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ABSTRACT

Current literature assumes that non-pharmaceutical interventions (NPIs) reduce COVID-
19 infections irrespective of their strength. The potential role of Economic Support
Measures (ESM) towards controlling the virus is also overlooked. If anything, NPIs are
more likely to control infections when economic support is in place. Using a panel
threshold model of COVID-19 cases in U.S. states, we identify three distinct regimes of
‘low’, ‘medium’ and ‘high’ severity interventions; the latter being more effective towards
reducing infections. The implemented NPIs (ESM) reduce the daily average percentage
growth of infections by 21.4% (2.4%) compared to the case where no government action
is taken.
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«Hplozo 0¢ 10 mpdrov, ¢ Aéyetou, &€ Aibromiog tijc vmep Aiydmrov, érerta o0&
kol é¢ Aiyvmrov kol Aufonv katefn kai é¢ v Pooiléws yijv [Ilepoio] v
TOARY.»

“It first began, it is said, in the parts of Ethiopia above Egypt, and thence
descended into Egypt and Libya and into most of the King's country [i.e. Persial”

Thucydides, 5" century B.C.

1. Introduction

The COVID-19 respiratory infection, caused by the SARS-CoV-2 virus first detected in
Wuhan in late 2019, is continuing to spread globally with more than 103.3 million
infections and 2.2 million deaths (World Health Organization, WHO;
https://covid19.who.int/). Due to the virus rapid spread, Dr. Tedros Adhanom, WHO
Director-General, declared COVID-19 a pandemic on March 11th, 2020. From the Great
Plague of Athens (the first historically recorded epidemic in 430 B.C.) to the Black Death
(the deadliest pandemic in the 14th century estimated to have killed 30% to 60% of
Europe's population), humanity has faced several such fatal outbreaks. The most recent
example of this magnitude is the 1918-19 influenza pandemic (the so-called “Spanish flu”).

Lessons from previous pandemics reveal that timeliness and stringency are crucial
aspects for maximizing the effectiveness of non-pharmaceutical interventions (NPIs) and
minimizing the adverse social and economic consequences (Hatchett 7 a/., 2007; Martin ef
al., 2007; Dasgupta e al., 2020). Using historical data on the timing of 19 different types of
NPIs in 17 U.S. cities during the Spanish flu pandemic, Hatchett ¢ a/. (2007) show that
implementation of multiple interventions at an early phase of the epidemic reduced peak
death rates at a substantial magnitude (~50%). Statistical and epidemiological analyses of
past data from several U.S. cities also demonstrate a strong association between early,
sustained, and layered application of public health measures in mitigating the consequences
of the 1918-19 influenza pandemic in the U.S. (Martin e a/., 2007).

The U.S. is among the countries more severely hit by the COVID-19 pandemic. With
more than 26 million coronavirus cases and 439,000 deaths, the U.S. has the highest
number of confirmed infections and the highest official death toll in the world (WHO;
https://covid19.who.int/). The first cases of COVID-19 occurred in January 2020 in
travelers from China. Early travel restrictions imposed on February 2nd to non-U.S.
citizens from China (later expanding to other countries with widespread transmission)
failed to contain the virus, as the number of COVID-19 cases increased more than 1,000-

fold during a three-week period in late February to early March (Schuchat, 2020). The early
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epicenter was New York and the Northeastern states (New Jersey, Connecticut,
Massachusetts), where cases spiked in late March. Social distancing restrictions brought
infections down; however, their gradual relaxation led to new outbreaks, shifting to the
South and West regions of the country (i.e. Arizona, Florida, and California) and leading
to a new countrywide peak in July. The U.S. is still struggling with the pandemic, with fast-
moving outbreaks in North Dakota, South Dakota, and Wisconsin.

In the absence of a centralized federal response, there has been extreme variability
in the timing and intensity of interventions in the U.S. states, and even at a county and city-
level (Adolph e al., 2020). Measures started being implemented only after March 10th, 13
days after the first report of community transmission. California was the first state to enact
a lockdown, followed by the Midwest and parts of the Northeast, as well as Louisiana.
Later adopters were largely concentrated in the Mid-Atlantic and upper Midwest. By April
20th, 40 out of the 50 states had adopted state-wide lockdowns. Dave ez 2/ (2021) estimate
a decline of up to 43.7% in COVID-19 cases three weeks after the implementation of
state-wide quarantine, with significant heterogeneity in the response based on timing of
the enactment and state characteristics. The social distancing effect of lockdown is
estimated to be twice as large for early as compared to later-adopting states (2.6% vs 1.3%).
The analysis of Dave ez a/. (2021) provides strong evidence that state-wide lockdowns are
far more effective at decreasing the rate of coronavirus cases (including declines in the rate
of COVID-19-related mortality) among early adopting states and states with higher
population densities.

Chernozhukov ef al. (2021) use data on confirmed COVID-19 cases and deaths for
the U.S. states to estimate panel data models and find that nationally mandating face masks
for employees early in the pandemic could have reduced the weekly growth rate of cases
and deaths by more than 10 percentage points in late April 2020 and could have led to as
much as 19% to 47% less deaths nationally by the end of May 2020, which roughly
translates into 19,000 to 47,000 saved lives. Their findings also suggest that in the absence
of stay-at-home orders, cases would have been larger by 6% to 63% and without business
closures, cases would have been larger by 17% to 78%.

Drastic anti-contagion policy actions such as national lockdowns, though effective,
lead to unprecedented negative economic impact. The U.S. economy experienced its
deepest decline since official record keeping in 1947; indeed U.S. GDP shrank by an
annualized rate of 32.9% in the second quarter of 2020 (https://fred.stlouisfed.org/).
Using high-frequency proxy measures of economic activity (e.g. NOx emissions) for

Europe and Central Asia, Demirgiic-Kunt e7 /. (2020) find that national lockdowns are
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associated with a decline in economic activity of around 10%. This economic cost puts
governments under enormous pressure to relax the intensity of NPIs. Consequently,
understanding the exact pairwise relationship between NPIs and the spread of COVID-19
(considering issues such as threshold effects and model misspecification) is important for
governments to timely plan effective short-run interventions to tame infections and, at the
same time, minimize the adverse impact on economic activity.

