferences and their anticipation of 

opponents' moves. 

By embracing mixed strategies, players can navigate strategic landscapes with 

greater versatility, strategically blending certainty and uncertainty to optimize their 

outcomes. This paradigm shift from pure to mixed strategies not only enriches the 

strategic depth of games but also mirrors real-world decision-making scenarios where 

uncertainty and adaptability play crucial roles. Through an exploration of mixed 

strategies, we unravel the intricate dynamics of strategic decision-making under 

uncertainty, offering insights into how players can strategically leverage probabilistic 

approaches to achieve their objectives. 
 

Definition 

• A mixed strategy for player 𝒊 is a probability distribution over her set of 𝒎 available 

actions 𝑨𝒊 = (𝒂𝒊,𝟏, 𝒂𝒊,𝟐, … , 𝒂𝒊,𝒎). In other words, a mixed strategy is an 𝑚-

dimensional vector 𝝈𝒊 = (𝒑𝒊,𝟏 𝒂𝒊,𝟏, 𝒑𝒊,𝟐𝒂𝒊,𝟐, … 𝒑𝒊,𝒎𝒂𝒊,𝒎) such that for all 𝒊 ∈ 𝑵 and 

for all 𝒌 = 𝟏, 𝟐,…𝒎, we have 𝒑𝒊,𝒌 ≥  𝟎 and ∑ 𝒑𝒊,𝒌 = 𝟏
𝒎
𝒌=𝟏 . 

 

To better understand the concept of mixed strategies, consider a player in a 

game having to choose between three actions, namely 𝒂𝟏, 𝒂𝟐, and 𝒂𝟑. She can, of 

course, choose to play 𝒂𝟏, which is a pure strategy19. However, the player can also 

choose a strategy according to a simple rule that involves the roll of a dice: if 1, 2, or 

3 appears after rolling the dice the player will play 𝒂𝟏, if 4 or 5 appears after rolling 

the dice she will play 𝒂𝟐, and if 6 appears after rolling the dice she will play 𝒂𝟑. 

Therefore, before rolling the dice the probabilities of choosing a specific action are 1/2 

for 𝒂𝟏, 1/3 for 𝒂𝟐, and 1/6 for 𝒂𝟑. Of course, there are infinitely many ways to assign 

probabilities over her three available actions. The only constraints are that 

probabilities must be non-negative and that they must add up to unit. 

But why should a person involved in a situation of strategic interdependencies 

opt for a mixed instead of a pure strategy? One of the reasons is that the use of mixed 

strategies adds an element of unpredictability and strategic complexity, which can be 

advantageous in competitive environments where opponents are trying to anticipate 

and counter each other's moves. Consider the following examples: 

• Bluffing in Poker: In poker, a player might choose a mixed strategy of betting 

aggressively with strong hands and bluffing with weaker hands. By mixing 

these strategies, the player makes it difficult for opponents to predict their 

actions, potentially leading to higher gains. 

• Sports Strategies: In sports like football, players might adopt mixed strategies 

when taking penalty shots. For instance, a football player might vary the 

 
19 Any pure strategy is also a (degenerated) mixed strategy where a probability of zero is assigned to 
all but one actions and a probability of one is assigned on the remaining action. 
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direction of his penalty shots randomly between left and right, making it 

harder for the goalkeeper to anticipate the shot's trajectory. 

• Economic Competition: In competitive markets, companies might choose 

mixed pricing strategies, where they randomly adjust prices within a range to 

prevent competitors from easily predicting their pricing moves. This can help 

maintain market share and prevent competitors from undercutting prices. 

• Military Tactics: In warfare, commanders may use mixed strategies to confuse 

and outmaneuver opponents. For example, a military unit might alternate 

between attacking head-on and using guerrilla tactics to keep the enemy off 

balance. 

• Political Negotiations: In diplomatic negotiations, politicians might employ 

mixed strategies to negotiate more effectively. They may alternate between 

taking hardline stances and making concessions to gain leverage and achieve 

their objectives. 

Given that we can now include in our discussion mixed strategies we redefine 

the concept of Nash Equilibrium, accordingly.  
 

