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This textbook presents worked-out exercises on Game Theory, with detailed
step-by-step explanations, which both undergraduate and master’s students can use
to further understand equilibrium behavior in strategic settings. While most text-
books on Game Theory focus on theoretical results; see, for instance, Tirole (1991),
Gibbons (1992) and Osborne (2004), they offer few practice exercises. Our goal is,
hence, to complement the theoretical tools in current textbooks by providing
practice exercises in which students can learn to systematically apply theoretical
solution concepts to different fields of Economics and Business, such as industrial
economics, public policy and regulation.

The textbook provides many exercises with detailed verbal explanations (97
exercises in total), which cover the topics required by Game Theory courses at the
undergraduate level, and by most courses at the Masters level. Importantly, our
textbook emphasizes the economic intuition behind the main results, and avoids
unnecessary notation when possible, and thus is useful as a reference book regardless
of the Game Theory textbook adopted by each instructor. Importantly, these points
differentiate our presentation from that found in solutions manuals. Unlike these
manuals, which can be rarely read in isolation, our textbook allows students to
essentially read each exercise without difficulties, thanks to the detailed verbal
explanations, figures, and intuitions. Furthermore, for presentation purposes, each
chapter ranks exercises according to their difficulty (with a letter A to C next to the
exercise number), allowing students to first set their foundations using easy exercises
(type-A), and then move on to harder applications (type-B and C exercises).

Organization of the Book

We first examine games that are required in most courses at the undergraduate level,
and then advance to more challenging games (which are often the content of
master’s courses), both in Economics and Business programs. Specifically, Chaps.
1-6 cover complete-information games, separately analyzing simultaneous-move
and sequential-move games, with applications from industrial economics and reg-
ulation; thus helping students apply Game Theory to other fields of research.
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Chapters 7-9 pay special attention to incomplete information games, such as sig-
naling games, cheap talk games, and equilibrium refinements. These topics have
experienced a significant expansion in the last two decades, both in the theoretical
and applied literature. Yet to this day most textbooks lack detailed worked-out
examples that students can use as a guideline, leading them to especially struggle
with this topic, which often becomes the most challenging for both undergraduate
and graduate students. In contrast, our presentation emphasizes the common steps
to follow when solving these types of incomplete information games, and includes
graphical illustrations to focus students’ attention to the most relevant payoff
comparisons at each point of the analysis.

How to Use This Textbook

Some instructors may use parts of the textbook in class in order to clarify how to
apply certain solution concepts that are only theoretically covered in standard
textbooks. Alternatively, other instructors may prefer to assign certain exercises as a
required reading, since these exercises closely complement the material covered in
class. This strategy could prepare students for the homework assignment on a
similar topic, since our practice exercises emphasize the approach students need to
follow in each class of games, and the main intuition behind each step. This strategy
might be especially attractive for instructors at the graduate level, who could spend
more time covering the theoretical foundations in class, asking students to go over
our worked-out applications of each solution concept on their own. In addition,
since exercises are ranked according to their difficulty, instructors at the under-
graduate level can assign the reading of relatively easy exercises (type-A) and spend
more time explaining the intermediate level exercises in class (type-B questions),
whereas instructors teaching a graduate-level course can assume that students are
reading most type-A exercises on their own, and only use class time to explain
type-C (and some type-B) exercises.
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Introduction

This chapter first analyzes how to represent games in normal form (using matrices)
and in extensive form (using game trees). We afterwards describe how to sys-
tematically detect strictly dominated strategies, i.e., strategies that a player would
not use regardless of the action chosen by his opponents.

Strictly dominated strategies. Player i finds strategy s} as strictly dominated by

another strategy s; if
u; (s;,s_,) > u;(s;,s_;) for every strategy profiles_; € S_;

where s_; = (s1, 52, .., Si—1,8i+1, - - ., Sy ) represents the profile of strategies selected
by player i’s opponents, i.e., a vector with N — 1 components. In words, strategy s;
strictly dominates s; if it yields a strictly higher utility than strategy s; regardless of
the strategy profile that player i’s rival choose.

Since we can anticipate that strictly dominated strategies will not be selected by
rational players, we apply the Iterative Deletion of Strictly Dominated Strategies
(IDSDS) to predict players’ behavior. We elaborate on the application of IDSDS in
games with two and more players, and in games where players are allowed to choose
between two strategies, between more than two strategies, or a continuum of
strategies. In some games, we will show that the application of IDSDS is powerful,
as it rules out dominated strategies and leaves us with a relatively precise equilibrium
prediction, i.e., only one or two strategy profiles surviving the application of IDSDS.
In other games, however, we will see that IDSDS “does not have a bite” because no
strategies are dominated; that is, a strategy does not provide a strictly lower payoff to

The original version of the chapter was revised: The erratum to the chapter is available at:
10.1007/978-3-319-32963-5_11

© Springer International Publishing Switzerland 2016 1
F. Munoz-Garcia and D. Toro-Gonzalez, Strategy and Game Theory,
Springer Texts in Business and Economics, DOI 10.1007/978-3-319-32963-5_1
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player i regardless of the strategy profile selected by his opponents (it can provide a
higher payoff under some of his opponents’ strategies). In this case, we won’t be able
to offer an equilibrium prediction, other than to say that the entire game is our most
precise equilibrium prediction! In subsequent chapters, however, we explore other
solution concepts that provide more precise predictions that IDSDS.

Finally, we study the deletion of weakly dominated strategies does not neces-
sarily lead to the same equilibrium outcomes as IDSDS, and its application is in fact
sensible to deletion order. We can apply the above definition of strictly dominated
strategies to define weakly dominated strategies. Specifically, we say that strategy s;
weakly dominates s if

ui(s;., s_;) > u;(s7, s_;) forevery strategy profiles_; € S_;, and

ui(s;, s—;) > u;(s7, s—;) for at least one strategy profiles_; € S_;.

Exercise 1—From Extensive Form to Normal form
Representation-I*

Represent the extensive-form game depicted in Fig. 1.1 using its normal-form
(matrix) representation.

Answer
We start identifying the strategy sets of all players in the game. The cardinality of
these sets (number of elements in each set) will determine the number of rows and
columns in the normal-form representation of the game.

Starting from the initial node (in the root of the game tree located on the
left-hand side of the figure), Player 1 must select either strategy A or B, thus
implying that the strategy space for player 1, S, is:

Sy ={A,B}

In the next stage of the game, Player 2 conditions his strategy on player 1’s
choice, since player 2 observes such a choice before selecting his own. We need to
consider that the strategy profile of player 2 (S,) must be a complete plan of action
(complete contingent plan). Therefore, his strategy space becomes:

Fig. 1.1 Extensive-form c 0.0
game
2
A
1 D 1,1
2 E 2,2
B
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S, = {CE, CF, DE, DF}

where the first component of every strategy describes how player 2 responds upon
observing that player 1 chose A, while the second component represents player 2’s
response after observing that player 1 selected B. For example, strategy CE describes that
player 2 responds with C after player 1 chooses A, but with E after player 1 chooses B.

Using the strategy space of player 1, with only two available strategies
S1 = {A, B}, and that of player 2, with four available strategies S, = {CE, CF, DE,
DF'}, we obtain the 2 x 4 payoff matrix represented in Fig. 1.2. For instance, the
payoffs associated with the strategy profile where player 1 chooses A and player 2
chooses C if A and E if B, {A, CE}, is (0,0).

Remark: Note that, if player 2 could not observe player 1’s action before selecting his
own (either C or D), then player 2’s strategy space would be S, = {C, D}, implying
that the normal form representation of the game would be a 2 X 2 matrix with A and
B in rows for player 1, and C and D in columns for player 2.

Exercise 2—From Extensive Form to Normal Form
Representation-11*

Consider the extensive form game in Fig. 1.3

Part (a) Describe player 1’s strategy space.

Part (b) Describe player 2’s strategy space.

Part (c) Take your results from parts (a) and (b) and construct a matrix representing
the normal form game of this game tree.

Answer

Part (a) Player 1 has three available strategies, implying a strategy space of
S ={H M, L}

Part (b) Since in this game players act sequentially, the second mover can con-
dition his move on the first player’s action. Hence, player 2’s strategy set is

S, = {aaa, aar, arr, rrr, rra, raa, ara, rar}
where each of the strategies represents a complete plan of action that specifies

player 2’s response after player 1 chooses H, after player 1 selects M, and after
player 1 chooses L, respectively. For instance arr indicates that player 2 responds

Player 2
Player 1
CE CF DE DF
Al00 (00 |1,1 1,1
B |22]134 |22]3.4

Fig. 1.2 Normal-form game
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Player 1

0
10
Fig. 1.3 Extensive-form game

with a after observing that player 1 chose H, with r after observing M, and with
r after observing L.

Remark: If player 2 could not observe player 1’s choice, the extensive-form rep-
resentation of the game would depict a long dashed line connecting the three nodes
at which player 2 is called on to move. (This dashed line is often referred as player
2’s “information set”) In this case, player 2 would not be able to condition his
choice (since he cannot observe which action player 1 chose before him), thus
implying that player 2’s set of available actions reduces to only two (accept or
reject), i.e., S» = {a, r}.

Part (c) If we take the three available strategies for player 1, and the above eight

strategies for player 2, we obtain the following normal form game (Fig. 1.4).
Notice that this normal form representation contains the same payoffs as the

game tree. For instance, after player 1 chooses M (in the second row), payoff pairs

Player 2

Player 1 aaa aar arr rrr rra raa ara | rar
0,10 | 0,10 | 0,10 | 0,0 0,0 0,0 | 0,10 | 0,0
5,5 5,5 0,0 0,0 0,0 5,5 0,0 | 5,5
10,0 | 0,0 0,0 0,0 | 10,0 | 10,0 | 10,0 | 0,0

SN

Fig. 1.4 Normal-form game
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only depend on player 2’s response after observing M (the second component of
every strategy triplet in the columns). Hence, payoff pairs are either (5, 5), which
arise when player 2 responds with a after M, or (0, 0), which emerge when player 2
responds instead with r after observing M.

Exercise 3—From Extensive Form to Normal Form
Representation-III®

Consider the extensive-form game in Fig. 1.5. Provide its normal form (matrix)
representation.

Answer

Player 2. From the extensive form game, we know player 2 only plays once and has
two available choices, either A or B. The dashed line connecting the two nodes at
which player 2 is called on to move indicates that player 2 cannot observe player 1°s
choice. Hence, he cannot condition his choice on player 1’s previous action, ulti-
mately implying that his strategy space reduces to S, = {A, B}.

Player 1. Player 1, however, plays twice (in the root of the game tree, and after
player 2 responds) and has multiple choices:

1. First, he must select either U or D, at the initial node of the tree, i.e., left-hand
side of the figure;

X 3,8
1
A [
2 | Y 8,1
|
l LX 1,2
U | B
|
! |
| Y 2,1
|
|
|
. | A 6,6
[
1 P 5,5
B
Q 0,0

Fig. 1.5 Extensive-form game
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Fig. 1.6 Normal-form game

A B

UXP | 3,8 (1,2
UXQ | 3,8 |1,2
UYP | 8,1 |21
UYyQ | 81 |21
DXP | 6,6 |5,5
DXQ | 6,6 (0,0
DYP | 6,6 |5,5
DYQ | 6,6 (0,0

2. Then choose X or Y, in case that he played U at the beginning of the game. (Note
that in this event he cannot condition his choice on player 2’s choice, since he
cannot observe whether player 2 selected A or B); and

3. Then choose P or Q, which only becomes available to player 1 in the event that
player 2 responds with B after player 1 chose D.

Therefore, player 1’s strategy space is composed of triplets, as follows,
Sy = {UXP,UXQ, UYP,UYQ,DXP,DXQ,DYP,DYQ}

whereby the first component of every triplet describes player 1°s choice at the
beginning of the game (the root of the game tree), the second component represents
his decision (X or Y) in the event that he chose U and afterwards player 2 responded
with either A or B (something player 1 cannot observe), and the third component
reflects his choice in the case that he chose D at the beginning of the game and
player 2 responds with B."

As a consequence, the normal-form representation of the game is given by the
following 8 x 2 matrix represented in Fig. 1.6.

'You might be wondering why do we have to describe player 1’s choice between X and Y in
triplets indicating that player 1 selected D at the beginning of the game. The reason for this detailed
description is twofold: on one hand, a complete contingent plan must indicate a player’s choices at
every node at which he is called on to move, even those nodes that would not emerge along the
equilibrium path. This is an important description in case player 1 submits his complete contingent
plan to a representative who will play on his behalf. In this context, if the representative makes a
mistake and selects U, rather than D, he can later on know how to behave after player 2 responds.
If player 1’s contingent plan was, instead, incomplete (not describing his choice upon player 2’s
response), the representative would not know how to react afterwards. On the other hand, a
players’ contingent plan can induce certain responses from a player’s opponents. For instance, if
player 2 knows that player 1 will only plays Q in the last node at which he is called on to move,
player 2 would have further incentives to play A. Hence, complete contingent plans can induce
certain best responses from a player’s opponents, which we seek to examine. (We elaborate on this
topic in the next chapters, especially when analyzing equilibrium behavior in sequential-move
games.).
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Exercise 4—Representing Games in Its Extensive Form”®

Consider the standard rock-paper-scissors game, which you probably played in your
childhood. If you did not play this old game before, do not worry, we will explain it
next. Two players face each other with both hands on their back. Then each player
simultaneously chooses rock (R), paper (P) or scissors (S) by rapidly moving one of his
hands to the front, showing his fits (a symbol of a rock), his extended palm (repre-
senting a paper), or two of his fingers in form of a V (symbolizing a pair of scissors).
Players seek to select an object that is ranked superior to that of his opponent, where
the ranking is the following: scissors beat paper (since they cut it), paper beats rock
(because it can wrap it over), and rock beats scissors (since it can smash them). For
simplicity, consider that a player obtains a payoff of 1 when his object wins, —1 when it
losses, and O if there is a tie (which only occurs when both players select the same
object). Provide a figure with the extensive-form representation of this game.

Answer

Since the game is simultaneous, the extensive-form representation of this game will
have three branches in its root (initial node), corresponding to Player 1’s choices, as
in the game tree depicted in Fig. 1.7. Since Player 2 does not observe Player 1’s
choice before choosing his own, Player 2 has three available actions (Rock, Paper
and Scissors) which cannot be conditioned on Player 1’s actual choice. We
graphically represent Player 2’s lack of information when he is called on to move by
connecting Player 2’s three nodes with an information set (dashed line in Fig. 1.7).

R 0,0
2 P
1,1
|
: S 1,-1
2 |
| R 1’_1
|
! P ' P
> 0,0
|
' S 1,1
|
S |
| R 1,1
|
' p
1,-1
S 0,0

Fig. 1.7 Extensive-form of the Rock, Paper and Scissors game
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Finally, to represent the payoffs at the terminal nodes of the tree, we just follow
the ranking specified above. For instance, when player 1 chooses rock (R) and
player 2 selects scissors (S), player 1 wins, obtaining a payoff of 1, while player 2
losses, accruing a payoff of —1, this set of payoffs entails the payoff pair (1, —1). If,
instead, player 2 selected paper, he would become the winner (since paper wraps
the rock), entailing a payoff of 1 for player 2 and —1 for player 1, that is (—1, 1).
Finally, notice that in those cases in which the objects players display coincide, i.e.,
{R, R}, {P, P} or {S, S}, the payoff pair becomes (0, 0).

Exercise 5—Prisoners’ Dilemma Game®

Two individuals have been detained for a minor offense and confined in separate
cells. The investigators suspect that these individuals are involved in a major crime,
and separately offer each prisoner the following deal, as depicted in Fig. 1.8: if you
confess while your partner doesn’t, you will leave today without serving any time in
jail; if you confess and your partner also confesses, you will have to serve 5 years in
jail (since prosecutors probably can accumulate more evidence against each pris-
oner when they both confess); if you don’t confess and your partner does, you will
have to serve 15 years in jail (since you did not cooperate with the prosecution but
your partner’s confession provides the police with enough evidence against you);
finally, if neither of you confess, you will have to serve one year in jail.

Part (a) Draw the prisoners’ dilemma game in its extensive form representation.
Part (b) Mark its initial node, its terminal nodes, and its information set. Why do
we represent this information set in the prisoners’ dilemma game in its extensive
form?

Part (c) How many strategies player 1 has? What about player 2?