However, the current fast-growing literature assesses the effect of NPIs by
hypothesizing a homogeneous impact, irrespective of their strength (e.g. Hsiang e# a/. 2020
Haug ez al. 2020). Moreover, the role of the deployed economic support measures (ESM)
is largely overlooked. Here, we revel the heterogeneous relationship between NPIs and the
growth of COVID-19 confirmed cases, conditioning on a set of variables such as ESM
and climatic conditions. To do so, we use U.S. state-level data, and transform all variables
through backward- or forward-looking rolling averages, thus accounting, to a certain
extent, for errors in data measurement and most importantly for the endogenous nature
of NPIs and COVID-19 infections. Moreover, as omitted variable bias may lead to invalid
inferences, we estimate an augmented specification by including the ESM and the
prevailing climatic conditions (temperature and relative humidity)." Indeed, in the presence
of ESM, government interventions are likely to become more effective in bringing
infection cases down. This is because employees, and the public in general, are more likely
than not to stick to government intervention measures when economic support is in place.
Finally, after ensuring that the estimated specification is robust against the typical violations
of the error’s sphericity assumption (heteroskedasticity, serial correlation and cross-
sectional dependence), we identify the critical level of NPIs over which the growth rate of
infections turns negative.

By fitting a two-threshold panel fixed-effects specification, we reach a number of
findings. First, the impact of government NPIs on infections growth is significant and
varying, depending on the stringency level. We identify three distinct regimes, i.e. regimes
of low’, ‘medium’ and ‘high’ severity interventions. A 10% increase in the level of the
average NPIs (averaged over the previous 14 days) lowers the daily growth rate of
infections by 0.349% in the low regime, by 0.492% in the medium regime, and by 0.546%
in the high regime. Second, the ESM for employees and the whole population in general

are statistically significant in bringing COVID-19 cases growth down. Furthermore, a 10%

' As ESM are positively correlated with conducted government interventions, non-inclusion of these
measures in the specification will lead to biased and inconsistent estimates.



increase in the average ESM (averaged over the previous 14 days) lowers the daily growth
rate of infections by 0.060%. Third, we identify a negative and significant impact of climatic
conditions (iL.e. an increase in temperature and relative humidity) on the growth of
COVID-19 cases. Fourth, counterfactual analysis shows that the actual conducted NPIs
significantly reduced the daily average percentage growth of infections by 21.4 percentage
points compared to the scenario of no government action. At the other extreme, had
government NPIs remained at the highest level throughout the sample, the daily average
growth of infections would have been lower by 4.9 percentage points compared to the
impact of the actual conducted NPIs. Fifth, the implemented ESM reduced the average
daily percentage growth of infections by 2.4 percentage points compared to the scenario
where no ESM were put in place. Finally, we find that only NPIs classified at the “high”
regime can trigger a negative growth rate of infections.

The paper proceeds as follows: section 2 discusses the data and model
specification; section 3 reports and discusses the model estimates and section 4 presents

our counterfactual analysis. Finally, section 5 concludes.

2. Data and Model Specification

Being recently available by the Blavatnik School of Government of the University of
Oxford, we use data on NPIs and ESM across all U.S. states for the period spanning
January 1 to August 4, 2020. In more detail, we focus on the 50 U.S. states using daily
observations on (i) the strength of the NPIs policies at state level, proxied by the OxCGRT
index (source: Blavatnik School of Government of the University of Oxford)’, (i) the
strength of the ESM (source: Blavatnik School of Government of the University of
Oxford)?, (i) the number of confirmed COVID-19 cases (source: Centers for Disease
Control and Prevention-CDC)’ and the state population estimates as of July 2019 (source:
United States Census Bureau)’, in order to construct the number of daily cases per 100,000,
(iv) the temperature (source: NASA Langley Research Center - LaRC, POWER Project) and
(v) the relative humidity (sourcee NASA Langley Research Center - LaRC, POWER

Project).’

2 Blavatnik School of Government of the University of Oxford, see: https://www.bsg.ox.ac.uk/

3 Centers for Disease Control and Prevention, see: https://www.cdc.gov/

4 United States Census Bureau, see: https://www.census.gov/

> For temperature and relative humidity data, see NASA Langley Research Center, POWER Project,
https://powet.larc.nasa.gov/data-access-viewet/



To minimize the consequences of endogeneity and measurement error (Raftery ez a.
2020), the variables are transformed through forward- or backward-looking rolling averages
using a fixed window length.” We define the forward-looking transformation of a variable, at
each time ?, as the average value calculated by a fixed length rolling window with size
equal to the 14 succeeding days (¢ +1 up to ¢+14).” Similarly, we define the backward-
looking transformation by using the preceding fourteen days (£ —1 up to ¢ —14). In more
detail, we first calculate the COVID-19 infections per 100,000 people and we then define,
for each time ¢ of the total sample, the forward-looking confirmed infections per 100,000 as
the average of the succeeding 14 days. Based on the above transformation, we estimate the
respective growth rate as the logarithmic difference of two subsequent observations. The
Sforward-looking growth rate of infections per 100,000 (growth of infections, hereafter) for
selected dates of the sample at state level is illustrated as a heat map in Fig. 1. Likewise, we
define for each time ¢ of the sample, the backward-looking OxCGRT index (OxCGRT,
hereafter) and the backward-looking ESM index (ESM, hereafter) as the respective average of
the preceding 14 days. The OxCGRT index for selected dates of the sample at state level
is illustrated as column bars in Fig. 1 (in Fig. 1, each of the three regimes is signified with

a different presentation colour; the estimation of the regimes is discussed in Section 3).

Fig. 1| OxCGRT index and growth rate of COVID-19 cases per 100,000
Notes: The time-lapse version of the figure is available at: https://youtu.be /EXCo6LZd4w8

¢ Dasgupta ¢z al. (2020) note that under-reporting infectious disease statistics is a common characteristic of
the current pandemic and the 1665 London plague 350 years ago.
7 The window size is set to 14 days. Lauer ¢f a/. (2020) estimate that the virus incubation period is 14 days.



The ESM for selected dates of the sample at a state level is illustrated as column bars
in Fig. 2 (Fig. 2, presents jointly as a heat map the growzh of infections per 100,000). We finally
define, for each time, ¢, of the total sample, the backward-looking temperature, as well as the
backward-looking relative humidity. The backward-looking temperature variable for selected
dates of the sample at state level is illustrated as column bars in Fig. 3 (Fig 3, presents, as
a heat map, the growth of infections per 100,000, while the reflection of the temperature
column bar implies negative temperatures). The backward-looking relative humidity variable
for selected dates at a state level is illustrated as column bars in Fig. 4 (Fig. 4, presents

jointly, as a heat map, the growth of infections per 100,000).