Definition 

• A strategy profile 𝝈∗ = (𝝈𝟏
∗ , 𝝈𝟐

∗ , … , 𝝈𝒏
∗ ) is a Mixed Strategy Nash Equilibrium20 

(MSNE) if for every player 𝒊 ∈ 𝑵 and all strategies 𝝈𝒊
′ ≠ 𝝈𝒊

∗ we have 
 

𝒖𝒊(𝝈𝒊
∗, 𝝈−𝒊

∗ ) ≥ 𝒖𝒊(𝝈𝒊
′, 𝝈−𝒊

∗ ) 

 

Essentially, as probabilities are involved in the way the game is played, players 

select strategies aiming to maximize their expected payoffs. Therefore, our objective 

is to set up the expected payoffs for both players and let each to select a mixed 

strategy that maximizes their respective expected payoff. As demonstrated in Example 

15, this process demands some effort. Nonetheless, as illustrated in the same 

example, there exists a shortcut for identifying the Mixed Strategy Nash Equilibrium 

(MSNE) in such games. 

 

Example 15: (the penalty-kick game) 

A goalkeeper prepares to defend against a penalty shot from the striker of the 

rival team, who has the option to shoot left or right. The 

goalkeeper has the choice to dive to the left or right. To 

prevent any ambiguity regarding the directions above 

referenced as 'right' and 'left,' please refer to the 

accompanying image on the right side. The scenario 

assumes that if the goalkeeper dives in the opposite direction of the striker’s shot, the 

ball will always score. However, if the goalkeeper correctly anticipates the striker’s shot 

 
20 Note that, according to the definition of mixed strategies and the concept of MSNE, any Nash 
Equilibrium in pure strategies is also a MSNE but not vice versa. 
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direction, he will save the shot. According to the success/failure rates mentioned, the 

payoff matrix is presented to the left. By 

now, you should be able to confirm that this 

game has no Nash Equilibrium in which each 

player chooses a pure strategy. But what if 

we allow the players to choose mixed strategies? Assume that the striker chooses right 

with probability 𝒑 (and thus, left with probability (𝟏 − 𝒑)) and the goalie chooses right 

with probability 𝒒 (and thus, left with probability (𝟏 − 𝒒)). To better incorporate the 

impact of randomization on 

determining a MSNE, the payoff 

matrix of the game is modified, as 

seen to the right, to reflect the 

probabilistic choices made by each 

player. 

Calculating the players’ expected payoffs requires identifying the likelihood of 

each potential outcome. If the probabilities 𝒑 and 𝒒 are independent, the likelihood 

of any of the four potential outcomes happening can be determined by multiplying the 

probabilities assigned by each player to a specific action. For instance, the likelihood 

that the striker shoots to the right and the goalie dives in the same direction is 𝒑𝒒. 

Likewise, the chance that the striker shoots to the right while the goalie dives in the 

opposite direction is 𝒑(𝟏 − 𝒒). Similarly, the probability that the striker shoots to the 

left while the goalie dives to the right is (𝟏 − 𝒑)𝒒. Lastly, the probability that the striker 

shoots to the left and the goalie dives in the same direction is (𝟏 − 𝒑)(𝟏 − 𝒒). Given 

these, the expected payoff of the striker is given by21 
 

𝑬𝑼𝑺 = 𝒑𝒒 × 𝟎 + 𝒑(𝟏 − 𝒒) × 𝟏 + (𝟏 − 𝒑)𝒒 × 𝟏 + (𝟏 − 𝒑)(𝟏 − 𝒒) × 𝟎 
 
⇒ 

 

𝑬𝑼𝑺 = 𝒑(𝟏 − 𝒒) + (𝟏 − 𝒑)𝒒 
 
⇒  𝑬𝑼𝑺 = 𝒑 + 𝒒 − 𝟐𝒑𝒒 

Therefore, the striker must choose his probability distribution (i.e., 𝒑 and (𝟏 − 𝒑)) 

over his actions “left” and “right” so that the above expression is maximized. Formally, 

this process can be expressed as 

𝐦𝐚𝐱
𝟎≤𝒑≤𝟏

{𝑬𝑼𝑺 = 𝒑 + 𝒒 − 𝟐𝒑𝒒} 

 

Note, however, that the expected payoff of the striker depends linearly on 

probability 𝒑. This suggests that depending on whether the first derivative of the 

expected payoff with respect to 𝒑 is positive or negative, the optimal probability 𝒑 

could either be 1 or 0, respectively (or, in an extreme scenario, any value between 0 

and 1 inclusive). It is easy to confirm that the first derivative of the 𝑬𝑼𝑺 is 

 
21 Working on a similar manner you can confirm that the expected payoff of the goalie 

is  𝑬𝑼𝑮 = 𝟏 − 𝒑 − 𝒒 + 𝟐𝒑𝒒. 
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𝝏𝑬𝑼𝑺
𝝏𝒑

= 𝟏 − 𝟐𝒒 

so that this derivative is positive if 𝒒 < 𝟏/𝟐, negative if 𝒒 > 𝟏/𝟐, and zero if 𝒒 = 𝟏/𝟐. 