Answer

Part (a) Since both players must simultaneously choose whether or not to confess,
player 2 cannot condition his strategy on player 1’s decision (which he cannot
observe). We depict this lack of information by connecting both of the nodes at
which player 2 is called on to move with an information set (dashed line) in Fig. 1.9.
Part (b) Its initial node is the “root” of the game tree, whereby player 1 is called on
to move between Confess and Not confess, the terminal nodes are the nodes where

Prisoner 2

Confess Not confess

Confess -5,-5 0,-15
Not confess = -15,0 -1,-1

Prisoner 1

Fig. 1.8 Normal-form of Prisoners’ Dilemma game
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Player 1

Not

fess
Confess Confess

Not
Confess

Not

f SS
Confess Confess

Confess

0

o

Fig. 1.9 Prisoners’ dilemma game in its extensive-form

the game ends (and where we represent the payoffs that are accrued to every
player), and the information set is a dashed line connecting the nodes in which the
second mover is called to move. We represent this information set to denote that the
second mover is choosing whether to Confess or Not Confess without knowing
exactly what player 1 did.

Part (c) Player 1 only has two possible strategies: §; = {Confess, Not Confess}.
The second player has only two possible strategies S, = {Confess, Not Confess} as
well, since he is not able to observe what player 1 did before taking his decision. As
a consequence, player 2 cannot condition his strategy on player 1’s choice.

Exercise 6—Dominance Solvable Games”

Two political parties simultaneously decide how much to spend on advertising,
either low, medium or high, yielding the payoffs in the following matrix (Fig. 1.10)
in which the Red party chooses rows and the Blue party chooses columns. Find the
strategy profile/s that survive IDSDS.

Answer

Let us start by analyzing the Red party (row player). First, note that High is a
strictly dominant strategy for the Red party, since it yields a higher payoff than both
Low and Middle, regardless of the strategy chosen by the Blue party (i.e., inde-
pendently of the column the Blue party selects). Indeed, 100 > 80 > 50 when the
Blue party chooses the Low column, 80 > 70 > 0 when the Blue party selects the
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Blue party
Low Middle High
Low 80,80 0,50 0,100
Red party Middle 50,0 70,70 20,80
High 100,0 80,20 50,50

Fig. 1.10 Political parties normal-form game

Middle column, and 50 > 20 > 0 when the Blue party chooses the High column.
As a consequence, both Low and Middle are strictly dominated strategies for the
Red party (they are both strictly dominated by High in the bottom row), and we can
thus delete the rows corresponding to Low and Middle from the payoff matrix,
leaving us with the following reduced matrix (Fig. 1.11).

We can now check if there are any strictly dominated strategies for the Blue
party (in columns). Similarly as for the Red party, High strictly dominates both Low
and Middle since 50 > 20 > 0; and we can thus delete the columns corresponding
to Low and Middle from the payoff matrix, leaving us with a single cell, (High,
High). Hence, (High, High) is the unique strategy surviving IDSDS.

Exercise 7—Applying IDSDS (lterated Deletion of Strictly
Dominated Strategies)”

Consider the simultaneous-move game depicted in Fig. 1.12., where two players
choose between several strategies.

Find which strategies survive the iterative deletion of strictly dominated
strategies, IDSDS.

Answer

Let us start by identifying the strategies of player 1 that are strictly dominated by
other of his own strategies. When player 1 chooses a, in the first row, his payoff is
either 1 (when player 2 chooses x or y) or zero (when player 2 chooses z, in the third

Blue party
oW Middle High
Red party High 100,0 80,20 50,50

Fig. 1.11 Political parties reduced normal-form game
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Fig. 1.12 Normal-form
game with four available
strategies X y 7

Player 2

Player 1
a 1,2 1,2 ] 03
b | 40 1,3 | 0,2
c| 3.1 2,1 1,2
d| 02 0,1 24

column). These payoffs are unambiguously lower than those in strategy c in the third
row. In particular, when player 2 chooses x (in the first column), player 1 obtains a
payoff of 3 with ¢ but only a payoff of 1 with a; when player 2 chooses y, player 1
earns 2 with ¢ but only 1 with a; and when player 2 selects z, player 1 obtains 1 with
¢ but a zero payoff with a. Hence, player 1’s strategy « is strictly dominated by c,
since the former yields a lower payoff than the latter regardless of the strategy that
player 2 selects (i.e., regardless of the column he uses). Thus, the strategies of player
1 that survive one round of the iterative deletion of strictly dominated strategies
(IDSDS) are b, c and d, as depicted in the payoff matrix in Fig. 1.13.

Let us now turn to player 2 (by looking at the second payoff within every cell in
the matrix). In particular, we can see that strategy z strictly dominates x, since it
provides to player 2 a larger payoff than x regardless of the strategy (row) that
player 1 uses Specifically, when player 1 chooses b (top row), player 2 obtains a
payoff of 2 by selecting z (see the right-hand column) but only a payoff of zero from
choosing x (in the left-hand column). Similarly, when player 1 chooses ¢ (in the
middle row), player 2 earns a payoff of 2 from z but only a payoff of 1 from
x. Finally, when player 1 selects d (in the bottom row), player 2 obtains a payoff of
4 from z but only a payoff of 2 from x. Hence, strategy z yields player 2 a larger
payoff independently of the strategy chosen by player 1, i.e., z strictly dominates x,
which allows us to delete strategy x from the payoff matrix. Thus, the strategies of
player 2 that survive one additional round of the IDSDS are y and z, which helps us
further reduce the payoff matrix to that in Fig. 1.14.

We can now move to player 1 again. For him, strategy c strictly dominates b,
since it provides an unambiguously larger payoff than b regardless of the strategy
selected by player 2 (regardless of the column). In particular, when player 2 chooses

Fig. 1.13 Reduced
normal-form game after
one round of IDSDS Player 1

Player 2
X y z
b | 4,0 1,3 0,2
3,1 2,1 1,2
d| 02 0,1 24
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Player 2
Player 1 y .
b 13 | 02

B 21 | 12
dl 01| 24

Fig. 1.14 Reduced normal-form game after two rounds of IDSDS

Player 2

Player 1 y 2

c 2,1 1,2
d 0,1 2,4

Fig. 1.15 Reduced normal-form game

y (left-hand column), player 1 obtains a payoff of 2 from selecting strategy c but
only one from strategy b. Similarly, if player 2 chooses z (in the right-hand col-
umn), player 1 obtains a payoff of one from strategy ¢ but a payoff of zero from
strategy b. As a consequence, strategy b is strictly dominated, which allows us to
delete strategy b from the above matrix, obtaining the reduced matrix in Fig. 1.15.

At this point, returning to player 2, we note that z strictly dominates y, so we can
delete strategy y for player 2. Finally, considering player 2 always chooses z, for
player 1 strategy d strictly dominates c, since the payoff of 2 is higher than one unit
derived from playing c. Therefore, our most precise equilibrium prediction after
using IDSDS is remaining strategy profile (d,z), indicating that player 1 will always
choose d, while player 2 will always select z.

Exercise 8—Applying IDSDS When Players Have Five
Available Strategies

Two students in the Game Theory course plan to take an exam tomorrow. The
professor seeks to create incentives for students to study, so he tells them that the
student with the highest score will receive a grade of A and the one with the lower
score will receive a B. Student 1’s score equals x; + 1.5, where x; denotes the
amount of hours studying. (That is, he assume that the greater the effort, the higher
her score is.) Student 2’s score equals x», where x; is the hours she studies. Note
that these score functions imply that, if both students study the same number of
hours, x; = x;, student 1 obtains a highest score, i.e., she might be the smarter of
the two. Assume, for simplicity, that the hours of studying for the game theory class
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is an integer number, and that they cannot exceed 5 h, i.e., x; € {1,2,...,5}. The
payoff to every student 7 is 10 — x; if she gets an A and 8 — x; if she gets a B.

Part (a) Find which strategies survive the iterative deletion of strictly dominated
strategies (IDSDS).
Part (b) Which strategies survive the iterative deletion of weakly dominated
strategies (IDWDS).

Answer

Part (a) Let us first show that for either player, exerting a zero effort i.e., x; = 0,
strictly dominates effort levels of 3, 4, and 5. If x; = O then player i’s payoff is at
least 8, which occurs when she gets a B. By choosing any other effort level x;, the
highest possible payoff is 10 — x;, which occurs when she gets an A. Since
8 > 10 — x; when x; > 2, then zero effort strictly dominates efforts of 3, 4, or 5.
Intuitively, we consider which is the lowest payoff that player i can obtain from
exerting zero effort, and compare it with the highest payoff he could obtain from
deviating to a positive effort level x; # 0. If this holds for some effort levels (as it
does here for all x; > 2), it means that, regardless of what the other student j # i
does, student i is strictly better off choosing a zero effort than deviating.

Once we delete effort levels satisfying x; > 2, i.e., x; = 3, 4, and 5 for both
player 1 (in rows) and player 2 (in columns), we obtain the 3 x 3 payoff matrix
depicted in Fig. 1.16.

As a practice of how to construct the payoffs in this matrix, note that, for
instance, when player 1 chooses x; = 1 and player 2 selects x, = 2, player 1 still
gets the highest score, i.e., player 1’s score is 1 + 1.5 = 2.5 thus exceeding player
2’s score of 2, which implies that player 1’s payoff is 10 — 1 = 9 while player 2’s
payoff is 8 — 2 = 6.

At this point, we can easily note that player 2 finds x, = 1 (in the center column)
to be strictly dominated by x, = O (in the left-hand column). Indeed, regardless of
which strategy player 1 uses (i.e., regardless of the particular row you look at)
player 2 obtains the lowest score on the exam when he chooses an effort level of 0
or 1, since player 1 benefits from a 1.5 score advantage. Indeed, exerting a zero
effort yields player 2 a payoff of 8, which is unambiguously higher than the payoff
he obtains from exerting an effort of x, = 1, which is 7, regardless of the particular
effort level exerted by player 1. We can thus delete the column referred to x, = 1 for
player 2, which leaves us with the reduced form matrix in Fig. 1.17.

Player 2
0 1 2
10,8 10,7 | 8,8
1 9,8 9,7 9,6
2 8,8 8,7 8,6

Player 1

Fig. 1.16 Reduced normal-form game
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Now consider player 1. Notice that an effort of x; =1 (in the middle row)
strictly dominates x; = 2 (in the bottom row), since the former yields a payoff of 9
regardless of player 2’s strategy (i.e., independently on the column), while an effort
of x; = 2 only provides player 1 a payoff of 8. We can, therefore, delete the last row
(corresponding to effort x; = 2) from the above matrix, which helps us further
reduce the payoff matrix to the 2 x 2 normal-form game in Fig. 1.18.

Unfortunately, we can no longer find any strictly dominated strategy for either
player. Specifically, neither of the two strategies of player 1 is dominated, since an
effort of x; = 0 does not yield a weakly larger payoff than x; = 1, i.e., it entails a
strictly larger payoff when player 2 chooses x, = 0 (in the left-hand column) but
lower payoff when player 2 selects x, = 2 (in the right-hand column). Similarly,
none of player 2’s strategies is strictly dominated either, since x, = 0 yields the
same payoff as x, = 2 when player 1 selects x; = 0 (top row), but a larger payoff
when player 1 chooses x; = 1 (in the bottom row).

Therefore, the set of strategies that survive IDSDS for player 1 are {0, 1} and for

player 2 are {0, 2}. Thus, the IDSDS predicts that player 1 will exert an effort of O
or 1, and that player 2 will exert effort of O or 2.
Part (b) Now let us repeat the analysis when we instead iteratively delete weakly
dominated strategies. From part (a), we know that effort levels 3, 4, and 5 are all
strictly dominated for both players, and therefore weakly dominated as well. By the
same argument, we can delete all strictly dominated strategies (since they are also
weakly dominated), leaving us with the reduced normal-form game we examined at
the end of our discussion in part (a), which we reproduce below (Fig. 1.19).

Player 2
0 2
Player 1
10,8 8,8
1 9,8 9,6
2 8,8 8,6
Fig. 1.17 Reduced normal-form game
Player 2
0 2
Player 1
10,8 8,8
1 9,8 9,6

Fig. 1.18 Reduced normal-form game
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Player 2
0 2
Player 1
10,8 8,8
1 9,8 9,6
Fig. 1.19 Reduced normal-form game
Player 2
PI 1 0
ayer
Y 10,8
1] 98

Fig. 1.20 Reduced normal-form game

While we could not identify any further strictly dominated strategies in part (a),
we can now find weakly dominated strategies in this game. In particular, notice that,
for player 2, an effort level of x, = 0 (in the left-hand column) weakly dominates
X, =2 (in the right-hand column). Indeed, a zero effort yields a payoff of 8
regardless of what player 1 does (i.e., in both rows), while x, = 2 yields a weakly
lower payoff, i.e., 8 or 6. Thus, we can delete the column corresponding to an effort
level of x, = 2 for player 2, allowing us to reduce the above payoff matrix to a
single column matrix, as depicted in Fig. 1.20.

We can finally notice that player 1 finds that an effort of x; = 0 (top now) strictly
dominates x; = 1 (in the bottom row), since player 1’s payoft from a zero effort, 10,
is strictly larger than that from an effort at x; = 1, 9. Hence, x; = O strictly dom-
inates x; = 1, and thus x; = 0 also weakly dominates x; = 1. Intuitively, if player 2
exerts a zero effort (which is the only remaining strategy for player 2 after applying
IDWDS), player 1, who starts with score advantage of 1.5, can anticipate that he
will obtain the highest score in the class even if his effort level is also zero.

After deleting this weakly dominated strategy, we are left with a single cell that
survives the application of IDWDS, corresponding to the strategy profile (x; = 0,
Xx» = 0), in which both players exert the lowest amount of effort, as Fig. 1.21
depicts. After all, it seems that the incentive scheme the instructor proposed did not
induce students to study harder for the exam, but instead to not study at all!!*

This is, however, a product of the score advantage of the most intelligent student. If the score
advantage is null, or only 0.5, the equilibrium result after applying IDWDS changes, which is left
as a practice.
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Player 2
0

Player 1 :

Fig. 1.21 Single strategy profile surviving IDWDS

Wife
Football | Opera
Husband | Football 3,1 0,0
Opera 0,0 1,3

Fig. 1.22 Normal-form representation of the Battle of the Sexes game

Exercise 9—Applying IDSDS in the Battle of the Sexes
Game®

A husband and a wife are leaving work, and do not remember which event they are
attending to tonight. Both of them, however, remember that last night’s argument
was about attending either the football game (the most preferred event for the
husband) or the opera (the most preferred event for the wife). To make matters
worse, their cell phones broke, so they cannot call each other to confirm which
event they are attending to. As a consequence, they must simultaneously and
independently decide whether to attend to the football game or the opera.

The payoff matrix in Fig. 1.22, describes the preference of the husband (wife)
for the football game (opera, respectively). Payoffs also indicate that both players
prefer to be together rather than being alone (even if they are alone at their most
preferred event). Apply IDSDS. What is the most precise prediction about how this
game will be played when you apply IDSDS?

Answer
This game does not have strictly dominated strategies (note that there is not even any
weakly dominated strategy), as we separately analyze for the husband and the wife
below.

Husband: In particular, the husband prefers to go to the football game if his wife
goes to the football game, but he would prefer to attend the opera if she goes to the
opera. That is,

MH(F,F) =3 >0:MH(O,F) and MH(0,0) =1 >OZMH(F,0)

Intuitively, the husband would like to coordinate with his wife by selecting the
same event as her, i.e., a common feature in coordination games. Therefore, there is
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no event that yields an unambiguous larger payoff regardless of the event his wife
attends to, i.e., there is no strictly dominant strategy for the husband.

Wife: A similar analysis is extensive to the wife, who would like to attend to the
opera (her preferred event) obtaining a payoff of 3 only if her husband also attends
the opera, i.e., uy(O, O) > uy(O, F). Otherwise, she obtains a larger payoff
attending to the football game, 1, rather than attending to the opera alone, 0, i.e.,
i.e., uy(F, F) > uy(F, O). Hence, there is no event that provides her with unam-
biguously larger payoffs regardless of the event her husband selects, i.e., no event
constitutes a strictly dominant strategy for the wife.

Hence, players have neither a strictly dominant nor a strictly dominated strategy.
As a consequence, the application of IDSDS does not delete any strategy what-
soever, and our equilibrium outcome prescribes that any of the four strategy profiles
in the above matrix could emerge, i.e., the husband could either attend the football
game or the opera, and similarly, the wife could attend either the football game or
the opera. (Similarly as in previous exercises, you can return to this exercise once
you are done reading Chaps. 2 and 3, and find that the Nash equilibrium solution
concept yields a more precise equilibrium prediction than IDSDS.)