Fig. 2| ESM index and growth rate of COVID-19 cases per 100,000
Nofes: The time-lapse version of the figute is available at: https://youtu.be /xM6x4PS24YE

Fig. 3| Temperature and growth rate of COVID-19 cases per 100,000

Nofes: The time-lapse vetsion of the figute is available at: https://youtu.be/Kc9V-GTyn2I



Fig. 4| Humidity and growth rate of COVID-19 cases per 100,000
Notes: The time-lapse version of the figure is available at: https://youtu.be /1xZQ8MVTPgk

For all constructed forward- and backward-looking variables, we define the effective sample
for each U.S. state as the period signified by the first day with cumulative confirmed cases
equal or greater than five, up to the end of the sample. Such treatment leads to a different
¢ffective sample in terms of time length for each U.S. state (the maximum sample length with
170 observations corresponds to California, while the minimum sample length with 126
observations corresponds to Alaska, Hawaii, North Dakota, and West Virginia). As the
fixed-effect panel threshold model necessitates a balanced sample, we use, from the
effective sample of each U.S. state, the first 126 observations. Hence, our final feaszble sample
(balanced sample) includes 126 observations for each U.S. state.

Current literature (in the context of Susceptible-Infected-Recovered epidemiological
models) assesses the effect of NPIs on COVID-19 infections (or deaths) assuming a
homogeneous impact of these interventions irrespectively of their strength (see Hsiang e#
al. 2020; Haug et al. 2020; Flaxman ef a/. 2020; Brauner ez a/. 2020). Under this strong
assumption, any attempt to evaluate the exact effect of NPIs at their different levels is
arguably misspecified. To overcome this limitation, we estimate for the 50 U.S. states a
panel fixed-effect threshold specification (Hansen, 1999), which remains robust to time-
invariant differences among the states (e.g. population density) and reveals the
heterogeneous nature of the relationship between infections and NPIs. Moreover, as ESM
are positively correlated with conducted government interventions, non-inclusion of these

measures in the specification will lead to biased and inconsistent estimates. To reduce the



impact of specification bias, the employed model is augmented with the inclusion of the
ESM index and two climate variables (temperature and relative humidity). The model

specification takes the form:
=0+ 4p,(py < k) + Gpilk < py <ky)+ Fp, Lk, < p,)+ oz, +u, +e, (1)

where, 1, is the forward-looking growth rate of infections per 100,000, & and §; are

parameters to be estimated (5 =1,2,3), k,, ate the threshold parameters (m =1, 2), p,, is
the natural logarithm of the backward-looking OxCGRT index (threshold variable), I(s) is an
indicator function which receives the value one if the condition in the parenthesis is true
and zero otherwise, z, is the matrix of the threshold independent variables (the natural
logarithm of the backward-looking ESM and the two backward-looking climate variables), @

is a vector of coefficients, u, is the state individual effect and e, is the error term.

3. Threshold Testing and Estimation

To identify the number of significant thresholds for the OxCGRT index based on our
benchmark econometric specification (eg. 1), we implement the sequential testing approach

proposed by Hansen (1999). Thus, for testing sequentially the null hypotheses of zero, one

and two thresholds, we calculate the respective likelihood ratio F; statistics (5 =1, 2, 3),

which follow a non-standard asymptotic distribution. To perform an inferential decision,

within a bootstrap framework, we calculate p-values based on the empirical sampling

distribution, which prove to remain valid asymptotically (Hansen, 1999). The three F;

(7 =1,2,3) statistics, along with the associated critical values at the conventional levels of

significance and the bootstrapped p-values (with 1000 replications), are analytically

reported in Table 1.

Table 1. Testing for threshold effects within a panel fixed-effects specification

Threshold Thr'eshold Threshold F-stat p-value 1.0 .% 50./0 1.0./0
estimate at level critical critical critical
Single 4.292%%x 73.149%+% 73.97 0.002 37.174 43.019 60.213
Double 3.375%%* 29.23(0¢* 59.25 0.003 29.485 34.552 48.841
Triple 3.753 42.657 41.15 0.283 55.603 65.412 91.846

Notes: #** denotes the rejection of the null hypothesis over the alternative at the 0.01 significance level. All trimming
values ate set equal to 0.1. The reported critical values along with the respective p-values are derived by implementing
the bootstrap method with 1,000 replications. As the threshold variable is transformed in logarithmic form, each
threshold estimate is converted to the level scale by simply calculating the anti-log.




Table 1, implies that the null hypothesis of zero thresholds against one threshold
(»p=0.002) is rejected. We proceed by examining the null hypothesis of one threshold
against two. The respective inference (p=0.002) rejects the second null hypothesis, thus
providing support for the presence of two thresholds. Finally, to discriminate between the
presence of two or three thresholds, we test the third null hypothesis of two thresholds in
favour of three. The resulting evidence (p=0.283) fails to reject the null hypothesis,
signalling the existence of two significant thresholds. The point estimates for the two
significant thresholds of the OxCGRT index are shown in Table 1. The first threshold
estimate is 73.1 units (4.292 for the logarithmic transformation) and the second threshold
estimate is 29.2 units (3.375 for the logarithmic transformation). Hence, the three resulting
regimes range between [0-29.2), [29.2-73.1) and [73.1-100]. For our sample, Fig. 5 shows
the two estimated thresholds (the first and second thresholds are signified by the pink and
grey surface, respectively) along with the actual OxCGRT index values in a three-

dimensional coordinate system.
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Fig. 5| OxCGRT index and estimated regimes

Notes: (i) The vertical left-axis depicts the stringency of the OxCGRT index; the bottom horizontal left-axis displays the date, and
the bottom horizontal right-axis depicts the state by using the two-digit code abbreviation.

(i) The two-digit state abbreviations are: Alabama: AL, Alaska: AK, Arizona: AZ, Arkansas: AR, California: CA, Colorado: CO,
Connecticut: CT, Delaware: DE, Florida: FL, Georgia: GA, Hawaii: HI, Idaho: ID, Illinois: IL, Indiana: IN, Iowa: IA, Kansas: KS,
Kentucky: KY, Louisiana: LA, Maine: ME, Maryland: MD, Massachusetts: MA, Michigan: MI, Minnesota: MN, Mississippi: MS,
Missouri: MO, Montana: MT, Nebraska: NE, Nevada: NV, New Hampshire: NH, New Jersey: NJ, New Mexico: NM, New York:
NY, North Carolina: NC, North Dakota: ND, Ohio: OH, Oklahoma: OK, Oregon: OR, Pennsylvania: PA, Rhode Island: RI, South
Carolina: SC, South Dakota: SD, Tennessee: TN, Texas: TX, Utah: UT, Vermont: VT, Virginia: VA, Washington: WA, West Virginia:
WV, Wisconsin: WI, Wyoming: WY.

(iii) The firstand second thresholds of the OxCGRT index are signified by the pink and grey surface, respectively.

(iv) The surface for the OxCGRT index is colored based on the range of values assigned to each regime.