Put simply, if increasing the probability 𝒑 results in a higher expected payoff for the 

striker (i.e., 𝒒 < 𝟏/𝟐), then the striker should opt for the maximum possible value of 

𝒑, i.e., 𝒑 = 𝟏. On the other hand, if increasing the probability 𝒑 results in a lower 

expected payoff for the striker (i.e., 𝒒 > 𝟏/𝟐), then the striker should opt for the 

minimum possible value of 𝒑, i.e., 𝒑 = 𝟎. In the event the probability is such that the 

first derivative of the expected payoff with respect to 𝒑 is zero (i.e., 𝒒 = 𝟏/𝟐), the 

striker will be indifferent between any value of 𝒑, i.e., 𝒑 ∈ [𝟎, 𝟏]. Did you notice what 

have we just described? The above is a full description of the striker’s best response! 

Formally, the best response of the striker is described by 

𝒑∗ =

{
 
 

 
 
𝟏,  if 𝒒 < 𝟏/𝟐

 
𝒑 ∈ [𝟎, 𝟏],   if 

 

𝟎,  if 𝒒 > 𝟏/𝟐

𝒒 = 𝟏/𝟐 

 

Working similarly, one can confirm that the best response of the goalie is given 

by  

𝒒∗ =

{
 
 

 
 
𝟏,  if 𝒑 > 𝟏/𝟐

 
𝒒 ∈ [𝟎, 𝟏],   if 

 

𝟎,  if 𝒑 < 𝟏/𝟐

𝒑 = 𝟏/𝟐 

 

In equilibrium (in mixed strategies), it must be that both best responses are 

satisfied. Can it be that in an equilibrium 𝒑∗ = 𝟏? No, because since 𝒑∗ = 𝟏 > 𝟏/𝟐, 

the best response of the goalie will be to choose 𝒒∗ = 𝟏. But given that 𝒒∗ = 𝟏 > 𝟏/𝟐, 

the striker’s best response is 𝒑∗ = 𝟎 and not 𝒑∗ = 𝟏. Working similarly, we can exclude 

the case where being in an 𝒑∗ = 𝟎 equilibrium. It is left to see that in a MSNE the 

Striker will be indifferent between any of his actions and so does the goalie. But for 

this to be realized it must be that the goalie chooses 𝒒∗ = 𝟏/𝟐 and the striker chooses 

𝒑∗ = 𝟏/𝟐. Hence, the MSNE of this game is  

MSNE = {𝒑∗𝑹𝑺(𝟏 − 𝒑
∗)𝑳𝑺; 𝒒

∗𝑹𝑮(𝟏 − 𝒒
∗)𝑳𝑮} = {

𝟏

𝟐
𝑹𝑺
𝟏

𝟐
𝑳𝑺;

𝟏

𝟐
𝑹𝑮

𝟏

𝟐
𝑳𝑮} 

 

All this looks like an awful long process to identify a MSNE. Fortunately, as shown 

in Example 16 that follows, there is a much easier way to do it. It turns out this game’s 

MSNE occurs when (1) the striker’s optimal probability 𝒑 is such that goalkeeper is 

indifferent between choosing Left or Right (i.e., the goalie’s expected payoff from 

choosing Left equals her expected payoff from choosing Right), and (2) the goalie’s 

optimal probability 𝒒 is such that the striker is indifferent between choosing Left or 



Filippiadis Lefteris Game Theory UoM, Dpt. Of Economics 
 

 

35 

Right (i.e., the striker’s expected payoff from choosing Left equals his expected payoff 

from choosing Right).22  
 

Example 16: (the penalty-kick game revisited) 