Exercise 10—Applying IDSDS in Three-Player Games®

Consider the following anti-coordination game in Fig. 1.23, played by three
potential entrants seeking to enter into a new industry, such as the development of
software applications for smartphones. Every firm (labeled as A, B, or C) has the
option of entering or staying out (i.e., remain in the industry they have been
traditionally operating, such as, software for personal computers). The normal form
game in Fig. 1.23 depicts the market share that each firm obtains, as a function of
the entering decision of its rivals. Firms simultaneously and independently choose
whether or not to enter. As usual in simultaneous-move games with three players,
the triplet of payoffs describes the payoff for the row player (firm A) first, for the
column player (firm B) second, and for the matrix player (firm C) third. Find the set

Firm B Firm B
Firm A Firm A
Enter Stay Out Enter Stay Out
Enter 14,24,32 8.30.27 Enter | 16.26,30 31.16.24
Stay Out | 301624 13,12,50 Stay Out | 312314 14,26,32
Enter Stay Out
Firm C

Fig. 1.23 Normal-form representation of a three-players game
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of strategy profiles that survive the iterative deletion of strictly dominated strategies
(IDSDS). Is the equilibrium you found using this solution concept unique?

Answer

We can start by looking at the payoffs for firm C (the matrix player). [Recall that the
application of IDSDS is insensitive to the deletion order. Thus, we can start deleting
strictly dominated strategies for the row, column or matrix player, and still reach the
same equilibrium result.] In order to test for the existence of a dominated strategy for
firm C, we compare the third payoff of every cell across both matrices. Figure 1.24
provides a visual illustration of this pairwise comparison across matrices.

We find that for firm C (matrix player), entering strictly dominates staying out,
i.e., uc(sa, sp E) > uc(sy, sp O) for any strategy of firm A, s,, and firm B, sp,
32 >30, 27 >24, 24 > 14 and 50 > 32 in the pairwise payoff comparisons
depicted in Fig. 1.24 This allows us to delete the right-hand side matrix (corre-
sponding to firm C choosing to stay out) since it is strictly dominated and thus
would not be selected by firm C. We can, hence, focus on the left-hand matrix alone
(where firm C chooses to enter), which we reproduce in Fig. 1.25.

We can now check that entering is strictly dominated for the row player (firm A),
i.e., us(E, sp, E) < us(O, sp, E) for any strategy of firm B, s, once we take into account
that firm C selects its strictly dominant strategy of entering. Specifically, firm A
prefers to stay out both when firm B enters (in the left-hand column, since 30 > 14),

Firm B Firm B
Firm A 1
Enter Stay O inter ay Out
4 r i -
Enter 14,2432 £.30.27 Enter 16,26,30 31.16.24
StayOut | 301624 | 13,12,50 Stay Out | 3123,14 | 142632
Enter Stay Out
Firm C

Fig. 1.24 Pairwise payoff comparison for firm C

Firm B
Firm A Enter Stay Out
Enter 14,24,32 8,30,27
Stay Out 30,16,24 13,12,50

Fig. 1.25 Reduced normal-form game
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Firm B
Firm A Enter Stay Out
Stay Out 30,16,24 13,12,50
Fig. 1.26 Reduced normal-form game
Firm B
Firm A Enter

Stay Out 30, 16, 24

Fig. 1.27 An even more reduced normal-form game

and when firm B stays out (in the right-hand column, since 13 > 8). In other words,
regardless of firm B’s decision, firm A prefers to stay out. This allows us to delete the
top row from the above matrix, since the strategy “Enter”” would never be used by firm
A, which leaves us with a single row and two columns, as illustrated in Fig. 1.26.

Once we deleted all but one strategy of firm C and one of firm A, the game
becomes an individual-decision making problem, since only one player (firm B)
must select whether to enter or stay out. Since entering yields a payoff of 16 to firm
B, while staying out only entails 12, firm B chooses to enter. Firm B then regards
staying out as a strictly dominated strategy, i.e., ug(O, E, E) > ug(O, O, E) where
we fix the strategies of the other two firms at their strictly dominant strategies:
staying out for firm A and entering for firm C. We can, thus, delete the column
corresponding to staying out in the above matrix, as depicted in Fig. 1.27.

As a result, the only cell (strategy profile) that survives the application of the
iterative deletion of strictly dominated strategies (IDSDS) is that corresponding to
(Stay Out, Enter, Enter), which predicts that firm A stays out, while both firms B
and C choose to enter.

Exercise 11—Finding Dominant Strategies in games
with | > 2 players and with Continuous Strategy Spaces®

There are [ firms in an industry. Each can try to convince Congress to give the industry
a subsidy. Let /; denote the number of hours of effort put in by firm i, and let

C[(hl') = W[(h[)z
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be the cost of this effort to firm i, where w; is a positive constant. When the effort
levels of the I firms are given by the list (%, ..., h;), the value of the subsidy that
gets approved is

1
S,‘(h,‘,hj) = OCZ/’ll+ﬁth
i=1

J#

where o and f are constants and o >0, and § > 0. Consider a game in which the
firms decide simultaneously and independently how many hours they will each
devote to this lobbying effort. Show that each firm has a strictly dominant strategy if
and only if f = 0. What is firm i’s strictly dominant strategy when condition § = 0
holds?

Answer
Firm i chooses the amount of lobbying 4; that maximizes its profit function r;

m; = Si(hi, hj) — Ci(hy)
= [OCZ,’h,' + ﬁ(H,h,)} — W[(hl')z
Taking first-order conditions with respect to &; yields
o+ ﬁ(H hj> — 2wih; = 0.
J#1

We can now rearrange, and solve for /; to obtain firm i’s best response function

OH-/f(th)] %
i i

Notice that this best response function describes which is firm i’s optimal effort
level in lobbying activities as a function of other firms’ effort levels, h;, for every
firm j # i. Interestingly, when f =0 firm i’s best response function becomes
independent of his rival’s effort, i.e., h; =

hi =

o
2w;*

Dominant strategy: Note that, in order for firm i to have a dominant strategy,
firm i must prefer to use a given strategy regardless of the particular actions
selected by the other firms. In particular, when £ = O firm i’s best response function
becomes h; = ﬁl and thus it does not depend on the action of other firms, i.e., it is
not a function of &;. Therefore, firm i has a strictly dominant strategy, 4; = ﬁ when
f = 0 since such action is independent on the other firms’ actions.
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Exercise 12—Equilibrium Predictions from IDSDS
versus IDWDS®

In previous exercises applying IDSDS we sometimes started finding strictly dom-
inated strategies for the row player, while in other exercises we began identifying
strictly dominated strategies for the column player (or the matrix player in games
with three players). While the order of deletion does not affect the equilibrium
outcome when applying IDSDS, it can affect the set of equilibrium outcomes when
we delete weakly (rather than strictly) dominated strategies.

Use the game in Fig. 1.28 to show that the order in which weakly dominated
strategies are eliminated can affect equilibrium outcomes.

Answer

First route: Taking the below payoff matrix, first note that, for player 1, strategy
U weakly dominates D, since U yields a weakly larger payoff than D for any
strategy (column) selected by player 2, i.e., u (U, s2) = u (D, s,) for all s, € {L, M,
R}. In particular, U provides player 1 with the same payoff as D when player 2
selects L (a payoff of 2 for both U and D) and M (a payoff of 1 for both U and D),
but a strictly higher payoff when player 2 chooses R (in the right-hand column)
since 0 > —1. Once we have deleted D because of being weakly dominated, we
obtain the reduced-form matrix depicted in Fig. 1.29.

We can now turn to player 2, and detect that strategy L strictly dominates R,
since it yields a strictly larger payoff than R, regardless of the strategy selected by
player 1 (both when he chooses U in the top row, i.e., 1 > 0, and when he chooses
C in the bottom row, i.e., 2 > 1), or more compactly u>(s;, M) = u,(s,, R) for all s,

2

1 L M R
Ul 21 1,1 0,0
C 1,2 3,1 2,1

Fig. 1.28 Normal-form game

1 L M R
U|l 21 1,1 0,0
C 1,2 3,1 2,1

Fig. 1.29 Reduced normal-form game after one round of IDWDS
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€ {U, C}. Since R is strictly dominated for player 2, it is also weakly dominated.
After deleting the column corresponding to the weakly dominated strategy R, we
obtain the 2 X 2 matrix in Fig. 1.30.

At this point, notice that we are not done examining player 2, since you can
easily detect that M is weakly dominated by strategy L. Indeed, when player 1
selects U (in the top row of the above matrix), player 2 obtains the same payoff from
L and M, but when player 1 chooses C (in the bottom row), player 2 is better off
selecting L, which yields a payoff of 2, rather than M, which only produces a payoff
of 1, i.e., uy(s1, M) = u,(sy, L) for all s; € {U, C}. Hence, we can delete M because
of being weakly dominated for player 2, leaving us with the (further reduced) payoff
matrix in Fig. 1.31.

At this point, we can turn to player 1, and identify that U strictly dominates
C (and, thus, it also weakly dominates C), since the payoff that player 1 obtains
from U, 2, is strictly larger than that from C, 1. Therefore, after deleting C, we are
left with a single strategy profile, (U, L), as depicted in the matrix of Fig. 1.32.
Hence, using this particular order in our iterative deletion of weakly dominated
strategies (IDWDS) we obtain the unique equilibrium prediction (U, L).

1 L M
u| 21 1,1
C 1,2 3,1

Fig. 1.30 Reduced normal-form game after two rounds of IDWDS

2
1 L
2,1
C 1,2

Fig. 1.31 Reduced normal-form game after three rounds of IDWDS

Fig. 1.32 Strategy surviving IDWDS (first route)
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2

1 L M R
Ul 21 1,1 0,0
C 1,2 3.1 2,1

Fig. 1.33 Normal-form game

2

1 L M
U 2,1 1,1
C 1,2 3,1
D | 2-2 1,-1

Fig. 1.34 Reduced normal-form game after one round of IDWDS

Second route: Let us now consider the same initial 3 x 3 matrix, which we
reproduce in Fig. 1.33, and check if the application of IDWDS, but using a different
deletion order (i.e., different “route”), can lead to a different equilibrium result than
that found above. i.e., (U, L).

Unlike in our first route, let us now start identifying weakly dominated strategies
for player 2. In particular, note that R is weakly dominated by M, since the former
yields a weakly lower payoff than the latter (i.e., it provides a strictly higher payoff
when player 1 chooses U in the top row, but the same payoff otherwise). That is,
us(s1, M) = uy(sy, R) for all s; € {U, C, D}. Once we delete R as being weakly
dominated for player 2, the remaining matrix becomes that depicted in Fig. 1.34.

Turning to player 1, we cannot identify any other weakly dominating strategy.
This equilibrium prediction using the second route of IDWDS is, hence, the six
strategy profiles of Fig. 1.34, that is, {(U,L), (UM), (C,L), (C,M), (D,L), (D,M)}.
This equilibrium prediction is, of course, different (and significantly less precise)
than what found when we started the application of IDWDS from player 1. Hence,
equilibrium outcomes that arise from applying IDWDS are sensitive to the deletion
order, while those emerging from IDSDS are not.



Pure Strategy Nash Equilibrium
and Simultaneous-Move Games
with Complete Information

Introduction

This chapter analyzes behavior in relatively simple strategic settings: simultaneous-
move games of complete information. Let us define the two building blocks of this
chapter: best responses and Nash equilibrium.

Best response. A strategy s; is a best response of player i to a strategy profile s_;
selected by other players if it provides player i with a weakly larger payoff than any
of his available strategies s; € S;. Formally, strategy s} is a best response to s_; if
and only if

Uu; (S;k7 S,,') > Ll,'(S,', S,i) foralls; € §;.

We then say that strategy s is a best response to s_;, and denote it as
sF € BR(s_;).

For instance, in a two-player game, s} is a best response for player 1 to strategy
5, selected by player 2 if and only if u; (s}, s2) > ui(s1, 52) for all s; € Sy thus
implying that s; € BR;(s2).

We next define a Nash equilibrium by requiring that every player uses best
responses to his opponents’ strategies, i.e., players use mutual best responses.

Nash equilibrium. Strategy profile s* = (s}, s3,...,sy) is a Nash equilibrium if
every player i’s strategy is a best response to his opponents’ strategies; that is, if for
every player i his strategy s} satisfies

wi(st, s°;) > ui(s;, s*;) foralls; € S;

or, more compactly, strategy s; is a best response to s*,, i.e., s € BR;(s_;*).

The original version of this chapter was revised: Post-publication author corrections have been
incorporated. The erratum to this chapter is available at 10.1007/978-3-319-32963-5_12
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In words, every player plays a best response to his opponents’ strategies, and his
conjectures about his opponents’ behavior must be correct (otherwise, players could
have incentives to modify their strategies and, thus, not be in equilibrium). As a
consequence, players do not have incentives to deviate from their Nash equilibrium
strategies; and we can understand such strategy profile as stable.

We initially focus on games where two players select between two possible
strategies, such as the Prisoner’s Dilemma game (where two prisoners decide to
either cooperate or defect), and the Battle of the Sexes game (where a husband and
a wife choose whether to attend the football game or the opera). Afterwards, we
explain how to find best responses and equilibrium behavior in games where
players choose among a continuum of strategies, such as in the Cournot game of
quantity competition, and games where players’ actions impose externalities on
other players. Furthermore, we illustrate how to find best responses in games with
more than two players, and how to identify Nash Equilibria in these contexts.

We finish this chapter with one application from law and economics about the
incentives to commit crimes and to prosecute them through law enforcement, and a
Cournot game in which the merging firms benefit from efficiency gains.'

Exercise 1—Prisoner’s Dilemma®

Two individuals have been detained for a minor offense and confined in separate
cells. The investigators suspect that these individuals are involved in a major crime,
and separately offer each prisoner the following deal, as depicted in the matrix in
Fig. 2.1.: If you confess while your partner doesn’t, you will leave today without
serving any time in jail; if you confess and your partner also confesses, you will
serve 5 years in jail; if you don’t confess and your partner does, you have to serve
15 years in jail (since you did not cooperate with the prosecutor but your partner
provided us with evidence against you); finally, if none of you confess, you will
serve one year in jail (since we only have limited evidence against you). If both
players must simultaneously choose whether or not to confess, and they cannot
coordinate their strategies, which is the Nash Equilibrium (NE) of the game?

Answer

Every player i = {1, 2} has a strategy space of S; = {C, NC}. In a NE, every player
has complete information about all players’ strategies and maximizes his own
payoff, taking the strategy of his opponents as given. That is, every player selects
his best response to his opponents’ strategies. Let’s start finding the best responses
of player 1, for each of the possible strategies of player 2.

'While the Nash equilibrium solution concept allows for many applications in the area of industrial
organization, we only explore some basic examples in this chapter, relegating many others to
Chap. 5 (Applications to Industrial Organization).
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Player 2
confess Not confess
confess -5,-5 0, -15
Player 1
Notconfess| .15 o .4

Fig. 2.1 Prisoner’s dilemma game (Normal-form)

Player 1
If player 2 confesses (in the left-hand column), player 1’s best response is to

Confess, since his payoff from doing so, —3, is larger than that from not confessing,
—15.% This is indicated in Fig. 2.2 by underlining the payoff that player 1 obtains
from playing this best response, —5. If, instead, player 2 does Not confess (in the
right-hand column), player 1’s best response is to confess, given that his payoff
from doing so, 0, is larger than that from not confessing, —1.° This is also indicated
in Fig. 2.2 with the underlined best-response payoff 0. Hence, we can compactly
represent player 1’s best response (BR(s2)) as BR;(C) = C to Confess, and
BR;(NC) = C to not confess. Importantly, this implies that player 1 finds confess a
strictly dominant strategy, as he chooses to confess regardless of what player 2
does.

Player 2

A similar argument applies for player 2. In particular, since the game is symmetric,
we find that: (1) when player 1 confesses (in the top row), player 2’s best response
is to Confess, since —5 > —15; and (2) when player 1 does Not confess (in the
bottom row), player 2’s best response is to Confess, since 0 > —1.* Hence, player
2’s best response can be expressed as BR,(C) = C and BR,(NC) = C, also indi-
cating that Confess is a strictly dominant strategy for player 2, since he selects this

%A common trick many students use in order to be able to focus on the fact that we are examining
the case in which player 2 confesses (in the left-hand column) is to cover with their hand (or a
piece of paper) the columns in which player 2 selects strategies different from Confess (in this case,
that means covering Not confess, but in larger matrices it would imply covering all columns except
for the one we are analyzing at that point.) Once we focus on the column corresponding to
Confess, player 1’s best response becomes a straightforward comparison of his payoff from
Confess, —5, and that from Not confess, —15, which helps us underline the largest of the two
payoffs, i.e., =5.

3In this case, you can also focus on the column corresponding to Not confess by covering the
column of Confess with your hand. This would allow you to easily compare player 1°s payoff from
Confess, 0, and Not confess, —1, underlining the largest of the two, i.e., 0.

“Similarly as for player 2, you can now focus on the row selected by player 1 by covering with
your hand the row he did not select. For instance, when player 1 chooses Confess, you can cover
the row corresponding to Not confess, which allows for an immediate comparison of the payoff
when player 2 responds with Confess, —5, and when he does not, —15, and underline the largest of
the two, i.e., —5. An analogous argument applies to the case in which player 1 selects Not confess,
where you can cover the row corresponding to Confess with your hand.
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Player 2
confess  Not confess
confess -5, -5 0,-15
Player 1
Notconfess| -15,0 -1,-1

Fig. 2.2 Prisoner’s dilemma game (Normal-form)

strategy regardless of his opponent’s strategy. Payoffs associated with player 2’s
best responses are underlined in Fig. 2.3. with red color.

