GAME THEORY SPRING 2022

LECTURE NOTES SET 8: SEQUENTIAL GAMES OF INCOMPLETE INFORMATION

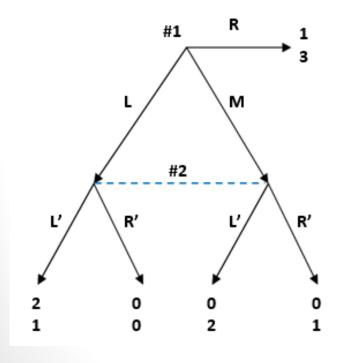
Eleftherios Filippiadis

Office: Г∆3, 310 Phone number: 2310-891770 Email: <u>efilipp@uom.gr</u>

Extensive form games with incomplete information

In extensive games with imperfect information players may, at some point, face a situation inconsistent with the presumed equilibrium being played (i.e., find themselves on an off-equilibrium path). How should they behave there? Is sub-game perfection enough to correctly describe how players should behave off-equilibrium?

Example



		#2	
		Ľ	R'
	L	2,1	0,0
#1	Μ	0,2	0,1
	R	1,3	1,3

In this case NE=SPNE because there is only one subgame (i.e., the entire tree). Note then that

$$\mathsf{SPNE}_1 = \{\mathsf{L}, \mathsf{L}'\}$$

 $SPNE_2 = NE_2 = \{R, R'\}$

But there is an inconsistency \rightarrow player #2 will NEVER play R' as it is a strictly dominated strategy!

2

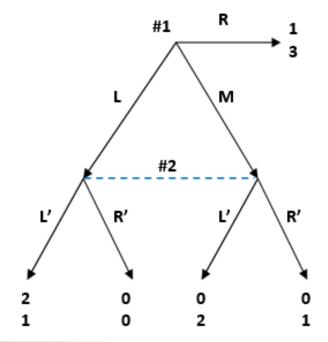
Extensive form games with incomplete information

We have to impose some requirements \rightarrow

Requirement 1: at each information set the players with the move must have a belief (i.e., a probability distribution) over the nodes in the information set.

Requirement 2: players' strategies must be sequentially rational. At each information set the action taken by the players must be optimal given the players' beliefs and everyone's subsequent strategies.

In the previous example



#2, if he finds himself at his information set, he MUST assign probabilities over the nodes on that information set.

Then, #2 compares his expected payoffs from choosing one or the other action:

> EU₂(L')=px1+(1-p)x2=...=2-p EU₂(R')=px0+(1-p)x1=...=1-p

3

Extensive form games with incomplete information

Requirement 3: At information sets on the equilibrium path, beliefs are determined by Bayes' Rule.

Requirement 4: At information sets off the equilibrium path beliefs are determined by Bayes' Rule where possible.

Hence...

... A Perfect Bayesian Nash Equilibrium is a set of strategies and beliefs such that strategies are sequentially rational given the players' beliefs and players update their beliefs based on Bayes' Rule wherever possible.

Signaling games

- Extensive games of imperfect information where informed players move first
- A signaling game has (at least) two players
 A sender S of the signal
 A receiver R
- Nature *N* draws type t_i for the sender from $T_S = \{t_1, t_2, ..., t_n\}$ according to a probability distribution $p(t_i) > 0$ where $p(t_1) + ... p(t_n) = 1$ (*i.e.*, the prior beliefs)
- The sender learns t_i and chooses a message m_j (action of S) from $M = \{m_1, \dots, m_x\}$
- The receiver observes m_j and chooses an action a_k from $A = \{a_1, \dots, a_y\}$
- Payoffs are calculated by $u_S(t_i, m_j, a^*(m_j))$ and $u_R(t_i, m_j, a_k)$

Perfect Bayesian Equilibrium in Signaling Games

<u>Requirement 1</u>: after receiving any message $m_j \in M$, the receiver must have a belief about which types could have sent m_j :