Taking requirements (1) and (2) stated above into account we can find the MSNE 

of the game presented in Example 15 using a different approach. First, we calculate 

the expected payoff of the striker should he choose to shoot Right, and his expected 

payoff should he choose to shoot 

Left. In case he chooses Right he 

receives either 0 (if the goalie 

chooses Right – with probability 𝒒) or 

1 (if the goalie chooses Left – with 

probability (𝟏 − 𝒒)). Therefore, his 

expected payoff from choosing Right depends on the probability the goalie dives to 

the right: 

𝑬𝑼𝑺(𝒒|𝑹𝑺) = 𝒒 × 𝟎 + (𝟏 − 𝒒) × 𝟏 = 𝟏 − 𝒒 

Similarly, in case the striker chooses Left he receives either 1 (if the goalie chooses 

Right – with probability 𝒒) or 0 (if the goalie chooses Left – with probability (𝟏 − 𝒒)). 

Therefore, his expected payoff from choosing Right depends on the probability the 

goalie dives to the right: 

𝑬𝑼𝑺(𝒒|𝑳𝑺) = 𝒒 × 𝟏 + (𝟏 − 𝒒) × 𝟎 = 𝒒 

The striker will be indifferent between Right or Left if the two expected payoffs we 

calculated above are equal, that is 

𝑬𝑼𝑺(𝒒|𝑹𝑺) = 𝑬𝑼𝑺(𝒒|𝑳𝑺)
 
⇒  𝟏 − 𝒒 = 𝒒 

 
⇒ 𝒒∗ = 𝟏/𝟐 

Note that this is indeed the optimal probability distribution for the goalie we found 

using the long way! Clearly, due to symmetry of the game we can find that the 

probability distribution chosen by the striker that makes the goalie indifferent is 

characterized by 𝒑∗ = 𝟏/𝟐. Hence, clearly,  

MSNE = {𝒑∗𝑹𝑺(𝟏 − 𝒑
∗)𝑳𝑺; 𝒒

∗𝑹𝑮(𝟏 − 𝒒
∗)𝑳𝑮} = {

𝟏

𝟐
𝑹𝑺
𝟏

𝟐
𝑳𝑺;

𝟏

𝟐
𝑹𝑮

𝟏

𝟐
𝑳𝑮} 

 

What are the expected payoffs of the two players out of this game? Having found the 

optimal probability distributions of the two players we can now identify the likelihood 

of each potential outcome. Since each player chooses either of his actions with 

probability (𝟏/𝟐), each outcome will arrive with probability (𝟏/𝟐) × (𝟏/𝟐) = (𝟏/𝟒). 

Therefore, the striker’s expected payoff will be23  

𝑬𝑼𝑺(𝒑
∗, 𝒒∗) = 𝟎, 𝟐𝟓 × 𝟎 + 𝟎, 𝟐𝟓 × 𝟏 + 𝟎, 𝟐𝟓 × 𝟎 + 𝟎, 𝟐𝟓 × 𝟏 = 𝟎, 𝟓24 

 
22 Once again, make clear that neither player wants to make the other player indifferent. Each player is 
maximizing his expected payoff. However, the optimal choice of a player (i.e., the optimal probability 
distribution over his actions) happens to make the other player indifferent. 
23 By the symmetry of the game, the goalie’s expected payoff will be the same. 
24 Alternatively, one can get the same result by plugging 𝒒∗ = 𝟎, 𝟓 in 𝑬𝑼𝑺(𝒒|𝑳𝑺). 
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The approach we have used to identify a MSNE in Example 16 can be proven to 

be valid for all cases. Example 17 that follows (the assurance game of Example 14) uses 

the exact same method for finding the MSNE. 

 

Example 17: (The stag-hunt game and mixed strategies) 

Two firms produce complementary products. However, for the products to be 

used together they must be technologically compatible. Firms choose (simultaneously) 

to introduce a new technology A or to stick with the traditional technology B prior to 

introducing the product in the market. If technologies do not match the product that 

adopts the new tech fails while the other 

earns some profit. If technologies match, 

profits are earned. However, both firms 

receive higher profits when new 

technology A is chosen. Allowing the two 

firms to randomize over their actions, the payoff matrix, along with the probability 

distributions, is presented to the left. 