We can now see that there is a single cell in which both players are playing a
mutual best response, (C, C), as indicated by the fact that both players’ payoffs are
underlined (i.e., both players are playing best responses to each other’s strategies).
Intuitively, since we have been underling best response payoffs, a cell that has the
payoffs of all players underlined entails that every player is selecting a best response
to his opponent’s strategies, as required by the definition of NE. Therefore, strategy
profile (C, C) is the unique Nash Equilibrium (NE) of the game.

NE = (C, C)

Equilibrium vs. Efficiency. This outcome is, however, inefficient since it does not
maximize social welfare (where social welfare is understood as the sum of both
players’ payoffs). In particular, if players could coordinate their actions, they would
both select not to confess, giving rise to outcome (NC, NC), where both players’
payoffs strictly improve relative to the payoff they obtain in the equilibrium
outcome (C, C), i.e., they would only serve one year in jail rather than five years.
This is a common feature in several games with intense competitive pressures, in
which a conflict emerges between individual incentives (to confess in this example)
and group/society incentives (not confess). Finally, notice that the NE is consistent
with IDSDS. Indeed, since both players use strictly dominant strategies in the NE of
the game, the equilibrium outcome according to NE coincides with that resulting
from the application of IDSDS.

Player 2
confess  Not confess
sonfess | iamg 0,-15
Player 1
Not confess| _15 ¢ 21,51

Fig. 2.3 Prisoner’s dilemma game (Normal-form)
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Exercise 2—Battle of the Sexes®

A husband and a wife are leaving work, and do not remember which event they are
attending to tonight. Both of them, however, remember that last night’s argument
was about either attending to the football game (the most preferred event for the
husband) or the opera (the most preferred event for the wife). To make matters
worse, their cell phones broke, so they cannot call each other to confirm which
event they are attending to. As a consequence, they must simultaneously and
independently decide whether to attend to the football game or the opera.

The payoff matrix in Fig. 2.4 describes the preference of the husband (wife) for
the football game (opera, respectively), but also indicates that both players prefer to
be together rather than being alone (even if they are alone at their most preferred
event). Find the set of Nash Equilibria of this game.

Answer

Every player i = {H, W} has strategy set S; = {F, O}. In order to find the Nash
equilibrium of this game, let us separately identify the best responses of each player
to his opponent’s strategies.

Husband

Let’s first analyze the husband’s best responses BRy(F) and BRy(O). If his wife
goes to the football game (focusing our attention in the left-hand column), the
husband prefers to also attend the football game since his payoff from doing so, 3,
exceeds that from attending the opera by himself, 0. If, instead, his wife attends the
opera (in the right-hand column), the husband prefers to attend the opera with her,
given that his payoff from doing so, 1, while low (he dislikes opera!), is still larger
than that from going to the football game alone, 0. Hence we can summarize the
husband’s best response as BRy(F) = F and BRy(O) = O; as indicated in the un-
derlined payoffs in the matrix of Fig. 2.5. Intuitively, the husband’s best response is
thus to attend the same event as his wife.

Wife

A similar argument applies to the wife, who also best responds by attending the
same event as her husband, i.e., BRy(F) = F in the top row when her husband
attends the football game, and BRy/(O) = O in the bottom row when he goes to the
opera; as illustrated in the payoffs underlined in red color in the matrix of Fig. 2.6.

Wife
Football Opera
Football 3,1 0,0
Husband
Opera 0,0 1,3

Fig. 2.4 Battle of the sexes game (Normal-form representation)
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Wife
Football Opera
Football 31 0,0
Husband
Opera 0,0 1.3

Fig. 2.5 Battle of the sexes game—underlining best response payoffs for Husband

Wife
Football Opera
Football 44 0,0
Husband
Opera 0,0 13

Fig. 2.6 Battle of the sexes game—underlining best response payoffs for Husband and Wife

Therefore, we found two strategy profiles in which both players are playing
mutual best responses: (F, F) and (O, 0), as indicated by the two cells in the matrix
where both players’ payoffs are underlined. Hence, this game has two pure-strategy
Nash equilibria (psNE): (F, F), where both players attend the football game, and
(O, 0), where they both attend the opera. This can be represented formally as:

psNE = {(F, F),(0, 0)}

Exercise 3—Pareto Coordination®

Consider the game in Fig. 2.7, played by two firms i = {1, 2}, each of them
simultaneously and independently selecting to adopt either technology A or B.
Technology A is regarded as superior by both firms, yielding a payoff of 2 to each
firm if they both adopt it, while the adoption of technology B by both firms only
entails a payoff of 1. Importantly, if firms do not adopt the same technology, both

Technology A
Firm 1
Technology B

Firm 2
Technology A Technology B
2:2 0,0
0,0 1.1

Fig. 2.7 Pareto coordination game (Normal-form)
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Firm 2 Firm 2
Technology A Technology B Technology A Technology B
Technology A 2,2 0,0 Technology A 2;2 0,0
Firm 1 Firm 1
Technology B 0,0 1,1 Technology B 0,0 5 i o

Fig. 2.8 Pareto coordination game—underlining best response payoffs for Firm 1 (left matrix)
and for both firms (right matrix)

obtain a payoff of zero. This can be explained because, even if firm i adopts
technology A, such a technology is worthless if firm i cannot exchange files, new
products and practices with the other firm j # i. Find the set of Nash Equilibria
(NE) in this game.

Answer
Firm 1. Let’s first examine firm 1’s best response. Similarly as in the battle of the
sexes game, firm 1’s best response is to adopt the same technology as firm 2, i.e.,
BR(A) = A when firm 2 chooses technology A, and BR;(B) = B when firm 2
selects technology B; as indicated in the payoffs underlined in blue color in the
left-hand matrix of Fig. 2.8.
Firm 2. A similar argument applies to firm 2, since firms’ payoffs are symmetric,
i.e., BRy(A) = A and BR,(B) = B; as depicted in the payoffs underlined in red color
in the right-hand matrix.

Hence, we found two pure strategy Nash equilibria: (A, A) and (B, B), which are
depicted in the matrix as the two cells were both players’ payoffs are underlined.’

psNE = {(A, A), (B, B)}

Finally, note that, while either of the two technologies could be adopted in
equilibrium, only one of them is efficient, (A, A), while the other equilibrium, (B, B),
is inefficient, i.e., both firms would be better off if they could coordinate their
simultaneous adoption of technology A.°

Exercise 4—Cournot game of Quantity Competition®
Consider an industry with two firms competing in quantities, i.e., Cournot com-

petition. For simplicity, assume that firms are symmetric in costs, ¢ > 0, with no
fixed costs and that they face a linear inverse demand p(Q) = a—bQ, where a > c,

5In both of these Nash equilibria, firms are playing mutual best responses, and thus no firm has
incentives to unilaterally deviate.

SHowever, no firm has incentives to unilaterally move from technology B to A when its competitor
is selecting technology B.
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b > 0, and Q denotes aggregate output. Note that the assumption a > ¢ implies that
the highest willingness to pay for the first unit is larger than the marginal cost that
firms must incur in order to produce the first unit, thus indicating that a positive
production level is profitable in this industry. If firms simultaneously and inde-
pendently select their output level, ¢; and ¢», find the Nash Equilibrium (NE) of the
Cournot game of quantity competition.

Answer
The profits of firm i are given by:

T = P(Q) “qi —Cq;

Given that Q = g1 + ¢, every firm i chooses its production level g;, taking the
output level of its rival, g;, as given. That is, every firm i solves

max (a — bg; = bq;)gi — cq;

Taking first-order conditions with respect to g;, we obtain
a—2bgi—bgi—c=0
and solving for g;, we find firm i’s best response function, BR[(qj) that is,

a—c 1
qi(qj) = op 29

Figure 2.9 depicts the best response function of firm i, which originates at %;°,
indicating the production level that firm i sells when firm j is inactive, i.e., the
monopoly output level; and decreases as its rival, firm j, produces a larger amount
of output. Intuitively, firm i’s and j’s output are strategic substitutes, so that firm i is
forced to sell fewer units when the market becomes flooded of firm j’s products.
When firm j’s production is sufficiently large, i.e., firm j produces more than <
units, firm i is forced to remain inactive, i.e., g; = 0.” This property is illustrated in
the figure by the fact that firm i’s best response function coincides with the hori-
zontal axis (zero production) for all g; > 42<.

A similar argument applies to firm j, obtaining best response function
qi(q:) = %F — 1 qi, as depicted in Fig. 2.10. (Note that we use the same axis, in
order to be able to represent both best response functions in the same figure in our
ensuing discussion.)

If we superimpose firm j’s best response function on top of firm i’s, we can
visually see that the point where both functions cross each other represents the Nash
Equilibrium of the Cournot game of quantity competition (Fig. 2.11).

"In order to obtain the output level of firm j that forces firm i to be inactive, set ¢; = 0 on firm i’s
best response function, and solve for g;. The output you obtain should coincide with the horizontal
intercept of firm i’s best response function in Fig. 2.9.
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Fig. 2.9 Cournot game—
Best response function
of firm i

Fig. 2.10 Cournot game—
Best response function
of firm j

Fig. 2.11 Cournot game—
Best response functions and
Nash-equilibrium
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In order to precisely find the point in which both best response functions cross
each other, let us simultaneously solve for g; and g; by, for instance, plugging

qi(qi) =% = $q; into g,(g;), as we do next,

, a—c lfa—c 1,
%=, "2\ 2%

which simplifies to

. _a—c—&—bql’f
KTA

and solving for g}, we find the equilibrium output level for firm i,

a—=c¢

4 =3

and that of firm j,

a—c la—c a-—c

G =2, T273 3

As we can see from the results, both firms produce exactly the same quantities,
since they both have the same technology (they both face the same production
costs). Hence, the pure strategy Nash Equilibrium is:

a—=c¢ Cl—C}

pNE={dis i} = {75755

(Notice that this exercise assumes, for simplicity, that firms are symmetric in
their production costs. In subsequent chapters we investigate how firms’ equilib-
rium production is affected when one of them exhibits a cost advantage (¢; < ¢)).
We also examine how firms’ competition is affected when more than two firms
interact in the same industry. see Chap. 5 for more details.)

Exercise 5—Games with Positive Externalities®
Two neighboring countries, i = 1, 2, simultaneously choose how many resources

(in hours) to spend in recycling activities, ;. The average benefit (7;) for every
dollar spent on recycling is:

TC,‘(I",', rj) = 10— r,-+ %,
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and the (opportunity) cost per hour for each country is 4. Country i’s average
benefit is increasing in the resources that neighboring country j spends on his
recycling because a clean environment produces positive external effects on other
countries.

Part (a) Find each country’s best-response function, and compute the Nash
Equilibrium (NE), (r*, ry*)

Part (b) Graph the best-response functions and indicate the pure strategy Nash
Equilibrium on the graph.

Part (c) On your previous figure, show how the equilibrium would change if the
intercept of one of the countries’ average benefit functions fell from 10 to some
smaller number.

Answer

Part (a) Since the gains of recycling are given by (m; - r;), and the costs of the
activity are (4r;), country 1’s maximization problem consists of selecting the
amount of hours devoted to recycling r; that solves:

max(lO -7+ %)rl —4rn

r

Taking the first-order condition with respect to r;
10—2r1+%74:0

Rearranging and solving for r; yields country 1’s best-response function (BRF):

Symmetrically, Country 2’s best-response function is

r(rn) = 3+%

Inserting best-response function r,(ry) into r(r) yields

3+ 7
4 )

r1:3+

and, rearranging, we obtain an equilibrium level of recycling of r;* = 4 for country 1.
Hence, country 2’s equilibrium recycling level is
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Fig. 2.12 Positive r ra(ry)
externalities—Best response
functions and
Nash-equilibrium
Nash equilibrium ri(ra)
4 \
3
3 4 r2

Note that, alternatively, countries’ symmetry implies 7| = r;. Hence, in BRF,
we can eliminate the subscript (since both countries’ recycling level coincides in
equilibrium), and thus r = 3 + £, which, solving for r yields a symmetric equi-
librium recycling of r* = 4.

Hence, the psNE is given by:

psSNE = {rT =4,7 = 4}

Part (b) Both best response functions originate at 3 and increase with a positive
slope of 1/4, as depicted in Fig. 2.12. Intuitively, countries’ strategies are strategic
complements, since an increase in r, induces Country 1 to strategically increase its
own level of recycling, r, by 1/4.

Part (c) A reduction in the benefits from recycling produces a fall in the intercept of
one of the countries’ average benefit function, for example in Country 2. This
change is indicated in Fig. 2.13 by the leftward shift (following the arrow) in

Fig. 2.13 Shift in best ry r2'(r) ra(ra)
response functions, change in ;
Nash-equilibrium /!
f" ‘\
s r(r)
4
3 ‘
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Country 2’s best response function. In the new Nash Equilibrium, Country 2
recycles a lot less while Country 1 recycles a little less.

Exercise 6—Traveler’s Dilemma®

Consider the following game, often referred to as the “traveler’s dilemma.” An
airline loses two identical suitcases that belong to two different travelers. The airline
is liable for up to $100 per suitcase. The airline manager, in order to obtain an
honest estimate of each suitcase, separates each traveler i in a different room and
proposes the following game: “Please write an integer x; € [2, 100] in this piece of
paper. As a manager, I will use the following reimbursement rule:

e If both of you write the same estimate, x; = x, = x, each traveler gets x.
e If one of you writes a larger estimate, i.e., x; > x; where i # j, then:

— The traveler who wrote the lowest estimate (traveler j) receives x; + k, where

k> 1; and
— The traveler who wrote the largest estimate (traveler i) only receives
max{0, x; — k}.”

Part (a) Show that asymmetric strategy profiles, in which travelers submit different
estimates, cannot be sustained as Nash equilibria.

Part (b) Show that symmetric strategy profiles, in which both travelers submit the
same estimate, and such estimate is strictly larger than 2, cannot be sustained as
Nash equilibria.

Part (c) Show that the symmetric strategy profile in which both travelers submit the
same estimate (x1, x2) = (2, 2) is the unique pure strategy Nash equilibrium.
Part (d) Does the above result still hold when the traveler writing the largest
amount receives x; — k rather than max{0, x; — k}? Intuitively, since k > 1 by
definition, a traveler can now receive a negative payoff if he submits the lowest
estimate and x; <k.

Answer

Part (a) We first show that asymmetric strategy profiles, (xy, xo) with x; # x,
cannot be sustained as a Nash equilibrium. Consider, without loss of generality, that
player 1 submits a higher estimate than player 2, x; > x;. In this setting, it is easy to
see that player 1 has incentives to deviate: he now obtains a payoff of
max{0, x, — k}, and he could increase his payoff by submitting an estimate that
matches that of player 2, i.e., x; = x», which guarantees him a payoff of x, (as now
the estimates from both travelers coincide), where

max{0, x, — k} <x, forallx, giventhat k > 1.
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Part (b) Using a similar argument, we can show symmetric strategy profiles in
which both travelers submit the same estimate (but higher than two), i.e., (x, x2),
with x; = x, > 2, cannot be supported as Nash equilibria either. To see this, note
that in such strategy profile every player i obtains a payoff x; = x;, but he can
increase his payoff by deviating towards a lower estimate, i.e., x; = x; — 1 since
estimates must be integer numbers. With such a deviation, player i’s estimate
becomes the lowest, and he thus obtains a payoff of

Kk = (5~ 1) +k

where (x; — 1) +k > x; since k > 1 by definition.

Part (c) Hence, the only remaining strategy profile is that in which both travelers
submit an estimate of 2, x; = xo = 2. Let us now check if it can be sustained as a
Nash equilibrium, by showing that every player i has no profitable deviation. Every
traveler i obtains a payoff of 2 under the proposed strategy profile. If player i
deviates towards a higher price, traveler i would be now submitting the highest
estimate, and thus would obtain a payoff of

max{0, x; — k} = max{0, 2 — k},

where max{0, 2 — k} <2 since k > 1 by definition. That is, submitting a higher
estimate reduces player i's payoff. Finally, note that submitting a lower estimate is
not feasible since estimates must satisfy x; € [2, 100] by definition.