(v) Out of the 6300 observations for the OxCGRT index, across the 50 U.S. states, 8%, 62% and 30% of these are classified into
the low’ regime, ‘medium’ and ‘high’ regime, respectively.
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Fig. 6| Regime-dependent average forward-looking growth rate of infections per U.S. state

Notes: (i) Regimes 1, 2 and 3 are defined by the values of the threshold variable (the backward-looking OxCGRT index) that belong to [0-29.2), [29.2-73.1) and [73.1-100], respectively.
(i) Regime 1 and Regime 2 include all 50 U.S. states while Regime 3 includes 39 U.S. states. The states that never have entered into Regime 3 are the following: Arkansas, Iowa, Louisiana, Massachusetts, Nevada, North Dakota, Oklahoma, South
Dakota, Tennessee, Utah and Wyoming.
(i) The kernel densities for the forward-looking growth rate of infections belonging in each regime, are presented at the left axis. Kernel density is a non-parametric approach for estimating the probability density function of a variable.

(iv) The two-digit state abbreviations are: Alabama: AL, Alaska: AK, Arizona: AZ, Arkansas: AR, California: CA, Colorado: CO, Connecticut: CT, Delaware: DE, Florida: FL, Georgia: GA, Hawaii: HI, Idaho: ID, Illinois: IL, Indiana: IN, Iowa:
IA, Kansas: KS, Kentucky: KY, Louisiana: LA, Maine: ME, Maryland: MD, Massachusetts: MA, Michigan: MI, Minnesota: MN, Mississippi: MS, Missouti: MO, Montana: MT, Nebraska: NE, Nevada: NV, New Hampshire: NH, New Jersey: NJ,
New Mexico: NM, New York: NY, North Carolina: NC, North Dakota: ND, Ohio: OH, Oklahoma: OK, Oregon: OR, Pennsylvania: PA, Rhode Island: RI, South Carolina: SC, South Dakota: SD, Tennessee: TN, Texas: TX, Utah: UT, Vermont:
VT, Virginia: VA, Washington: WA, West Virginia: WV, Wisconsin: W1, Wyoming: WY.

-0.10
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Given the two estimated thresholds and the resulting three regimes, Fig. 6 shows,
how the average growth of infections per U.S. state is distributed across each regime. It
becomes clear that the average growth of infections decreases as the regime level increases,
confirming the validity of the estimated thresholds.

For the balanced feasible sample, we fit a fixed-effects panel specification with two
thresholds by implementing the typical fixed-effects estimator (eq. 1). These estimates,
along with the associated OLS standard errors, are presented in the first column (FE) of
Table 2. The second column of Table 2 illustrates the same estimates but with
bootstrapped standard errors this time. Clearly the bootstrapped standard errors appear to
be considerably higher. This difference in magnitude reveals the necessity of diagnostic

testing.

Table 2. Threshold panel fixed-effects estimation results

. FE Bootstrapped Driscoll-Kraay FGLS PCSE
Variable () @ 0 @ 6
Constant 0.3736 *kx 0.3736 *kx 0.3736 *F* 0.3457 % 0.3307 ***
(0.0197) (0.0831) (0.0559) (0.0148) (0.0350)
Hum - 0.0008 *** - 0.0008 *** - 0.0008 *** - 0.0004 *+* - 0.0008 ***
(0.0002) (0.0003) (0.0002) (0.0001) (0.0002)
Tem - 0.0008 *** - 0.0008 ** - 0.0008 *** - 0.0003 ** - 0.0005 **
(0.0002) (0.0004) (0.0002) (0.0001) (0.0002)
ESM - 0.0050 *** - 0.0050 - 0.0050 * - 0.0060 *** - 0.0063 ***
(0.0015) (0.0038) (0.0027) (0.0010) (0.0023)
Regime slopes
. - 0.0492 *+x - 0.0492 * - 0.0492 ** - 0.0536 *** - 0.0367 ***
ONCGR Ty (0.0058) (0.0259) (0.0192) (0.0038) (0.0092)
ONCGRTpy - 0.0635 *xk - 0.0635 *xk - 0.0635 *xk - 0.0639 *xk - 0.0516 ***
(0.0046) (0.0204) (0.0148) (0.0031) (0.0075)
ONCCRT:. - 0.0684 *xk - 0.0684 *xk - 0.0684 <k - 0.0673 *xk - 0.0573 ok
R3 (0.0044) 0.0197) (0.0143) (0.0030) (0.0073)
Summary Statistics
n 6300 6300 6300 6300 6300
R2-within 0.349 0.349 0.349 - 0.256
F/Wald x2 0.000 0.000 0.000 0.000 0.000
Diagnostic testing for the FE specification
Exogeneity (p-value) 0.498 Serial correlation (p-value) 0.000
Homoskedasticity (p-value) 0.000 CSD test (p-value) 0.045

Notes: *¥*,** and * denote statistical significance at the 0.01, 0.05 and 0.1 significance level, respectively. The reported
values within the (.) are standard etrors. Hum, Tem and ESM refer to the three regime-independent variables, that is,
relative humidity, temperature and economic support measutes, respectively. The subscripts R1, R2 and R3, linked

with the OxCGRT signify the three tegimes formed after the identification of significant thresholds (see Table 1).
The columns titled as FE, Bootstrapped, Driscoll-Kraay, FGLS and PCSE refer to the threshold panel fixed-effects
estimates (i) with typical standard errors, (i) with bootstrapped standard errors, (iii) with the Driscoll and Kraay (1998)
corrected standard errors (robust to heteroskedastic error as well as to general forms of cross-sectional and temporal
dependence), (iv) with the use of the Feasible Generalized Least Squares approach (allowing robust estimation in the
presence of serial correlation, heteroskedasticity and cross-sectional dependence) and (v) with the Panel Corrected
Standard Errors estimation approach (correcting for serial correlation, heteroskedasticity and cross-sectional
dependence, respectively).
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Hence, we proceed by testing the benchmark fixed-effects panel specification for: (i)
the exogeneity of the OxCGRT index, (i) groupwise homoskedasticity, (iii) serial
correlation, and (iv) cross-sectional independence. In more detail, the Durbin-Wu-
Hausman statistic (see Durbin, 1954; Wu, 1973; Hausman, 1978), supports (p=0.498) that
the OxCGRT index is exogenous. Additionally, we test for groupwise homoskedasticity by
the modified Wald statistic (see Green, 2000). The respective evidence (p=0.000) implies
that the error term violates the assumption of homoskedasticity. On top of the above
violation, the error term appears to be serially correlated as the LM statistic (Born and
Breitung, 20106) rejects the null hypothesis of uncorrelated residuals of first order. Finally,
by implementing a parametric testing procedure for examining the cross-sectional
independence of the residuals (Pesaran 2020), we find that these are cross-sectionally
dependent (p=0.045) at the 0.05 significance level. Overall, the diagnostic testing reveals
that the OxCGRT index is exogenous; nevertheless, it shows that the model suffers from
heteroskedasticity, serial correlation and cross-sectional dependence.