First, we consider Firm 1. In case Firm 1 chooses 𝑨𝟏 its profits will either be 10 

(if the Firm 2 chooses 𝑨𝟐 – with probability 𝒒) or 0 (if the Firm 2 chooses 𝑩𝟐 – with 

probability (𝟏 − 𝒒)). Therefore, his expected payoff from choosing 𝑨𝟏 depends on the 

probability Firm 2 assigns to developing technology 𝑨𝟐: 

𝑬𝑼𝟏(𝒒|𝑨𝟏) = 𝒒 × 𝟏𝟎 + (𝟏 − 𝒒) × 𝟎 = 𝟏𝟎𝒒 
 

Similarly, Firm 1 chooses 𝑩𝟏 its profits will either be 5 (if the Firm 2 chooses 𝑨𝟐 – with 

probability 𝒒) or 6 (if the Firm 2 chooses 𝑩𝟐 – with probability (𝟏 − 𝒒)). Therefore, his 

expected payoff from choosing 𝑩𝟏 depends on the probability Firm 2 assigns to 

developing technology 𝑨𝟐: 

𝑬𝑼𝟏(𝒒|𝑩𝟏) = 𝒒 × 𝟓 + (𝟏 − 𝒒) × 𝟔 = 𝟔 − 𝒒 
 

Firm 1 will be indifferent between the two technologies if the two expected payoffs 

we calculated above are equal, that is 

𝑬𝑼𝟏(𝒒|𝑨𝟏) = 𝑬𝑼𝟏(𝒒|𝑩𝟏)
 
⇒  𝟏𝟎𝒒 = 𝟔 − 𝒒 

 
⇒ 𝒒∗ = 𝟔/𝟏𝟏 

 

Note that by substituting 𝒒∗ = 𝟔/𝟏𝟏 in either 𝑬𝑼𝟏(𝒒|𝑨𝟏) or 𝑬𝑼𝟏(𝒒|𝑩𝟏) we get the 

expected payoff of Firm 1, i.e., 𝑬𝑼𝟏 = 𝟏𝟎(𝟔/𝟏𝟏) = 𝟔𝟎/𝟏𝟏. Working similarly, you 

should be able to confirm that 𝒑∗ = 𝟓/𝟗 and 𝑬𝑼𝟐 = 𝟒𝟎/𝟗. Therefore, we get that  
 

MSNE = {
𝟓

𝟗
𝑨𝟏
𝟒

𝟗
𝑩𝟏;

𝟔

𝟏𝟏
𝑨𝟐

𝟓

𝟏𝟏
𝑩𝟐} 

 

Rationalizing mixed strategies 

The idea of mixed strategies can initially seem perplexing. One might question 

why and how players would introduce randomness into their decision-making process. 

Randomizing between potential actions, a core aspect of mixed strategies, doesn't 
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often align with typical human behavior. Rarely do individuals base their choices on a 

lottery-like approach. 

This behavioral challenge is further complicated by the cognitive barrier; people 

struggle to produce genuinely random outcomes without the assistance of a random 

or pseudo-random generator. 

So, why bother with mixed strategies then? Despite these hurdles, mixed 

strategies remain prevalent due to their ability to yield Nash equilibria in games where 

equilibrium in pure strategies is unattainable. Does this suffice? Of course not. We 

must be able to rationalize the se of mixed strategies. Below are some examples of 

rationalization of mixed strategies. 

• Rationalizing mixed strategies involves recognizing them as deliberate 

choices. That is, players actively introduce randomness into their actions, 

keeping this randomness undisclosed beforehand. Consider the dynamic 

between tax authorities and taxpayers, where random audits serve as a 

parallel. However, authorities might prefer to disclose the probability of an 

audit before gameplay to make it transparent to taxpayers. 

• Mixed strategies emerge from players' beliefs about their opponents' 

behaviors. For instance, if Plaisio observes that MediaMarkt has offered 

exclusive deals on tablets in the past, it might base its strategy on the belief 

that MediaMarkt's actions were strategic responses rather than random 

occurrences. 

• Furthermore, mixed strategies can stem from the varied dispositions or 

"moods" of a player. For example, a Bertrand competitor might alternate 

between aggressive and passive tactics based on their mood. This introduces 

a layer of unpredictability, yet it also complicates strategic analysis. 

In summary, while mixed strategies can offer solutions to strategic dilemmas, 

their implementation raises challenges regarding the interpretation of opponents' 

behaviors, the rationale behind past actions, and the influence of personal dispositions 

on decision-making processes. 

 

 

 

 

 

 

 

 

 

 

 