Alternative approach: While the above analysis tests whether a specific strategy
profile can/cannot be sustained as Nash Equilibrium of the game, a more direct
approach would identify each player’s best response function, and then find the
point where player 1’s and 2’s best response functions cross each other, which
constitutes the NE of the game. For a given estimate from player j, x;, if player i
writes an estimate lower than x;, x; <x;, player i obtains a payoff of x; + k, which is
larger than the payoff he obtains from matching player j’s estimate, i.e., x; = x; = x,
as long as x; +k > x;, that is, if kK > x; — x;. Intuitively, player i profitably undercuts
player j’s estimate if x; is not extremely lower than xj.g If, instead, player i writes a
larger estimate than player j, x; > x;, his payoff becomes max{O, Xj — k}, which is
lower than his payoff from matching player j’s estimate, i.e., x; = x; = x, since
max{O, X — k} <X;.

In summary, player i does not have incentives to submit a higher estimate than
player j’s, but rather an estimate that is k-units lower than player j’s estimate.
Hence, player i’s best response function can be written as

xi(xj) = max{2, Xj — k}

8For instance, if x;=>5 and k=2, then player i has incentives to write an estimate of
x; =5 — 2 =3, but not lower than 3 since his payof, x; + k, is increasing in his own estimate x;.
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7 45-degree line
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Fig. 2.14 Traveler’s dilemma, best response functions

since the estimate that he writes must lie on the interval [2, 100]. This best response
function is depicted in Fig. 2.14. Specifically, player i’s best response function
originates at x; = 2 when player j submits x; = 2; remains at x; = 2 when x; =3
(since k > 1 entails that 3 — k <2); and becomes x; = max{2, 4 — k} when x; = 4,
thus increasing in x;. For instance, if k = 2, player i’s best response function is
x; = 2 when player j’s estimate is x; = 2, 3, 4, but increases to x; = 3 when player
J’s estimate is x; =5, and generally becomes x; (xj) =x;—2 for all x; > 4.
Graphically, this function has a flat segment for low values of x;, but then increases
in x; in a straight line located k-units below the 45-degree line. A similar argument
applies to player j’s best response function. Hence, player 1’s and 2’s best response
functions only cross at x; = x; = 2 (Fig. 2.14).

Part (d) Our above argument did not rely on the property of positive payoffs for
the traveler submitting the highest estimate. Hence, all the previous proof applies to
this reimbursement rule as well, implying that x; = x, =2 is the unique pure
strategy Nash equilibrium of the game.

Exercise 7—Nash Equilibria with Three Players®

Find all the Nash equilibria of the following three-player game (see Fig. 2.15), in
which player 1 selects rows (a, b, or c), player 2 chooses columns (x, y, or z), and
player 3 selects a matrix (either A in the left-hand matrix, or B in the right-hand
matrix).
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Player 3: matrix A Player 3: matrix B
Player 2 Player 2
X ¥ z X y z
a| 204 1,1,1 1,2,3 al| 203 4,1,2 1,1,2
Player 1 Player 1
b 3,23 0,1,0 2,1,0 b 1,3,2 2,22 0,4,3
c 1,0,2 0,0,3 3,11 c 0,0,0 3,03 2,1,0

Fig. 2.15 Normal-form game with 3 players

Player 3: matrix A Player 3: matrix B
Player 2 Player 2
X /}/ z ___'_"“""\R\‘ \ y z
player 1 |2 2,0@ L1131 123 — M 203 | 412 [ 112
b| 3280 010 | 210 b| ™32 | 222 | 043
c| 1,02 | 00,3 3,1,1 c| 000 3,0,3 2,1,0

Fig. 2.16 Normal-form game with 3 players. BR; when player 2 chooses x

Answer

Player 3. Let’s start by evaluating the payoffs for player 3 when Player 2 selects
x (first column). The arrows in Fig. 2.16 help us keep track of player 3’s pairwise
comparison. For instance, when player 1 chooses a and player 2 selects x (in the top
left-hand corner of either matrix), player 3 prefers to respond with matrix A, which
gives him a payoff of 4, rather than with B, which only yields a payoff of 3. This
comparison is illustrated by the top arrow in Fig. 2.16. A similar argument applies
for the second arrow, which fixes the other players’ strategy profile at (b, x), and for
the third arrow, which fixes their strategy profile at (¢, x). The highest payoff that
player 3 obtains in each of these three pairwise comparisons is circled in Fig. 2.16.

Hence, we obtain that player 3’s best responses are BR;3(x, a) = A,
BR5(x, b) = A, and BR;(x, ¢) = A.

If player 2 selects y (in the second column of each matrix), player 3’s pairwise
comparisons are given by the three arrows in Fig. 2.17. In terms of best responses, this
implies that BR;(y, a) = B, BR3(y, b) = B, and BR3(y, ¢) = {A, B}. The highest
payoff that player 3 obtains in each pairwise comparison are also circled in Fig. 2.17.

Player 3: matrix A Player 3: matrix B

Player 2 /—Nayer 2
X ¥ /,..-—-—'"'"-___-_"'“ X \X z
al| 204 1,117 1,23 2,031 [ 112
b| 3,2 0,100 172,10 132 [ 22 | 043
c[ 102 | 003 | 311 000 | 3083 [ 210

Player 1 Player 1

n|lo|w

Fig. 2.17 Normal-form game with 3 players. BR; when player 2 chooses y
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Player 3: matrix A Player 3: matrix B
Player 2 /m\
X y /’#"—-_x__-‘h v \€

z
S| 2,0,4 10 1,23) /K al| 203 AT 512
ayer -
b| 323 | o010 2,1,00 b 132 222 | e4®
v

cl 102 | 003 [ 310 000 | 303 [ 210

Fig. 2.18 Normal-form game with 3 players. BR; when player 2 chooses z

Player 3: matrix A Player 3: matrix 8
Player 2 Player 2
X y z X y z
al| 204 1,1,1 12,3 al 203 4,12 1,1,2
Player 1 Player 1
b 3,23 0,1,0 2,1,0 b 13,2 2,22 04,3
¢ 1,0,2 0,03 3,11 c 0,0,0 3,03 2,1,0

Fig. 2.19 Normal-form game with 3 players. Underlining player 3’s response payoffs

If player 2 selects z (in the third column of each matrix), player 3’s pairwise

comparisons are depicted by the three arrows in Fig. 2.18 which in terms of best
responses yields BR3(z, a) = A, BR3(z, b) = B, and BRs(z, ¢) = A. Hence, the
payoff matrix that arises after underlying (or circling) the payoff corresponding to
the best responses of player 3 is the following (see Fig. 2.19)
Player 2. Let’s now identify player 2’s best responses as depicted in the circled
payoffs of the matrices in Fig. 2.20. In particular, we take player 1’s strategy as
given (fixing the row) and player 3’s as given (fixing the matrix) (where player 3
chooses matrix A). We obtain that player 2’s best responses are BR,(a, A) =z
when player 1 chooses a (in the top row), BR,(b, A) = x when player 1 selects b (in
the middle row), and BR,(c, A) = z when player 1 chooses ¢ (in the bottom row).
Visually, notice that we are now fixing our attention on a matrix (strategy of player
3) and on a row (strategy of player 1), and horizontally comparing the payoff that
player 2 obtains from selecting the left, middle or right-hand column. Similarly,
when player 3 chooses matrix B, we obtain that player 2’s best responses are
BR;(a, B) = {y, z} when player 1 selects a (in the top row) since both y and z yield
the same payoff, $1, BR,(b, B) = x when player 1 chooses b (in the middle row),
and BR,(c, B) = z when player 1 selects ¢ (in the bottom row).”

Therefore, the matrices that arise after underlying the best response payoffs of
player 2 are those in Fig. 2.21.

“Visually, this implies fixing your attention on the first row of the left-hand matrix, and
horizontally search for which strategy of player 2 (column) provides this player with the highest
payoff.
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Player 3: matrix A Player 3: matrix B
Player 2 Player 2
X ¥ z X ¥ z
a 2,04 1,11 1 a 2,03 4012 1
Player 1 23 Player 1 w e
bl 328 0,1,0 2,1,0 b| 1,32 2,2,2 0@3
c| 1,02 0,0,3 3@ c| 000 3,03 210

Fig. 2.20 Normal-form game with 3 players. Circling best responses of player 2

Player 3: matrix A Player 3: matrix B
Player 2 Player 2
y z X y z
a 2,04 1,11 1,23 a 2,0,3 4,12 1,12
Player 1 Player 1
b| 323 0,1,0 2,1,0 b| 1,32 2,2,2 04,3
c 1,0.2 0,03 311 c| 000 3,03 2,1,0

Fig. 2.21 Normal-form game with 3 players

Player 1. Let’s finally identify player 1’s best responses, given player’s 2 strategy
(fixing the column) and given player 3’s strategy (fixing the matrix).

When player 3 chooses A (left matrix), player 1’s best responses become
BR;(x, A) = b when player 2 chooses x (left-hand column), BR;(y, A) = a when
player 2 selects y (middle column), and BR(z, A) = ¢ when player 2 chooses
z (right-hand column). Visually, notice that we are now fixing our attention on a
matrix (strategy of player 3) and on a column (strategy of player 2), and vertically
comparing the payoff that player 1 obtains from choosing the top, middle or bottom
row'’. Operating in an analogous fashion when player 3 chooses B (right-hand
matrix), we obtain player 1’s best responses: BR(x, B) = a when player 2 chooses
x (in the left-hand column), BR;(y, B) = a when player 2 selects y (middle col-
umn), and BR;(z, B) = ¢ when player 2 chooses z (right-hand column).

We hence found three pure strategy Nash equilibria: (b, x, A), (c, z, A) and (a, y,
B); as depicted in the cells where the payoffs of all players are underlined
(Fig. 2.22), as these cells correspond to outcomes where players employ mutual
best responses to each others’ strategies (Fig. 2.23).

In summary, the Nash equilibria of this three player game are

PSNE = {(b7 X, A)’ (Cv <, A)v (av Ys B)}

9For instance, in finding BR, (x, A), we fix the matrix in which player 3 selects A (left matrix),
and the column that player 2 selects x (left-hand column), and compare the payoffs that player 1
would obtain from responding with the first row (@), $2, the second row (b), $3, or with the third
row (¢), $1. Hence, BR(x, A) = b. A similar argument applies to other best responses of player 1.
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Player 3: matrix A Player 3: matrix B
Player 2 Player 2
X y z X y z
a 2,04 111 1,23 a 2,03 4,12 1,12
Player 1 Player 1
bl 323 [ o010 [ 210 bl 132 [ 222 | 043
c 1,0,2 0,03 311 c 0,0,0 3,03 2,10
Fig. 2.22 Normal-form game with 3 players
Player 3: matrix A Player 3: matrix B
Player 2 Player 2
y z X y z
a 2,04 111 1,23 a 2,03 41,2 1,1,2
Player 1 — Player 1 I——'—I
bi[323 ]| 010 | 210 bl 132 [ 222 | 043
c 1,0,2 0,03 I 311 ] c 0,0,0 3,03 2,10

Fig. 2.23 Normal-form game with 3 players. Nash equilibria

Exercise 8—Simultaneous-Move Games with n > 2 Players®

Consider a game with n 2 2 players. Simultaneously and independently, the players
choose between two options, X and Y. These options might represent, for instance,
two available technologies for the n firms operating in an industry, e.g., selling
smartphones with the Android operating system or, instead, opt for the newer
Windows Phone operating system from Microsoft. That is, the strategy space for
each player i is S; = {X, Y}. The payoff of each player who selects X is:

2m, —m?+3

where m, denotes the number of players who choose X. The payoff of each player
who selects Y is

4 —m,

where m, is the number of players who choose Y. Note that m, +m, = n.

Part (a) For the case of only two players, n = 2, represent this game in its normal
form, and find the pure-strategy Nash equilibria.

Part (b) Suppose now that n = 3. How many psNE does this game have?

Part (c) Consider now a game with n > 3 players. Identify an asymmetric psNE,
i.e., an equilibrium in which a subset of players chooses X, while the remaining
players choose Y.
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Answer

Part (a) When both players choose X, m, = 2 and m, = 0, thus implying that every
player’s payoff is 2m, — mfc + 3. Replacing m, = 2, we obtain a payoff of

22) - (2)°+3=3

for both players, as indicated in the cell corresponding to outcome (X, X) in the
payoff matrix in Fig. 2.24. When, instead, both players choose Y, m, =2 and
m, = 0, and players’ payoff becomes 4 —m, =4 —2 = 2; as depicted in outcome
(Y, Y) of the payoff matrix. Finally, if only one player chooses X and another
chooses Y, m, = 1 and m, = 1, this yield a payoff of

2, — 2 +3=2(1) = (1) +3 = 4

for the player who chose X, and 4 — m, =4 — 1 = 3 for the player who chose Y;
as represented in outcomes (X, Y) and (Y, X) in the payoff matrix (see cells away
from the main diagonal in Fig. 2.24).

As usual, underlined payoffs represent a payoff corresponding to a player’s best
response, as we next separately describe for each player.

Player 1: In particular, player 1’s best responses are BR;(X) = {X, Y} when
player 2 chooses X (in the left-hand column) since player 1 is indifferent between
responding with X (in the top row) or Y (in the bottom row) given that they both
yield a payoff of $3. As a result, we underline both payoffs of $3 for player 1 in the
column in which player 2 chooses X. If, instead, player 2 chooses Y (in the
right-hand column), player 1’s best response is BR;(Y) = {X}, since player 1
obtains a higher payoff by selecting X ($4), than by choosing Y ($2). As a con-
sequence, we underline the payoff of player 1 associated to his best response.

Player 2: Similarly, for player 2 we find that, when player 1 chooses X (in the
top row), player 2 best responds with BR,(X) = {X, Y}, since both X and Y yield a
payoff of $3; while if player 1 selects Y (bottom row), player 2’s best response is
BR,(Y) = {X}, since X yields a payoff of $4 while Y only entails a payoff of $2.

Therefore, since there are three cells where payoffs of all players have been
underlined as the best responses, they represent strategy profiles where players’
play mutual best responses, i.e. Nash equilibria of the game. There are, hence, three
pure strategy Nash equilibrium in this game:

(X, X), (X, Y) and (Y, X).

Player 2
X Y
Player 1 X 33 4,3
Y 34 2,2

Fig. 2.24 Normal-form game with n = 2 players
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Part (b) When introducing three players, the normal form representation of the
game is depicted in the matrices of Figs. 2.25 and 2.26. (This is a standard
three-player simultaneous-move game similar to that in the previous exercise).

In order to identify best responses, player 1 and 2 operate as in previous exer-
cises, i.e., taking the action of player 3 (matrix player) as given, and comparing
their payoffs across rows for player 1 and across columns for player 2. However,
player 3 compares his payoffs across matrices, for a given strategy profile of player
1 and 2. In particular, this pairwise payoff comparison of player 3 is analogous to
that depicted in Exercises 2.6 and 2.8 of this chapter. For instance, if player’s 1 and
2 select (X, X), then player 3 obtains a payoff of only O if he were to select X as
well (in the upper matrix), but a higher payoff of 3 if he, instead, selects Y (in the
lower matrix). For this reason, we underline 3 in the third component of the cell
corresponding to (X, X, Y), in the upper left-hand corner of the lower matrix.
A similar argument applies for identifying other best responses of player 3, where
we compare the third component of every cell across the two matrices. For instance,
when player 1 and 2 select (X, Y), player 3 obtains a payoff of 3 if he chooses X (in
the upper matrix), but only a payoff of 2 if he selects Y (in the lower matrix), which
leads us to underline 3 in the third component of the payoff in the cell (X, Y) of the
upper matrix.

Following a similar approach, we can see in Figs. 2.25 and 2.26 that there are
three outcomes for which the payoffs of all players have been underlined (i.e.,
players are selecting mutual best responses). Specifically, the pure strategy Nash
equilibria of the game with n = 3 players are:

psNE = {(X, Y, X), (Y, X, X), (X, X, Y)}

Part (¢) When n > 3 players compete in this simultaneous-move game, the payoff
from selecting strategy Y is

4—my=4—(n—m,)

Player 2
X Y
Player 1 X 0,0,0 333
Y 333 224
Fig. 2.25 Normal-form game when player 3 chooses s3 = X
Player 2
X Y
Player 1 X 333 422
Y 24,2 1,1,1

Fig. 2.26 Normal-form game when player 3 chooses s; = Y
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Fig. 2.27 Payoffs from Iy
selecting strategy X and Y 4t Payoff from
selecting X
3 -
! Payoff from
selecting Y
1 L
25 3.0 35 4.0 45 50 m,

where the number of players selecting Y, m,, is represented as those players who
did not choose X, i.e., m, = n — m,. The payoff from selecting X is

2m, —m?+3

Hence, a player selects strategy X if and only if his payoff from selecting X is
weakly higher than from choosing Y, that is

2m, —m*+3>4— (n—m,)

Solving for m,, yields that the number of players selecting strategy X is

m, = —EviAen v12—4(l—n). For instance, in the case of n = 5 players, the above expression
becomes m, = 2.56 players, which implies that three players select X. (Note that
the above result for m, produces two roots, m, = 2.56 and m, = —1.56, but we

only focus on the positive root.)