As the executed diagnostic testing reveals the existence of a non-spherical error term,
the initial fixed-effects estimates are expected to be inefficient and their associated standard
errors biased, rendering all resulting inferences questionable. Hence, we re-estimate our
specification by implementing approaches that are robust to the above-mentioned forms
of misspecification. We continue by reporting estimates of the covariance matrix based on
the Driscoll and Kraay (1998) approach, which delivers standard errors that remain robust
to heteroskedasticity, as well as to general forms of cross-sectional and temporal
dependence (column 3). As the mixing conditions to establish asymptotic consistency may
not hold for the fixed-effects estimator (Vogelsang, 2012), we also present the Parks (1967)
Feasible Generalized Least Squares estimates (FGLS) (column 4). Finally, provided that the
FGLS estimator proves to perform poorly in finite samples, we report the Beck and Katz
(1995) Panel-Corrected Standard Error (PCSE) estimation results (column 5).

The PCSE estimation results reveal that all explanatory variables are significant at
the conventional levels of significance (mainly at the 0.01 level). Most importantly, the
OxCGRT index, throughout its entire range, remains effective at decreasing the growth of
infections, albeit with a different impact at each regime. Additionally, ESM prove negative
and significant, a finding which also holds for the two climatic variables. Given the
presence of the thresholds, the model fits the data satisfactorily, as judged by Fig. 7.a and
7.b, which show the raw actual values of the the growzh of infections per U.S. state and the

model’s respective fitted values along with the 99% confidence interval.
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Fig. 7.a| COVID-19 cases growth rate per U.S. state: actual and fitted values along with respective 99% confidence interval

Notes: Estimates are based on the Threshold Panel Fixed-Effects model (¢q. 1) using the Panel-Corrected Standard Errors (PCSE) estimation approach (see Table 2).
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Fig. 7.b| COVID-19 cases growth rate per U.S. state: actual and fitted values along with respective 99% confidence interval

Notes: Estimates are based on the Threshold Panel Fixed-Effects model (¢q. 1) using the Panel-Corrected Standard Errors (PCSE) estimation approach (see Table 2).
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For the PCSE estimation results, we find that the OxCGRT index is negatively and
significantly (p-valne<<0.01) related to the growth of infections at all regimes. More specifically,
the regime dependent coefficients with the associated 95% confidence interval are -0.037
[-0.055, -0.019], -0.052 [-0.066, -0.037], and -0.057 [-0.072, -0.043] for the low’, ‘medium’
and ‘high’ regime, respectively. The coefficient for the ‘low’ regime (‘medium’ regime),
[‘high’ regime] suggests that a 10% increase in the level of the OxCGRT index lowers the
daily percentage growth of infections, on average, by 0.35%, (0.49%), [0.55%)]. Overall, the
OxCGRT index throughout its entire range remains effective at decreasing the growh of
infections, albeit with a different impact at each regime.

Moreover, we find a significant (p-value<<0.01) impact of the ESM on the growth of
infections. ESM can be viewed as an important factor, since the population will more likely
adhere to government intervention measures when combined with additional economic
support. Indeed, ESM can partially mitigate the economic losses faced by employees and
the whole population, following widespread lockdowns. The magnitude of the coefficient
(Table 2) implies that a 10% increase in the ESM lowers the daily percentage growth of
infections, on average, by 0.06%.

Finally, we identify a negative and statistically significant impact of the backward-
looking temperature (p-valne<0.05) and the backward-looking relative humidity (p-value<0.01)
on the growth of infections. An increase by one degree Celsius in the backward-looking
temperature lowers, on average, the daily grow#h of infections by 0.05%. The respective impact

for a unit increase in the backward-looking relative humidity is 0.08%.

4. Counterfactual Analysis

We use the PCSE estimates to run a series of counterfactual scenarios. We hypothesize
different levels of the OxCGRT index that remain constant across the sample and derive
their impact. We start by estimating, per U.S. state, the growzh of infections assuming no
government action. We then estimate the respective growth of infections for sequential
increase of the OxCGRT index by 10 units and up to 100, creating, this way, the response
surface illustrated in Fig. 8, which also illustrates the gromth of infections across all states at

the two estimated thresholds.
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Fig. 8| Counterfactual analysis for the OxCGRT index

Notes: (i) The vertical left-axis depicts the expected growth of infection; the bottom horizontal left-axis displays the stringency of the
OxCGRT index, and the bottom horizontal right-axis depicts the state by using the two-digit code abbreviation.

(i) The two-digit state abbreviations are: Alabama: AL, Alaska: AK, Arizona: AZ, Arkansas: AR, California: CA, Colorado: CO,
Connecticut: CT, Delaware: DE, Florida: FL, Georgia: GA, Hawaii: HI, Idaho: ID, Illinois: IL, Indiana: IN, Iowa: IA, Kansas: KS,
Kentucky: KY, Louisiana: LA, Maine: ME, Maryland: MD, Massachusetts: MA, Michigan: MI, Minnesota: MN, Mississippi: MS,
Missouri: MO, Montana: MT, Nebraska: NE, Nevada: NV, New Hampshire: NH, New Jersey: NJ, New Mexico: NM, New York:
NY, North Carolina: NC, North Dakota: ND, Ohio: OH, Oklahoma: OK, Oregon: OR, Pennsylvania: PA, Rhode Island: RI, South
Carolina: SC, South Dakota: SD, Tennessee: TN, Texas: TX, Utah: UT, Vermont: VT, Virginia: VA, Washington: WA, West Virginia:
WV, Wisconsin: WI, Wyoming: WY.

(iii) The expected growth of infections for the firstand second thresholds of the OxCGRT index are signified by the pink and grey
surface, respectively.

(iv) The main response surface for the expected growth of infections is colored based on the magnitude of the responses (e.g. shades
of blue, turquoise, and yellow refer to a positive growth of infections, white signifies a zero growth of infections and shades of red
imply negative growth of infections).