 $\mu(t_i|m_j) \geq 0$, $\forall t_i$ s.t. $\sum_{t_i \in T_S} \mu(t_i|m_j) = 1$

Requirement 2:

Receiver \rightarrow for each $m_j \in M$, the receiver's action $a^*(m_j)$ must maximize the receiver's expected payoff given the belief $\mu(t_i|m_j)$

$$a^*(m_j) = \arg \max_{a^* \in A} \sum_{t_i \in T_S} \mu(t_i | m_j) u_R(t_i, m_j, a_k)$$

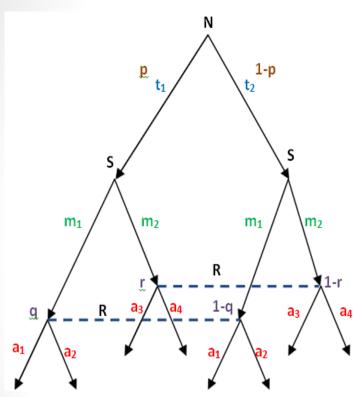
Sender \rightarrow for each type $t_i \in T_S$ the sender's message $m^*(t_i)$ must maximize the sender's payoff given the receiver's strategy (i.e., backward induction is implied here)

$$m^*(t_i) = \arg \max_{m_j \in M} u_S(t_i, m_j, a^*(m_j)), \qquad \forall t_i$$

6

<u>Requirement 3</u>: for each $m_j \in M$ that is on the equilibrium path the receiver's beliefs must follow from Bayes' Rule and the Sender's strategy $\mu(t_i|m_j) = \frac{p(t_i, m_j)}{p(m_j)}$

Perfect Bayesian Equilibrium in Signaling Games



• <u>Types:</u> $T_S = \{t_1, t_2\}$

- Priors: t_1 with probability p and t_2 with probability (1-p)
- The Receiver assigns probabilities on each note on any of his given information sets, i.e., q and (1-q) on the nodes on the first information set, and r and (1-r) on the nodes on the second information set.
- <u>Beliefs of R</u>: the Receiver updates his beliefs (i.e., the probabilities on each node on any of his information sets) using Bayes' Rule. For example,

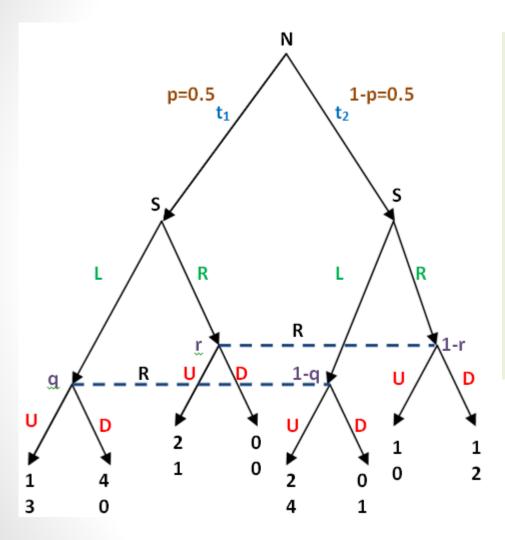
$$\mu(p|m_1) = \frac{Pr(p \cap m_1)}{Pr(m_1)} = \frac{pq}{pq + (1-p)}$$
(1-q)

*Notice that there are no off-equilibrium paths. Thus, Requirement 4 is redundant.

Definition: A pure strategy Perfect Bayesian Equilibrium in signaling games is a pair of strategies $m^*(t_i)$ and $a^*(m_j)$ and a belief $\mu(t_i|m_j)$ satisfying signaling requirements 1-3.

Perfect Bayesian Equilibrium in Signaling Games

Example



We will be looking for possible equilibria of two distinct types:

- Pooling equilibria, i.e., the two types of the Sender are sending the same message.
- 2. Separating equilibria, i.e., the two types of the Sender are sending distinct messages

8