For illustration purposes, Fig. 2.27 depicts the payoff from selecting strategy Y
when n=5 interact, 4 —(5—m,) =m,— 1, and that from strategy X,
2m, — m? + 3. Intuitively, the payoff from strategy X is decreasing in the number of
players choosing it, m, (rightward movement in Fig. 2.27). Similarly, the payoff
from selecting Y is also decreasing in the number of players choosing it, n — m,; as
depicted by leftward movements in Fig. 2.27. These incentives a negative network
externality. For instance, settings in which a particular technology is very attractive
when few other firms use it, but becomes less attractive as many other firms use it.

Exercise 9—Political Competition (Hoteling Model)®

Consider two candidates competing for office: Democrat (D) and Republican (R).
While they can compete along several dimensions (such as their past policies, their
endorsements from labor unions, their advertising, and even their looks!), we assume
for simplicity that voters compare the two candidates according to only one
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dimension (e.g., the budget share that each candidate promises to spend on educa-
tion). Voters’ ideal policies are uniformly distributed along the interval [0, 1], and
each votes for the candidate with a policy promise closest to the voter’s ideal. Can-
didates simultaneously and independently announce their policy positions. A candi-
date’s payoff from winning is 1, and from losing is —1. If both candidates receive the
same number of votes, then a coin toss determines the winner of the election.

Part (a) Show that there exists a unique pure strategy Nash equilibrium, and that in
involves both candidates proposals to promise a policy closest to the median voter.
Part (b) Show that with three candidates (democrat, republican, and independent),
no pure strategy Nash equilibrium exists.

Answer

Part (a) Let x; € [0, 1] denote candidate i’s policy, where i = {D, R}. Hence, for a
strategy profile (xp, xg) where, for instance, xp > xg, voters to the right-hand side
of xp vote democrat (since xp, is close to their ideal policy than xg is), as well as half
of the voters in the segment between xp and xg; as depicted in Fig. 2.28. In contrast,
voters to the left-hand side of xz and half of those in the segment between xp and xg
vote republican. (The opposite argument applies for strategy profiles (xp, xg) sat-
isfying xp <xg.)

We can now show that there exists a unique Nash in which both candidates
announce xp = xg = 0.5. Our proof is similar to that in the Traveler’s Dilemma
game. First demonstrate that asymmetric strategy profiles where xp # xg cannot be
sustained as Nash equilibria of the game; second, to show that symmetric strategy
profiles where xp = xg = x but x # 0.5 cannot be supported as Nash equilibria
either; and third, to demonstrate that symmetric strategy profile xp, = xg = 0.5 can
be sustained as Nash equilibrium of the game.

Let’s first consider asymmetric strategy profiles where each candidate makes a
different policy promise x; # x;, where i = {D, R} and j # i

Case 1 If x; <x; <0.5, candidate i could increase his chances to win by positioning
himself ¢ to the right of x; (where & > 0 is assumed to be small). Thus, any strategy
profile where x; <x;<0.5 cannot be supported as a Nash equilibrium.

Swing voters
L ]
I 1

< } ® : >
XR Xp + Xp Xp 1

2
A —

Vote Republican Vote Democrat

Midpoint between
xp and xg

Fig. 2.28 Allocation of voters
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Case 2 If 0.5 <x; <x;, candidate j could increase his chances to win by positioning
himself ¢ to the left of x;. Thus, any strategy profile where 0.5 <x; <x; cannot be
supported as a Nash equilibrium either.

Case 3 If x; <0.5 <x;, candidate i could increase his chances to win by positioning
him self ¢ to the left of x;. Thus, any case where x; <0.5 <x; cannot be supported as
a Nash equilibrium. (Note that the candidate j would also want to deviate to & right
to the candidate 7). Thus, there cannot be asymmetric Nash equilibria.

Let us now consider symmetric strategy profiles where both candidates make the
same policy promise, but their common policy differs from 0.5.

Case 1 If xp = xg<0.5, a tie occurs, and each candidate wins the election with
probability 1/2. However, candidate D could win the election with certainty by
positioning himself ¢ to the right of xg. (A similar argument applies to candidate R,
who would also have incentives to position himself ¢ to the right of xp.) Thus, any
strategy profile where xp = xg <0.5 cannot be supported as a Nash equilibrium.

Case 2 A similar argument applies if 0.5 <xp = xg, where a tie occurs and every
candidate wins the election with probability 1/2. However, candidate R could increase
his chances of winning by positioning himself ¢ to the left of xp. Thus, any strategy
profile where 0.5 <xp = xg cannot be supported as a Nash equilibrium either.

Finally, if both candidates choose the same policy, xp = xzg = x, and such
common policy is x = 1/2, each candidate receives half of the votes, and wins the
election with probability 0.5. In this setting, however, neither candidate has
incentives to deviate; otherwise his votes would fall from half of the electorate,
guaranteeing him to lose the election. Therefore, there exists only one Nash
equilibrium, in which xp = xz = 0.5.

Part (b) Suppose that a Nash equilibrium exists with a triplet of policy proposals
(x}, X3, x7), where D denotes democrat, R republican, and / independent. We will
next show that: (1) symmetric strategy profiles in which all candidates make the
same that proposal, xJ, =xj =xj, cannot be sustained as Nash equilibria;
(2) asymmetric strategy profiles where two candidates choose the same proposal,
but a third candidate differs, cannot be supported as equilibria either; and
(3) asymmetric strategy profiles in which all three candidates choose different
proposals cannot be sustained as equilibria; ultimately entailing that no pure
strategy equilibrium exists.

First case. Consider, first, symmetric policy proposals xj, = x; = xj. All candi-
dates, hence, receive the same number of votes (one third of the electorate), and
each candidate wins with probability 1/3. While candidates didn’t have incentives
to alter their policy promises in a setting with two candidates, with three of them we
can see that candidates have incentives to deviate from such strategy profile. In
particular, any candidate can win the election by moving to the right (if their
common policy satisfies x}, = x; = xj <2/3) or moving to the left (if their com-
mon policy satisfies x}, = xj = x; > 1/3); as depicted in Fig. 2.29. Similarly,
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Xgp = Xp = X 1
1/3 2/3

a | } O >

xp =xp=x; 1

Fig. 2.29 Allocation of voters

when the location of the three candidates satisfies x}, = x; = xJ > 1/2 each can-
didate has incentives to deviate towards the left, while if x}, = x; = x; <1/2 each
candidate has incentives to deviate to the right.

Second case. Consider now strategy profiles in which two candidates choose the
same policy, x; = x; = x", but the third candidate differs, x* # x}, where i # j # k.
If their policies satisfy x* <x;, then candidate k has incentives to approach x*, i.e.,
x* + &, as such position increases his votes. Similarly, if x* > x}, candidate k has
incentives to approach x*, i.e., x* — ¢, which increases his votes. Since we found
that at least one player has a profitable deviation, the above strategy profile cannot
be sustained as a Nash equilibrium.

Third case. Finally, consider strategy profiles where all three candidates make
different policy promises, x; # x; # x;. The candidate that is located the farthest on
the right will be able to win by moving ¢ to the right of its closest competitor;
implying that the original strategy profile cannot be equilibrium. (A similar argu-
ment applies to the other candidates, such as that located the farthest to the left, who
could win by moving to the left of its closest competitor.) Therefore, there exists no
pure strategy Nash Equilibrium in this game.

Exercise 10—Tournaments®

Several strategic settings can be modeled as a tournament, whereby the probability
of winning a certain prize not only depends on how much effort you exert, but also
on how much effort other participants in the tournament exert. For instance, wars
between countries, or R&D competitions between different firms in order to
develop a new product, not only depend on a participant’s own effort, but on the
effort put by its competitors. Let’s analyze equilibrium behavior in these settings.
Consider that the benefit that firm 1 obtains from being the first company to launch
a new drug is $36 million. However, the probability of winning this R&D com-
petition against its rival (i.e., being the first to launch the drug) is ', which
increases with this firm’s own expenditure on R&D, x, relative to total expenditure
by both firms, x; + x,. Intuitively, this suggests that, while spending more than its
rival, i.e., x; > x», increases firm 1’s chances of being the winner, the fact that
X1 > x, does not guarantee that firm 1 will be the winner. That is, there is still some
randomness as to which firm will be the first to develop the new drug, e.g., a firm
can spend more resources than its rival but be “unlucky” because its laboratory
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exploits a few weeks before being able to develop the drug. For simplicity, assume
that firms’ expenditure cannot exceed 25, i.e., x; € [0, 25]. The cost is simply x;, so
firm 1’s profit function is

Ty (X1, x2) = 36( ol ) — X1

X1 +Xx3

and there is an analogous profit function for firm 2:

7'[2()61,)62):36( e )—XQ

X1+ X2

You can easily check that these profit functions are increasing and concave in a
firm’s own expenditure. Intuitively, this indicates that, while profits increase in the
firm’s R&D, the first million dollar is more profitable than the 10th million dollar,
e.g., the innovation process is more exhausted.

Part (a) Find each firm’s best-response function.
Part (b) Find a symmetric Nash equilibrium, i.e., x] = x5 = x*.

Answer

Part (a) Firm 1’s optimal expenditure is the value of x; for which the first
derivative of its profit function equals zero. That is,

oni(x1, x2) _ 36|01 +x2 —)261 _1—o0
Oxy (x1 +x2)
Rearranging, we find
36|]—2 | —1=0
(x1 4+ x2)

which simplifies to
36x; = (x +x2)2
and further rearranging
6% = x| +x2

Solving for x;, we obtain firm 1’s best response function

x1(x2) = 6/ — 12
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Figure 2.30 depicts firm 1’s best response function, x;(x;) = 6/x —xp as a
function of its rival’s expenditure, x, in the horizontal axis for the admissible set
x; € [0, 25].

It is straightforward to show that, for all values of x; € [0, 25], firm 1’s best
response also lies in the admissible set x; € [0, 25]. In particular, the maximum of
BR; occurs at x, = 9 since

8BR1(x2) 8[6\/)6_2 —)Cz] _ 3(x2)_%—1

8)62 8x2

Hence, the point at which this best response function reaches its maximum is that
in which its derivative is zero, i.e., 3(xz)71/ 2 1= 0, which yields a value of
x; = 9. At this point, firm 1’s best response function informs us that firm 1 opti-
mally spends 61/9 — 9 = 9. Finally, note that the best response function is concave

in its rival expenditure, x,, since

0°BR, (x 3 2
# = —E (XQ) 2<0.
2

By symmetry, firm 2’s best response function is x;(x;) = 6,/x] — xj.
Part (b) In a symmetric Nash equilibrium x] = x; = x*. Hence, using this property
in the best-response functions found in part (c), yields

X = 6Vx* — x*

Rearranging, we obtain 2x* = 6+v/x*, and solving for x*, we find x* = 9. Hence,
the unique symmetric Nash equilibrium has each firm spending 9. As Fig. 2.31
depicts, the points at which the best response function of player 1 and 2 cross each
other occur at the 45-degree line (so the equilibrium is symmetric). In particular,
those points are the origin, i.e., (0, 0), but this case is uninteresting since it implies
that no firm spends money on R&D, and (9, 9).

Fig. 2.30 Tournament— X1
Firm 1’s best response

function 25

20

15 x1(xz), player 1's best response function

10
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Fig. 2.31 Tournament-Best X
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Exercise 11—Lobbying”®

Consider two interest groups, A and B, seeking to influence a government policy,
each with opposed interest (group A’s most preferred policy is 0, while that of
group B is 1). Each group simultaneously and independently chooses a monetary
contribution to government officials, s; € [0, 1], where i = {A, B}. The policy
(x) that the government implements is a function of the contributions from both
interest groups, as follows:

1
x(sa, sB) = 3754 + s

Hence, if interest groups contribute zero (or if their contributions coincide, thus
canceling each other), the government implements its ideal policy, % [In this
simplified setting, the government is not a strategic player acting in the second stage
of the game, since its response to contributions is exogenously described by policy
function x(s4, sg).] Finally, assume that the interest groups have the following
utility functions:

MA(SA, SB) = *[X(SA, SB)]Z*SA

up(sa, sp) = —[1 — x(sa, sB)]z—sB

which decrease in the contribution to the government, and in the squared distance
between their ideal policy (0 for group A, and 1 for group B) and the implemented
policy x(sa, sg). Find the Nash equilibrium of this simultaneous-move game.
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Answer
Substituting the policy function into the utility function of every group, we obtain

1

2
ua(sa, sg) = — {5 —SA +SB:| —SA

1 2
MB(SA, SB) = — |:1 — (5— SA +SB):| —SB

Taking first order conditions with respect to s4 in the utility function of group A
yields

1
2|:§SA+SB:| 71:0

Rearranging, we obtain 1 — 2s4 + 255 — 1 = 0, which, solving for sy, yields the
best-response function for interest group A, s4(sp) = $5.
Similarly, taking first order conditions with respect to sp in the utility function of

group B, we find
1
217 E*SA+SB 71:0

which simplifies to —s4 4+ 55 = 0, thus yielding the best-response function for
interest group B, sp(sq) = sa. Graphically, both best response functions coincide
with the 45-degree line, and completely overlap to one another. As a consequence,
the set of pure strategy NEs is given by all the points in the 45-degree line, i.e., all
points satisfying s4 = sp, or, more formally, the set

{(sa, sg) € [0, 1]*: 54 = s5}.

Furthermore, since both interest groups are contributing the same amount to the
government, their contributions cancel out, and the government implements its
preferred policy, % Finally, note that the strategic incentives in this game are similar
to those in other Pareto Coordination games with symmetric NEs. While the game
has multiple NEs in which both groups choose the same contribution level, the NE
in which both groups choose a zero contribution Pareto dominates all other NEs
with positive contributions.
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Exercise 12—Incentives and Punishment®

Consider the following “law and economics” game, between a criminal and the
government. The criminal selects a level of crime, y >0, and the government
chooses a level of law enforcement x> 0. Both choices are simultaneous and
independent, and utility functions of the government (G) and the criminal (C) are,
respectively,

¥ 1
ug = —— — xc* and uc = vy

Intuitively, the government takes into account that crime, y, is harmful for
society (i.e., y enters negatively into the government’s utility function us), and that
each unit of law enforcement, x, is costly to implement, at a cost of c* per unit. In
contrast, the criminal enjoys ,/y if he is not caught, which definitely occurs when
x =0 (i.e., his utility becomes u. = ,/y when x = 0), while the probability of not
being caught is H#x\

Part (a) Find each player’s best-response function. Depict these best-response
functions, with x on the horizontal axis and y on the vertical axis.

Part (b) Compute the Nash equilibrium of this game.

Part (c¢) Explain how the equilibrium levels of law enforcement, x and crime, y,
found in part (b) change as the cost of law enforcement, c, increases.

Answer

Part (a) First, note that the government, G, selects the level of law enforcement, x,
that solves

Taking first-order conditions with respect to x yields

2
y 4
=—-c =0
2
Rearranging and solving for x, we find the government’s (G) best response func-
tion, BRg, to be

Intuitively, the government’s level of law enforcement, x, increases in the amount
of criminal activity, y, and decreases in the cost of every unit of law enforcement, c.
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Second, the criminal, C, selects the level of crime, y, that solves

max

y 1—|—xy\/y

Taking first-order conditions with respect to y yields

1 y'/2x 0
2y1/2(1+xy) (l+xy)2 o

Rearranging and solving for y, we find the criminal’s best response function, BR,
to be

which decreases in the level of law enforcement chosen by the government, x.
The government’s best response function, BRg, and the criminal’s best response
function, BR, are represented in Fig. 2.32. Note that BR¢ (i.e., y(x) = 1) is clearly

X

decreasing in x but becomes flatter as x increases, i.e., %: —é <0 and
2v . .
%(ZX) = )% > (0. In order to depict the government’s best response function

BRg, x(y) = %, it is convenient to solve for y which yields y = c?x. As depicted in
Fig. 2.32, BR originates at (0, 0) and has a slope of c.

Part (b) We find the values of x and y that simultaneously solve both players’ best
response functions x = Sandy = % . For instance, you can plug the second expression
into the first expression. This yields x* = lc/—f which, solving for x*, entails an
equilibrium level of law enforcement of x* = % Therefore, the equilibrium level of
crime is y(1) = 1#/6 = c. The Nash equilibrium is, hence, x* =1 and y* =¢; as
illustrated in the point where best response function BR crosses BR¢ in Fig. 2.32.