In the absence of government action, the average daily percentage growzh of infections
for all states is estimated at 24% (Table 3). The analysis suggests that the pursued
government intervention policies reduced the average daily percentage growth of infections by
21.4 percentage points (Table 3) compared to the case where no action had taken place.
This difference is significant (p-va/ue<<0.01). Considering the other extreme, i.e. government
intervention at the highest stringency level, the average daily percentage growth of
infections is -2.3% (Table 3). Had therefore government intervention remained at its
highest stringency level throughout the sample, the average daily growth rate of infections
would have been lower by 4.9 percentage points (Table 3) compared to the impact of the

actual government intervention policies. The difference is, again, significant (p-value<0.01).
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Table 3. COVID-19 cases growth rate per U.S. state: mean fitted values and mean
counterfactual responses for different levels of the OxCGRT index.
Fitted Counterfactual response at OxCGRT level: Difference between column:
State values 0 29 50 73 100 2-0) -0 @0 6-0 OO
©) @) ©) “ ® © @) ®) ©) (10) (1)

Alabama 0.030 0237 0063 0035 -0.009 -0.027 0.207 0.032 0.005 -0.039  -0.057
Alaska 0.019 0244 0069 0042 -0.002 -0.020 0.224  0.050 0.022 -0.022  -0.039
Atizona 0.042 0243 0069 0041 -0.003 -0.021 0.201  0.027 -0.001 -0.045  -0.063
Arkansas 0.027 0235 0.060 0033 -0011 -0.029 0.208 0.034 0.006 -0.038  -0.056
California 0.071 0255 0.081 0053 0.009 -0.008 0.184 0010 -0.018 -0.062  -0.080
Colorado 0.026 0242 0.068 0040 -0.004 -0.022 0.216 0.042 0.014 -0.030  -0.048
Connecticut 0.006 0230 0.056 0028 -0.016 -0.034 0.224  0.050 0.022 -0.022  -0.040
Delaware 0.018 0253 0.079 0051 0.007 -0.011 0.235 0.061 0.033 -0.011  -0.029
Florida 0.045 0263 0.088 0061 0017  -0.001 0.218 0.043 0.016 -0.028  -0.046
Georgia 0.037 0248 0.074 0046 0002 -0.016 0211  0.037 0.009 -0.035  -0.053
Hawaii 0.014 0238 0.064 0036 -0.008 -0.026 0.224  0.050 0.022 -0.022  -0.040
Idaho 0.023 0238 0.064 0036 -0.008 -0.025 0215 0.041 0.013 -0.031  -0.049
Illinois 0.034 0252 0.077 0050 0.006 -0.012 0218 0.044 0.016 -0.028  -0.046
Indiana 0.031 0238 0.064 0036 -0.008 -0.025 0.207 0.033  0.005 -0.039  -0.056
Towa 0.033 0236 0.062 0.034 -0010 -0.028 0.203 0.028 0.001 -0.043  -0.061
Kansas 0.028 0247 0.073 0045 0001 -0.017 0219 0.044 0.017 -0.027  -0.045
Kentucky 0.033 0256 0.082 0054 0010 -0.008 0.223  0.048  0.021 -0.023  -0.041
Louisiana 0.024 0232 0058 0031 -0.013 -0.031 0.208 0.034 0.006 -0.038  -0.056
Maine 0.003 0241 0067 0039 -0.005 -0.023 0.238  0.064 0.036 -0.008  -0.026
Maryland 0.032 0256 0.081 0054 0010 -0.008 0.223  0.049 0.021 -0.023  -0.040
Massachusetts 0.021 0221 0047 0019 -0.025 -0.043 0.201  0.026 -0.001 -0.045  -0.063
Michigan 0.009 0237 0.062 0035 -0.009 -0.027 0.227  0.053  0.025 -0.019  -0.037
Minnesota 0.026 0245 0071 0043 -0.001 -0.019 0219 0.044 0.017 -0.027  -0.045
Mississippi 0.029 0248 0.074 0046 0002 -0.016 0219 0.045 0.017 -0.027  -0.045
Missouri 0.024 0236 0062 0035 -0.009 -0.027 0212 0.038 0.010 -0.034  -0.052
Montana 0.021 0241 0067 0039 -0.005 -0.023 0.220 0.046 0.018 -0.026  -0.044
Nebraska 0.030 0240 0.065 0038 -0.006 -0.024 0.210 0.036 0.008 -0.036  -0.054
Nevada 0.032 0236 0.062 0034 -0010 -0.028 0.204 0.030 0.002 -0.042  -0.060
New Hampshire 0.011 0237 0.063 0035 -0.009 -0.027 0.225  0.051  0.023 -0.021  -0.039
New Jersey 0.010 0234 0060 0032 -0.012 -0.030 0.224  0.050 0.022 -0.022  -0.039
New Mexico 0.029 0270 0.096 0068 0.024  0.006 0.241 0.066 0.039 -0.005  -0.023
New York 0.023 0248 0.073 0046 0002 -0.016 0.225  0.050 0.023 -0.021  -0.039
N. Carolina 0.035 0247 0073 0045 0001 -0.017 0.213 0.038 0.011 -0.033  -0.051
N. Dakota 0.022 0217 0.043 0016 -0.028  -0.046 0.196 0.022 -0.006 -0.050  -0.068
Ohio 0.027 0241 0067 0039 -0.005 -0.023 0.215 0.040 0.013 -0.031  -0.049
Oklahoma 0.027 0223 0049 0021 -0.022 -0.040 0.197 0.022 -0.005 -0.049  -0.067
Oregon 0.030 0242 0.068 0040 -0.004 -0.022 0.213  0.039  0.011 -0.033  -0.051
Pennsylvania 0.029 0235 0061 0033 -0.011 -0.029 0.206 0.032  0.004 -0.040  -0.058
Rhode Island 0.017 0247 0073 0045 0001 -0.017 0.229  0.055 0.027 -0.017  -0.034
S. Carolina 0.035 0242 0.068 0041 -0.003 -0.021 0.208 0.033  0.006 -0.038  -0.056
S. Dakota 0.026 0227 0053 0025 -0.019 -0.037 0.201  0.027 -0.001 -0.045  -0.063
Tennessee El 003 0234 0060 0032 -0012 -0.030 0.204 0.030 0.002 -0.042  -0.059
Texas 0.046 0254 0079 0052 0.008 -0.010 0.208 0.034 0.006 -0.038  -0.056
Utah Bl 0023 0225 0051 0023 -0021 -0.039 0.201 0.027 -0.001 -0.044  -0.062
Vermont Y 0007 0217 0042 0015 -0.029 -0.047 0.223  0.049 0.021 -0.023  -0.041
Virginia [} 0.032 0250 0.076 0.048 0.004 -0.013 0219 0.044 0.017 -0.027  -0.045
Washington " 0.023 0232 0058 0030 -0.013 -0.031 0.210 0.035 0.008 -0.036  -0.054
W. Virginia 0.019 0244 0070 0042 -0.002  -0.020 0.225  0.050 0.023 -0.021  -0.039
Wisconsin 0.023 0233 0059 0031 -0013 -0.031 0.209 0.035 0.007 -0.036  -0.054
Wyoming 0.015 0227 0053 0025 -0.019 -0.037 0211  0.037 0.009 -0.034  -0.052
Average 0.026 0.240 0.066 0.038 -0.006 -0.023 0.214  0.040 0.012 -0.032  -0.049