Fig. 2.32 Incentives and y

Punishment v
BR,,x==
c

/" Nash equilibrium

y =c
\R‘..T il
X

o |-
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Fig. 2.33 Incentives and v A
Punishment-Comparative BR;,x= lz
statics G
BRg,x=-L
G
V=c
T Nash equitibrium when c=c¢,
y=q Nash equilibrium when c=¢
—
»
X* = i X* = i X
C c1

Part (c) As Fig. 2.33 illustrates, an increase in the cost of enforcement ¢ pivots the
government’s best response function, BR leftward, with center at the origin (recall
that ¢ is the slope of BRg). In contrast, the criminal’s best response function is
unaffected (since it is independent on c). This pivoting effect produces a new
crossing point that lies to the northwest of the original Nash equilibrium, entailing a
higher level of criminal activity (v) and a lower level of enforcement (x).

Exercise 13—Cournot mergers with Efficiency Gains®

Consider an industry with three identical firms each selling a homogenous good and
producing at a constant cost per unit ¢ with 1 > ¢ > 0. Industry demand is given by
p(Q) = 1-0, where Q= ¢q;+¢>+¢q3. Competition in the marketplace is in
quantities.

Part (a) Find the equilibrium quantities, price and profits.

Part (b) Consider now a merger between two of the three firms, resulting in
duopolistic structure of the market (since only two firms are left: the merged firm
and the remaining firm). The merger might give rise to efficiency gains, in the sense
that the firm resulting from the merger produces at a cost e - ¢, with e < 1 (whereas
the remaining firm still has a cost ¢):

i. Find the post-merger equilibrium quantities, price and profits.
ii. Under which conditions does the merger reduce prices?
iii. Under which conditions is the merger beneficial to the merging firms?
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Answer

Part (a)
Each firm i = {1, 2, 3} has a profit of
i =(1—0—c)g.
Hence, since Q = q; + g2 + g3, profits can be rewritten as:
= (1= (qg+q+a) — ),
The first-order conditions are given by
1-2gi—qj—qr—c=0
since firms are symmetric g; = ¢; = gx = ¢ in equilibrium, that is
1-2g—g—qgq—c=o0
or
1—4g—c=0.
Solving for g at the symmetric equilibrium yields a Cournot output of,

_l—c
qc = 1

ilibri i — 1 _l=c_l-c_l-c_ 1 _13(l=c) — 143c
Hence, equilibrium prices are pc = 1 1 7 =1 3( 7 ) = and

2
every firm i’s equilibrium profits are n¢c = (”435 - c) 14;C = <116C) .

Part (b)

i. After the merger, two firms are left: firm 1, with cost e - ¢, and firm 3, with cost c.
Hence, the two profit functions are now given by:

m=(1-0—ec)q.
3= (1-0-0c)g;
Taking first order conditions of m; with respect to g; yields

1-2q, —q3 —ec=0

and, solving for g;, we obtain firm 1’s best response function
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Similarly taking first-order conditions of firm 3’s profits, 73, with respect to g3
yields

1-2g3—q1—c=0
which, solving for g3, provides us with firm 3’s best response function

l1—c 1
2 2

73(q1) = q1

Plugging ¢3(q;) into q1(g3), yields
, l—e 1/1—-c 1,
q, = ) 2 qu

Rearranging and solving for g}, we obtain firm 1’s equilibrium output

, l—c(2e—1)
(L T

Plugging this output level into firm 3’s best response function yields an equi-
librium output of

l—c(2—¢)

0= 3

Note that the outsider firm can sell a positive output at equilibrium only if the
merger does not give rise to strong cost savings: that is g3 > 0ife > 2%—’1 af
c¢<1/2, then the previous payoff becomes 2”;1 <0, implying that e > %
holds for all e > 0, ultimately entailing that the outsider firm will always sell at
the equilibrium. We hence concentrate on values of ¢ that satisfy ¢ > 1/2.)
Figure 2.34 illustrates cutoff e > 21, where ¢ > 1/2. The region of (e, ¢)-
combinations above this cutoff indicate parameters for which the merger is not
sufficiently cost saving to induce the outside firm to produce positive output
levels. The opposite occurs when the cost-saving parameter, c, is lower than
(2¢ — 1) /c, thus indicating that the merger is so cost saving that the nonmerged

firm cannot profitably compete against the merged firm.
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08 |
[ 2e-1

I Region where ¢ >
06 €

04 |

02

02 04 06 08
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and

ii. Prices decrease after the merger only if there are sufficient efficiency gains: that

iS, pm < p. can be rewritten as e < %. Note that if ¢<1/5, then % <0,
implying that e < % cannot hold for any e > 0. As a consequence, p,;, > p.,
and prices will never fall no matter how strong efficiency gains, e, are

iii. To see if the merger is profitable, we have to study the inequality n; > 27,

which, solving for e, yields
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_4l+0) =3v2(1—¢)
- 8c

In other words, the merger is profitable only if it gives rise to enough cost
savings. Figure 2.35 depicts the cutoff of e where costs are restricted to
ce [%, l]. Notice that if cost savings are sufficiently strong, i.e., parameter e is

sufficiently small as depicted in the region below the cutoff, the merger is
profitable.



Introduction

This chapter analyzes how to find equilibrium behavior when players are allowed to
randomize, helping us to identify mixed strategy Nash equilibria (msNE). Finding
this type of equilibrium completes our analysis in Chap. 2 where we focused on
Nash equilibria involving pure strategies (not allowing for randomizations).
However, as shown in Chap. 2, some games do not have a pure strategy Nash
equilibrium. As this chapter explores, allowing players to randomize (mix) will help
us identify a msNE in this type of games. For other games, which already have pure
strategy Nash equilibria (such as the Battle of the Sexes game), we will find that
allowing for randomizations gives rise to one more equilibrium outcome. Let us
next define mixed strategies and msNE.

Mixed strategy. Consider that every player i has a finite strategy space S; =
{s1,82,...,8,} with its associated probability simplex AS;, which we can under-
stand as the set of all probability distributions over S;. (For instance, if the strategy
space has only two elements (m = 2), then the simplex is graphically represented
by a [0,1] segment in the real line; while if the strategy space has three elements
(m = 3) the simplex can be graphically depicted by a Machina’s triangle in R%.)
Hence, a mixed strategy is an element of the simplex (a point in the previous
examples for m = 2 and m = 3) that we denote as o; € AS;,

g; = {O'i<sl>> O'i(SZ)v SRR O-i<sm)}

where 0;(s;) denotes the probability that player i plays pure strategy sy, and satisfies
gi(sx) >0 for all k (positive or zero probabilities for each pure strategy) and
> i 0i(sk) = 1 (the sum of all probabilities must be equal to one).

We can now use this definition of a mixed strategy to define a msNE, as follows.
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msNE. Consider a strategy profile ¢ = (071, 02, . . ., o) where o; denotes a mixed
strategy for player i. We then say that strategy profile ¢ is a msNE if and only if

ui(o;,06-)) > u;(sl,o_;) forall s, €S; and for every player i.

Intuitively, mixed strategy o; is a best response of player i to the strategy profile
o_; selected by other players.'

The chapter starts with games of two players who choose among two available
strategies. A natural examples is the Battle of the Sexes game, where husband and
wife simultaneously and independently choose whether to attend to a football game
or the opera. We then extend our analysis to settings with more than two players,
and to contexts in which players are allowed to choose among more than two
strategies. We illustrate how to find the convex hull of Nash equilibrium payoffs
(where players use pure or mixed strategies), and afterwards explain how to find
correlated equilibria when players use a publicly observable random variable. For
completeness, we also examine an exercise which illustrates the difference between
the equilibrium payoffs that players can reach when playing the mixed strategy
Nash equilibrium of a game and when playing the correlated equilibrium, showing
that they do not necessarily coincide. At the end of the chapter, we focus on strictly
competitive games: first, describing how to systematically check whether a game is
strictly competitive; and second, explaining how to find “maxmin strategies” (also
referred to as “security strategies”) using a two-step graphical procedure.

Exercise 1—Game of Chicken®

Consider the game of Chicken (depicted in Fig. 3.1), in which two players driving
their cars against each other must decide whether or not to swerve.

Part (a) Is there any strictly dominated strategy for Player 1?7 And for Player 2?
Part (b) What are the best responses for Player 1?7 And for Player 2?

Part (c¢) Can you find any pure strategy Nash Equilibrium (psNE) in this game?
Part (d) Find the mixed strategy Nash Equilibrium (msNE) of the game. Hint:
denote by p the probability that Player 1 chooses Straight and by (1 — p) the
probability that he chooses to Swerve. Similarly, let ¢ denote the probability that
Player 2 chooses Straight and (1 — ¢) the probability that she chooses to Swerve.

"Note that we compare player i’s expected payoff from mixed strategy a;, u;(g;,5_;), against his
expected payoff from selecting pure strategy s}, u; (s}, 6_;). We could, instead, compare u;(v;, 6_;)
against u; (0}, 0_;), where o} # o;. However, for player i to play mixed strategy o/, he must be
indifferent between at least two pure strategies, e.g., s; and s/. Otherwise, player i would not be
mixing, but choosing a pure strategy. Hence, his indifference between pure strategies s, and s/
entails that u; (s}, 6_;) = u;(s!, o_;), implying that it suffices to check if mixed strategy o; yields a
higher expected payoff than all pure strategies that player i could use in his randomization. (This is
a convenient result, as we will not need to compare the expected payoff of mixed strategy o;
against all possible mixed strategies o} # o;; which would entail studying the expected payoff from
all feasible randomizations.)
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Player 2
Straight Swerve
Player 1 Stralght 0,0 3,1
Swerve 1,3 2,2

Fig. 3.1 Game of Chicken

Part (e) Show your result of part (d) by graphically representing every player i’s
best response function BRF(s;), where s; = {Swerve, Straight} is the strategy
selected by player j # i.

Answer

Part (a) No, there are no strictly dominated strategies for any player. In particular,
Player 1 prefers to play Straight when Player 2 plays Swerve getting a payoff of 3
instead of 2. However, he prefers to Swerve when Player 2 plays Straight, getting a
payoff of 1 by swerving instead of a payoff of 0 if he chooses to go straight. Hence,
there is no strictly dominated strategy for player 1, i.e., a strategy that Player 1
would never use regardless of what strategy his opponent selects. Since payoffs are
symmetric, a similar argument applies to Player 2.

Part (b) Player 1. If player 2 chooses straight (fixing our attention in the left-hand
column), player 1’s best response is to Swerve, since his payoff from doing so, 1, is
larger than that from choosing Straight. Hence,

BR (Straight) = Swerve, obtaining a payoff of 1

If player 2 instead chooses to Swerve (in the right-hand column), player 1’s best
response is Straight, since his payoff from Straight, 3, exceeds that from Swerve, 2.
That is,

BR|(Swerve) = Straight, obtaining a payoff of 3

Player 2. A similar argument applies to player 2’s best responses; since players
are symmetric in their payoffs. Hence,

BR,(Straight) = Swerve, obtaining a payoff of 1
BRy(Swerve) = Straight, obtaining a payoff of 3

These best responses illustrate that the Game of Chicken is Anti-Coordination
game, where each player responds by choosing exactly the opposite strategy of
his/her competitor.

Part (c) Note that in strategy profiles (Swerve, Straight) and (Straight, Swerve),
there is a mutual best response by both players. To see this more graphically, the
matrix in Fig. 3.2 underlines the payoffs corresponding to each player’s selection of
his/her best response. For instance, BR(Straight) = Swerve implies that, when
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Player 2
Straight Swerve
Player 1 Straight 0,0 3,1
Swerve 13 2,2

Fig. 3.2 Nash equilibria in the Game of Chicken

Player 2 chooses Straight (in the left-hand column), Player 1 responds Swerving (in
the bottom left-hand cell), obtaining a payoff of 1; while when Player 2 chooses
Swerve (in the right-hand column) BR;(Swerve) = Straight, and thus Player 1
obtains a payoff of 3 (top right-hand side cell). A similar argument applies to Player
2. There are, hence, two cells where the payoffs of all players have been underlined,
i.e., mutual best responses (Swerve, Straight) and (Straight, Swerve). These are the
two pure strategy Nash equilibria of the Chicken game.
Part (d) Player 1. Let g denote the probability that Player 2 chooses Straight, and
(1 — g) the probability that she chooses Swerve as depicted in Fig. 3.3.

In this context, the expected value that Player 1 obtains from playing Straight (in
the top row) is:

EU,(Straight) = 0g+3(1 — q)

since, fixing our attention in the top row, Player 1 gets a payoff of zero when Player
2 chooses Straight (which occurs with probability g) or a payoff of 3 when Player 2
selects Swerve (which happens with the remaining probability 1 — g). If, instead,
Player 1 chooses to Swerve (in the bottom row), his expected utility becomes

EU,(Swerve) = 1g+2(1 — q)

since Player 1 obtains a payoff of 1 when Player 2 selects Straight (which occurs
with the probability g) or a payoff of 2 when Player 2 chooses Swerve (which
happens with probability 1 — g). Player 1 must be indifferent between choosing
Straight or Swerve. Otherwise, he would not be randomizing, since one pure
strategy would generate a larger expected payoff than the other, leading Player 1 to
select such a pure strategy. We therefore need that

Player 2
Straight Swerve
q l-q
Player I Straight p 0,0 3,1
Swerve 1-p 13 2,2

Fig. 3.3 Searching for a mixed strategy equilibrium in the Game of Chicken
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EU,(Straight) = EU,(Swerve)
0g+3(1—¢q) =1g+2(1 —q)
rearranging and solving for probability ¢ yields
3—3q:q+2—2q:>q:%
That is, Player 2 must be choosing Straight with 50 % probability, i.e., g = %,

since otherwise Player 1 would not be indifferent between Straight and Swerve.

Player 2. When he chooses Straight (in the left-hand column), he obtains an ex-
pected utility of

EU,(Straight) = 0p+3(1 — p)

since he can get a payoff of zero when player 1 chooses Straight (which occurs with
probability p, as depicted in Fig. 3.3), or a payoff of 3 when Player 1 selects to
Swerve (which happens with probability 1 — p). When, instead, Player 2 chooses
Swerve (directing our attention to the right-hand column), he obtains an expected
utility of

EU,(Swerve) = 1p+2(1 — p)

since his payoff is 1 if player 1 chooses Straight (which occurs with probability p)
or a payoff of 2 if Player 1 selects to Swerve (which happens with probability
1 — p). Therefore, Player 2 is indifferent between choosing Straight or Swerve
when

EU,(Straight) = EU,(Swerve)
pO+3(1 —p)=1p+2(1 - p)

Solving for probability p in the above indifference condition, we obtain

1

Hence, the mixed strategy Nash equilibrium of the Chicken game prescribes that
every player randomizes between driving Straight and Swerve half of the time.
More formally, the mixed strategy Nash equilibrium (msNE) is given by

1 . 1 1 . 1
msNE = { (5 Straight, ESwerve), (5 Stralght,ESwerve) }
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where the first parenthesis indicates the probability distribution over Straight and
Swerve for Player 1, and the second parenthesis represents the analogous proba-
bility distribution for Player 2.
Part (e) In Fig. 3.4, we first draw the thresholds which specify the mixed strategy
Nash equilibrium (msNE): p = 1/2 and g = 1/2. Then, we draw the two pure
strategy Nash equilibria found in question (c):

e One psNE in which Player 1 plays Straight and Player 2 plays Swerve (which in
probability terms means p = 1 and g = 0), graphically depicted at the lower
right-hand corner of Fig. 3.4 (in the southeast); and

e Another psNE in which Player 1 plays Swerve and Player 2 plays Straight
(which in probability terms means p = 0 and ¢ = 1), graphically depicted at the
upper left-hand corner of Fig. 3.4 (in the northwest).

Player 1’s best response function. Once we have drawn these pure strategy
equilibria, notice that from Player 1’s best response function, BR;(g), we know that,
if <3, then EU,(Straight) > EU;(Swerve), thus implying that Player 1 plays
Straight using pure strategies, i.e., p = 1. Intuitively, when Player 1 knows that
Player 2 is rarely selecting Straight, i.e., g < %, his best response is to play Straight,
ie., p=1 for all g< % as illustrated in the vertical segment of BR;(g) in the
right-hand side of Fig.3.4. In contrast, ¢ > 1 entails EU(Straight)
<EU,(Swerve), and therefore p = 0. In this case, Player 2 is likely playing Straight,
leading Player 1 to respond with Swerve, i.e., p = 0, as depicted in the vertical
segment of BR|(q) that overlaps the vertical axis in the left-hand side of Fig. 3.4.

Player 2’s best response function. A similar analysis applies to Player 2’s best
response function, BR,(p), depicted in Fig. 3.5: (1) when p < % Player 2’s expected
utility comparison satisfies EU,(Straight) > EU,(Swerve), thus implying g = 1,

Fig. 3.4 Game of Chicken— q
Best response function of (Swerve, Straight)
Player 1 1
BRl(q )
12 — e c— c— — _|

(Straight, Swerve)
~a I

1/2 1 P
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Fig. 3.5 Game of Chicken— qA
Best response function of BR,(p)
Player 2 1

X

(Swerve, Straight)

1/2
(Straight, Swerve)
\A
12 1
Fig. 3.6 Game of Chicken— q A
Best response functions, BR,(p)
psNE and msNE 1 msNE
N
(Swerve, Straight)
i | BR,(q)

L

(Straight, Swerve)
~N I

1/2 1 p

\4

as depicted in the horizontal segment of BR;(p) at the top left-hand side of Fig. 3.5;
and (2) when p > 1, EU,(Straight) < EU,(Swerve), ultimately leading to ¢ = 0, as
illustrated by the horizontal segment of BR,(p) that overlaps the horizontal axis in
the right-hand side of the figure.