Notes: (1) Estimates ate based on the Threshold Panel Fixed-Effects model (1) in the main text of the paper using
the Panel Corrected Standard Errors (PCSE) estimation approach (see Table 2). (ii) For the columns (7), (8), (9),

(10) and (11), the significant mean differences, for a significance level 0.01, are signified with bold values.
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Since the increasing strength of NPIs harms economic activity, it is essential to
identify the minimum level of measures capable of reverting the growth rate of infections
to negative values. By setting the government interventions level equal to the second
threshold, the average daily percentage growth of infections turns negative for the first time
and equal to -0.60% (Table 3). This estimate is lower by 3.2 percentage points (p-
valne<0.01) compared to the impact of the actual policies. Overall, the counterfactual
analysis suggests that while NPIs are effective in reducing the growth of infections at all
magnitudes, negative growth rates can be achieved only when government stringency is
set to a level being part of the ‘high’ regime [73.1-100].

What happens if we switch attention to the individual U.S. states? Had the level of
government interventions remained at the second threshold, the state of California would
have achieved the largest reduction in the growth of infections by a daily average of 6.2
percentage points (p-valne<0.01), followed by North Dakota (reduction of 5 percentage
points; p-valne<0.01) and Oklahoma (reduction of 4.9 percentage points; p-value<0.01;
Table 3). Our model implies that these U.S. states would have achieved even larger
reductions in the average daily growth of infections (8, 6.8 and 6.7 percentage points for
California, North Dakota, and Oklahoma, respectively and in all cases with a p-va/ue<0.01)
had government intervention remained at its highest stringency level throughout the
sample, compared to the actual implemented policies.

We proceed by running a set of counterfactual scenarios for the ESM index. We
report in Fig. 9, per U.S. state, the growth of infections for a 10-unit sequential increase of the
ESM index from 0O to 100. In the absence of economic support, the average daily
percentage growth of infections is estimated at 5% (Table 4). At the opposite extreme, the
respective percentage growth is estimated at 2.1% (Table 4). When compared to the actual
government economic interventions, both scenarios illustrate statistically significant
differences (p-va/ue<0.01). Specifically, actual deployed ESM reduced the average daily
percentage growth of infections by 2.4 percentage points compared to no ESM. In addition,
had ESM been implemented at their highest level, the average daily percentage growth of
infections would have been lower by 0.5 percentage points. Overall, government ESM act

complementarily to NPIs in significantly reducing further the growsh of infections.
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Table 4. COVID-19 cases growth rate per U.S. state: mean fitted values and mean
counterfactual responses for different levels of the ESM index.
Fitted Counterfactual response at ESM level: Difference between column:
State values 0 20 50 80 100 -0 @0 @0 60O OO
D) ®) (3) 4 5) (6) @ @) 9) (10) (11

Alabama 0.030 0053 0.034 0028 0025 0.024 0.022 0.004 -0.002 -0.005  -0.007
Alaska 0.019 0047 0028 0022 0019 0017 0.027 0.008 0.002  0.000  -0.002
Arizona 0.042 0064 0045 0.039 0.037 0035 0.023  0.004 -0.002 -0.005  -0.006
Arkansas 0.027 0050 0031 0025 0022  0.020 0.023  0.004 -0.002 -0.005  -0.006
California 0.071 0091 0072 0066 0.063  0.062 0.019  0.000 -0.005 -0.008  -0.010
Colorado 0.026 0050 0031 0025 0022 0021 0.024 0.005 -0.001 -0.004  -0.005
Connecticut 0.006 0032 0013 0.008 0.005  0.003 0.026  0.007 0001 -0.002  -0.003
Delaware 0.018 0043 0024 0019 0016 0014 0.026  0.007 0.001 -0.002  -0.003
Florida 0.045 0068 0.049 0043 0040  0.039 0.023  0.004 -0.002 -0.005  -0.006
Georgia 0.037 0060 0.041 0035 0032 0031 0.024  0.005 -0.001 -0.004  -0.006
Hawaii 0.014 0037 0018 0012 0009  0.008 0.023  0.004 -0.002 -0.005  -0.006
Idaho 0.023 0047 0028 0022 0019 0017 0.023  0.004 -0.001 -0.004  -0.006
Illinois 0.034 0058 0.039 0033 0030  0.029 0.024  0.005 -0.001 -0.004  -0.005
Indiana 0.031 0056 0.037 0031 0028  0.027 0.025 0.006 0.000 -0.003  -0.004
Towa 0.033 0058 0.039 0034 0031  0.029 0.025 0.006 0.000 -0.003  -0.004
Kansas 0.028 0052 0033 0027 0024 0023 0.024  0.005 -0.001 -0.004  -0.005
Kentucky 0.033 0060 0041 0035 0033 0031 0.027  0.008 0.002 -0.001  -0.002
Louisiana 0.024 0051 0032 0026 0023 0022 0.027 0.008 0.002 -0.001  -0.002
Maine 0.003 0026 0007 0001 -0.002 -0.003 0.023  0.004 -0.002 -0.005  -0.006
Maryland 0.032 0057 0038 0032 0029 0027 0.025 0.006 0.000 -0.003  -0.005
Massachusetts 0.021 0042 0023 0017 0014 0013 0.021  0.002 -0.004 -0.007  -0.008
Michigan 0.009 0033 0014 0008 0.005  0.004 0.023  0.004 -0.001 -0.004  -0.006
Minnesota 0.026 0049 0.030 0024 0021 0019 0.023  0.004 -0.002 -0.005  -0.007
Mississippi 0.029 0051 0032 0026 0023 0022 0.022  0.004 -0.002 -0.005  -0.007
Missouti 0.024 0047 0028 0023 0020 0018 0.023  0.004 -0.002 -0.005  -0.006
Montana 0.021 0044 0025 0019 0016 0015 0.023  0.004 -0.002 -0.005  -0.006
Nebraska 0.030 0054 0035 0029 0026 0025 0.024  0.005 -0.001 -0.004  -0.005
Nevada 0.032 0056 0.037 0031 0028 0027 0.024  0.005 -0.001 -0.004  -0.005
New Hampshire 0.011 0038 0019 0013 0010  0.009 0.026  0.007 0.002 -0.001  -0.003
New Jersey 0.010 0035 0016 0011 0008  0.006 0.026 0.007 0.001 -0.002  -0.003
New Mexico 0.029 0053 0.034 0028 0025  0.024 0.023  0.005 -0.001 -0.004  -0.006
New York 0.023 0049 0030 0024 0021  0.020 0.026 0.007 0.001 -0.002  -0.003
N. Carolina 0.035 0059 0.040 0.034 0031  0.029 0.024  0.005 -0.001 -0.004  -0.005
N. Dakota 0.022 0047 0028 0022 0019 0017 0.025 0.006 0.000 -0.003  -0.004
Ohio 0.027 0050 0.031 0026 0023 0021 0.024 0.005 -0.001 -0.004  -0.005
Oklahoma 0.027 0051 0032 0026 0023 0022 0.024  0.005 -0.001 -0.004  -0.005
Oregon 0.030 0054 0.035 0029 0026 0025 0.024  0.006 0.000 -0.003  -0.005
Pennsylvania 0.029 0052 0033 0027 0024 0023 0.023  0.004 -0.002 -0.005  -0.006
Rhode Island 0.017 0045 0026 0021 0018 0016 0.028  0.009 0.003  0.000  -0.001
S. Carolina 0.035 0059 0.040 0.034 0031  0.029 0.024  0.005 -0.001 -0.004  -0.005
S. Dakota 0.026 0050 0031 0026 0023 0021 0.024  0.005 -0.001 -0.004  -0.005
Tennessee 0.030 0052 0.033 0027 0024 0023 0.022  0.003 -0.003 -0.006  -0.007
Texas 0.046 0068 0.049 0.043 0040  0.039 0.022  0.003 -0.002 -0.005  -0.007
Utah 0.023 0046 0027 0021 0018 0017 0.022  0.004 -0.002 -0.005  -0.007
Vermont -0.007 0018 -0.001 -0.006 -0.009 -0.011 0.025 0.006 0.000 -0.003  -0.004
Virginia 0.032 0056 0037 0032 0029  0.027 0.025 0.006 0.000 -0.003  -0.005
Washington 0.023 0047 0028 0022 0019 0018 0.024 0.005 -0.001 -0.004  -0.005
W. Virginia 0.019 0043 0024 0018 0015 0014 0.024  0.005 -0.001 -0.004  -0.006
Wisconsin 0.023 0048 0029 0023 0020 0019 0.024  0.005 0.000 -0.003  -0.005
Wyoming 0.015 0039 0020 0015 0012 0010 0.024 0.005 -0.001 -0.004  -0.005
Average 0.026 0.050 0.031 0.025 0.022  0.021 0.024  0.005 -0.001 -0.004  -0.005

Notes: (i) Estimates are based on the Threshold Panel Fixed-Effects model (1) in the main text of the paper using
the Panel Corrected Standard Errors (PCSE) estimation approach (see Table 2). (i) For the columns (7), (8), (9),

(10) and (11), the significant mean differences, for a significance level 0.01, are signified with bold values.
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Fig. 9| Counterfactual analysis for the ESM index

Notes: (i) The vertical left-axis depicts the expected growth of infection; the bottom horizontal left-axis displays the ESM index, and
the bottom horizontal right-axis depicts the state by using the two-digit code abbreviation.

(i) The two-digit state abbreviations are: Alabama: AL, Alaska: AK, Arizona: AZ, Arkansas: AR, California: CA, Colorado: CO,
Connecticut: CT, Delaware: DE, Florida: FL, Georgia: GA, Hawaii: HI, Idaho: ID, Illinois: IL, Indiana: IN, Iowa: IA, Kansas: KS,
Kentucky: KY, Louisiana: LA, Maine: ME, Maryland: MD, Massachusetts: MA, Michigan: MI, Minnesota: MN, Mississippi: MS,
Missouri: MO, Montana: MT, Nebraska: NE, Nevada: NV, New Hampshire: NH, New Jersey: NJ, New Mexico: NM, New York:
NY, North Carolina: NC, North Dakota: ND, Ohio: OH, Oklahoma: OK, Oregon: OR, Pennsylvania: PA, Rhode Island: RI, South
Carolina: SC, South Dakota: SD, Tennessee: TN, Texas: TX, Utah: UT, Vermont: VT, Virginia: VA, Washington: WA, West Virginia:
WV, Wisconsin: WI, Wyoming: WY.

(iii) The response surface for the expected growth of infections is colored based on the magnitude of the responses (responses (e.g.
shades of blue, turquoise, and yellow refer to a positive growth, white signifies a zero growth and shades of red imply negative
growth).

5. Conclusions

We examine, for the U.S. states, the pairwise relationship between NPIs and the growth
of COVID-19 confirmed cases by allowing government interventions to affect infections
in a heterogeneous manner based on their varying strength. Using a two-threshold panel
fixed-effects specification and conditioning on a set of regime independent variables such
as ESM and climatic conditions we reach a number of findings. First, we identify three
distinct regimes of ‘low’, ‘medium’ and ‘high’ severity interventions; interventions have a
stronger impact in reducing infections at the ‘high’ regime. Second, ESM are significant in
reducing COVID-19 cases growth down over and above the impact of NPIs. Third, we
identify a negative and significant impact of the climatic conditions on the growth of
COVID-19 cases. Fourth, counterfactual analysis shows that the actual conducted NPIs
significantly reduced the daily average percentage growth of infections by 21.4 percentage
points compared to the scenario of no government action. At the other extreme, had

government NPIs remained at the highest stringency level throughout the sample, the daily
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average growth of infections would have been lower by 4.9 percentage points. Fifth, the
implemented ESM reduced the average daily percentage growth of infections by 2.4
percentage points compared to the scenario of no economic support. Finally, we find that
only NPIs classified at the high regime can reverse the growth rate of infections to a
negative one. Recent epidemiological developments suggest the existence of a mutated
Covid-19 variant with higher transmissibility (Kupferschmidt, 2021). It is tempting to
argue that stronger government interventions, in excess of the high threshold estimated in
this study, might have to be put in place in order to reduce the growth rate of COVID-19
infections not least because such action will arguably restrict the chances of the virus
evolving even further.

Our paper contributes to the understanding of the exact pairwise regime-
dependent relationship between containment measures and confirmed cases by
quantifying in a heterogeneous manner the impact of government interventions on
COVID-19 infections. Our findings seek to allow policy-makers to timely plan more
effective short-run interventions towards handling infections. Last but not least, our
findings seek to inform policy-makers of how to minimize the negative impact of
government stringency on economic activity and achieve cost savings in the health sector

and efficient allocation of existing (but nonetheless limited) resources.
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