Superimposing both players’ best response functions, we obtain Fig. 3.6, which
depicts the two psNE of this game (southeast and northwest corners), as well as the
msNE (strictly interior point, where players are randomizing their strategies).

Exercise 2—Lobbying Game®
Let us consider the following lobbying game in Fig. 3.7 where two firms simul-

taneously and independently decide whether to lobby Congress in favor a particular
bill. When both firms (none of them) lobby, congress’ decisions are unaffected,
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Firm 2
Lobby Not Lobby
Firm 1 Lobby -5,-5 15,0
Not Lobby 0,15 10,10

Fig. 3.7 Lobbying game

implying that each firm earns a profit of 10 if none of them lobbies (=5 if both
choose to lobby, respectively). If, instead, only one firm lobbies its payoff is 15
(since it is the only beneficiary of the policy), while that of the firm that did not
lobby collapses to zero.

Part (a) Find the pure strategy Nash equilibria of the lobbying game.
Part (b) Find the mixed strategy Nash equilibrium of the lobbying game.
Part (c) Graphically represent each player’s best response function.

Answer

Part (a) Let us first identify each firm’s best response function. Firm 1’s best
response is BR|(Lobby) = Not lobby and BR(Not lobby) = Lobby, and similarly
for Firm 2, thus implying that the lobbying game represents an anti-coordination
game, such as the Game of Chicken, with two psNE: (Lobby, Not lobby) and (Not
lobby, Lobby). Let us now analyze the mixed strategy equilibria of this game.
Part (b) Firm 1. Let g be the probability that Firm 2 chooses Lobby, and (1 — g)
the probability that she chooses Not Lobby. The expected profit of Firm 1 playing
Lobby (fixing our attention on the top row of the matrix) is

EU,(Lobby) = —5q+15(1 — q) = 15 —20q

since Firm 1 obtains a payoff of —5 when Firm 2 also chooses to lobby (which
happens with probability g) or a payoff of 15 when Firm 2 does not lobby (which
occurs with probability 1 — ¢). When, instead, firm 1 chooses Not lobby (directing
our attention to the bottom row of Fig. 3.7), its expected profit is:

EU,(Not Lobby) = 0g +10(1 — g) = 10 — 10g

given that Firm 1 obtains a payoff of zero when Firm 2 lobbies and a profit of 10
when Firm 2 does not lobby. If Firm 1 is mixing between Lobbying and Not
lobbying, it must be indifferent between Lobbying and Not lobbying. Otherwise, it
would select the pure strategy that yields the highest expected payoff. Hence, we
must have that

EU,(Lobby) = EU,(Not Lobby)
rearranging and solving for probability ¢ yields

15-20g=10—10g = g =1/2
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Therefore, for Firm 1 to be indifferent between Lobbying and Not lobbying, it must
be that Firm 2 chooses to Lobby with a probability of ¢ = 1/2.

Firm 2. A similar argument applies to Firm 2. If Firm 2 chooses to lobby (fixing the
right-hand column), it obtains an expected profit of

EU,(Lobby) = —5p +15(1 — p)

since Firm 2 obtains a profit of =5 when Firm 1 also lobbies (which occurs with
probability p), but a profit of 15 when Firm 1 does not lobby (which happens with
probability 1 — p). When Firm 2, instead selects to Not lobby (in the right-hand
column of Fig. 3.7), it obtains an expected profit of

EU,(Not Lobby) = 0p+10(1 — p)
Hence, firm 2, must be indifferent between Lobbying and Not lobbying, that is,
EU,(Lobby) = EU,(Not Lobby)
solving for probability p yields
—Sp+15(1 —p)=0p+10(1 —p)=p=1/2

Hence, Firm 2 is indifferent between Lobbying and Not lobbying as long as Firm 1
selects to Lobby with a probability p = 1/2. Then, in the lobbying game the mixed
strategy Nash equilibrium (msNE) prescribes that:

1 1 1 1
msNE = { (2 Lobby, EN() Lobby), (2 Lobby, ENO Lobby) }

Part (c) Figure 3.8 below depicts every player’s best response function, and the
crossing points of both best response functions identify the two psNE of the game
(p,q) = (0,1), illustrating (Not lobby, Lobby), (p,q) = (1,0) which corresponds
to (Lobby, Not lobby), and the msNE of the game (p,q) = (4,31) found above.
In order to understand the construction of this figure, let us next analyze each
player’s best response function separately.
Player 1: For any g > 1/2, Firm 1 decides to play No Lobbying (in pure strate-
gies), thus implying that p = 0 for any ¢ > 1/2, as depicted by the vertical segment
of BR(q) (dashed line) that overlaps the vertical axis (left-hand side of Fig. 3.9).
Intuitively, if Firm 2 is likely lobbying, i.e., ¢ > 1/2, Firm 1 prefers not to lobby.
Similarly, for any g < 1/2, Firm 2 is rarely lobbying, which induces firm 1 to lobby,
and therefore p =1, as illustrated by the vertical segment of BRi(g) in the
right-hand side of Fig. 3.9.
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(Lobby, Not Lobby)

qA /
BR,(p)
1
msNE

1/2 I— — e e e —

BR,(q) _l

I (Not Lobby, Lobby)
1/2 1 P

Fig. 3.8 Lobbying game—Best response functions, psNE and msNE

Fig. 3.9 Lobbying game— qA
Best response function, firm 1

BR,(q)

v

1/2 1 p

Player 2: For any p > 1/2, Firm 2 is better off Not lobbying than Lobbying, and
hence ¢ = 0 for any p > 1/2, as BR,(p) represents in the horizontal segment that
overlaps the horizontal axis (see right-hand side of Fig. 3.10). Intuitively, if Firm 1
is likely lobbying, p > 1, Firm 2 prefers Not to lobby. In contrast, for any p < 1,
Firm 2 is better off Lobbying than Lobbying, what implies that ¢ = 1 for any
p below 1/2. Intuitively, Firm 1 is likely not lobbying, making lobbying more
attractive for Firm 2. This result is graphically depicted by the horizontal segment
of BR,(p) in the top left-hand side of Fig. 3.10.
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qA

BR,(p)
1

3/4

\4

1/2 1 p

Fig. 3.10 Lobbying game—Best response function, firm 2

Superimposing BR;(g), as depicted in Fig. 3.9, and BR;,(p), as illustrated in
Fig. 3.10, we obtain the crossing points of both best response functions, as indi-
cated in Fig. 3.8, which represent the two psNEs and one msNE in the Lobbying
game.

Exercise 3—A Variation of the Lobbying Game®

Consider a variation of the above lobbying game. As depicted in the payoff matrix
of Fig. 3.11, if Firm 1 lobbies but Firm 2 does not, Congress decision yields a profit
of x — 15 for Firm 1, where x > 25, and does not yield any profits for Firm 2.
Part (a) Find the psNE of the game

Part (b) Find the msNE of the game

Part (¢) Given the msNE you found in part (b), what is the probability that the
outcome (Lobby, Not lobby) occurs?

Part (d) How does your result in part (c) varies as x increases? Interpret.

Answer

Part (a) Let us first examine Firm 1’s best response function. In particular,
BR|(Lobby) = No Lobby, since when Firm 2 lobbies (in the left-hand column),
Firm 1 obtains a larger payoff not lobbying, i.e., zero, than lobbying, —5. When,

Firm 2
Lobby No Lobby
Firm 1 Lobby -5,-5 x-15,0
No Lobby 0,15 10,10

Fig. 3.11 A variation of the Lobbying game
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instead, Firm 2 does not lobby (in the right-hand column) Firm 1 gets a larger
payoff lobbying if x — 15 > 10, or x > 25, which holds by definition. Hence,
BR; (Not Lobby) = Lobby. Similarly, when Firm 1 chooses to lobby (in the top
row), Firm 2’s best response is BR,(Lobby) = Not Lobby, since 0 > —5; and
when Firm 1 selects not to lobby (in the bottom row) Firm 2’s best response
becomes BR,(Not Lobby) = Lobby, since 15 > 10. Therefore, there are two
strategy profiles in which firms play a mutual best response to each other’s
strategies: (Lobby, Not Lobby) and (Not Lobby, Lobby), i.e., only one firm lobbies
in equilibrium. These are the two psNE of the game.

Part (b) (in this part of the exercise, we operate in a similar fashion as in Exercise
2.) If Firm 1 is indifferent between Lobbying and Not lobbying, then it must be that

EU,(Lobby) = EU;(Not lobby), or — 5¢+ (x — 15)(1 — ¢) = 0g+ 10(1 — q)

25—x

Rearranging terms and solving for probability ¢, yields g = 53==

Similarly, Firm 2 must be indifferent between Lobbying and Not lobbying
(otherwise, it would select a pure strategy). Hence,

EU,(Lobby) = EU,(Not lobby),or — 5p+15(1 — p) = Op+ 10(1 — p)

And solving for probability p, we obtain p = % (This comes at no surprise since
the payoffs of Firm 2 coincide with those in Exercise 3.2, thus implying that the
probability p that makes Firm 2 indifferent between Lobbying and Not lobbying
also coincides with that found in Exercise 3.2, i.e.,p = % However, that of Firm
1 changed, since the payoffs of Firm 1 have been modified.”

Hence, the msNE is

1 1 25 —x 25 —x
~L —~Not L —L 1 — ———Not L
{ (2 obby, 2Not 0bby>, (20 — obby, 20 = xNot obby) }

Part (c) The probability that outcome (Lobby, No Lobby) occurs is given by the
probability that Firm 1 lobbies, p, times the probability that Firm 2 does not
lobby, 1 — g, ie., p(1 —gq). Since we know that p =1 and g =2=% then

2 20—x
p(1 —gq) =1 (1 —£=5), or simplifying,

“Nonetheless, in the specific case in which x = 30, the payoff matrix in Fig. 3.11 coincides with

that in Exercise 3.2, and the probability ¢ that makes Firm 1 indifferent reduces to

g =%=30= =5 =1 as that in Exercise 3.2.)
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Fig. 3.12 Probability of A
outcome (Lobby, Not Lobby) ~ °20
as a function of x
0.15
0.10
0.05 |

p(l1—q) = % (x _520)

Part (d) As x increases, the probability of outcome (Lobby, Not Lobby) decreases,
ie.,

dlp(1 = p)] 5

= - <0.
Ox 2(x — 20)*

which is negative given that x > 25 by definition. Figure 3.12 depicts p(1 — ¢) for
different values of x (starting with x = 25, since x > 25 by definition), and illustrates
that p(1 — ¢) decreases in x.

In addition, as x becomes larger, the aggregate payoff in outcome (Lobby, Not
Lobby), i.e., (x — 15) +0, exceeds the aggregate payoff from any other strategy
profile, thus becoming socially optimal. In particular, when (x—15)+0 >
10+ 10, i.e., x > 35, this outcome becomes socially efficient. Intuitively, the profit
that Firm 1 obtains when it is the only firm lobbying, x — 15, is so high that
aggregate profits become larger than in the case in which no firm lobbies, 10+ 10.
Otherwise, it is socially optimal that no firm lobbies.

Exercise 4—Mixed Strategy Equilibrium with n > 2 Players®

Consider exercise 2.8 (psNE with n Players) from Chap. 2, where every player had
to select between X and Y. Recall that the payoff of each player who selects X is
2m, — m)% + 3 where m, is the number of players who choose X, while the payoff of
each player who selects Y is 4 — m,, where m, is the number of players who choose
Y, and m, +m, = n.

In Chap. 2, we found the three psNE of the game when n = 3. Still assuming
that n = 3, determine whether this game has a symmetric msNE in which each
player selects X with probability p and Y with the remaining probability 1 — p.
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Answer
The matrices in Figs. 3.13 and 3.14 reproduce the normal form game when n = 3,
as described in exercise 2.8 of Chapter 2. (In particular, Fig. 3.13 depicts the payoff
matrix when player 3 chooses X, while Fig. 3.14 illustrates the matrix when player
3 chooses Y.)

If every player chooses X with probability p and Y with probability 1 — p, the
expected utility that player 1 obtains from playing X is:

EU(X) = p*0+p(1 —p)3+ (1 —p)p3+ (1 — p)*4 = p(1 — p)6+4(1 — p)*

First, note that if player 1 is choosing X we must only pay attention to the top
row of both matrices. In particular, when both player 2 and 3 play X, which occurs
with probability p x p = p?, then Player 1 obtains a payoff of 0 from playing X (see
top left-hand cell in the upper matrix). If, instead, only one of his opponents plays
X, which happens with probability p(1 — p), his payoff becomes 3. (This holds both
if player 2 plays X while player 3 chooses Y, and vice versa.) Finally, when both of
his opponents play Y, which occurs with probability (1 — p)z, his payoff from
selecting X is 4 (see the top right-hand cell in the lower matrix).

And player 1’s expected utility from playing Y is:

EU\(Y) = p*3+p(1 =p)2+ (1 = p)p2+ (1 —p)’1
=3p?+4(1—p)p+ (1 —p)’
In this case, we fix our attention on the bottom row of both matrices: when both
players 2 and 3 choose X, player 1’s payoff is 3; when one of his opponents selects

X, player 1’s payoff is 2; and when both players 2 and 3 choose Y, then player 1’s
payoff is only 1.

Player 2
X Y
Player 1 X 0,0,0 3,3,3
Y 3,33 2,24
Fig. 3.13 Player 3 chooses X
Player 2
X Y
Player 1 X 3,3,3 4272
Y 2,42 1,1,1

Fig. 3.14 Player 3 chooses Y
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Player 2
L C R
T 3,2 4,3 1,4
Player 1 C 1,3 7,0 2.1
B 2,2 8,-5 2,0

Fig. 3.15 A 3 X 3 payoff matrix

Hence, Player 1 is indifferent between choosing X and Y for values of p that
satisfy EU,(X) = EU,(Y). That is,

p(1=p)6+4(1—p)> =3p> +4(1 —p)p+ (1 —p)°
and simplifying,
2p* +4p—3=0

Solving for p, we find two roots of p: either p = —1 — /2.5 <0, which cannot
be a solution to our problem, since we need p € [0,1], or p = —1+ V2.5 =0.58,
which is the solution to our problem.

A similar argument applies to the randomization of players 2 and 3, since their
payoffs are symmetric. Hence, every player in this game randomizes between X and
Y (using mixed strategies) assigning probability p = 0.58 to strategy X, and 1 — p =
0.42 to strategy Y.

Exercise 5—Randomizing Over Three Available Actions®

Consider the following game where Player 1 has three available strategies (Top,
Center, Bottom) and Player 2 has also three options (Left, Center, Right) as shown
in the normal form game of Fig. 3.15.

Find all Nash equilibria (NEs) of this game.

Answer
First, observe that the pure strategy C of player 2 is strictly dominated by strategy
R. Indeed, regardless of the pure strategy that player 1 chooses (i.e., independently
on the row he selects), player 2’s payoffs is strictly higher with R than with C, that
is3 <4,0 < 1 and =5 < 0. Hence, strategy C is never going to be part of a NE in
pure or mixed strategies. We can then eliminate strategy C (middle column) for
player 2, as depicted in the reduced game in Fig. 3.16.

Underlying best response payoffs, we find that there is no psNE, i.e., there is no
cell where the payoff of all players are underlined as best responses. Let’s next
analyze msNE.



76 3 Mixed Strategies, Strictly Competitive Games ...

Player 2
L R
T 3,2 1,4
Playerl1 C 1,3 2,1
B 2,2 2,0

Fig. 3.16 Reduced payoff matrix (after deleting column C)

Let us assign probability g to player 2 choosing L and (1 — ¢) to him selecting R;
as depicted in the matrix of Fig. 3.17. Similarly, let p; represent the probability that
player 1 chooses T, p, the probability he selects C, and 1 — p; — p, the probability
of him playing B.

Let us next find the expected payoffs that each player obtains from choosing
each of his pure strategies, anticipating that his rival uses the above randomization
profile. First, for player 1, we obtain:

EU\(T)=3g+1(1 —q)=1+4+2¢
EU,(C)=1g+2(1—¢q)=2—¢q
EU,(B) =2g+2(1 — q) =2

And for player 2 we have that:

EU,(L) =2p1 +3p2+2(1 — p1 — p2)
=2p+3p2+2—2p; —2p>
=2+4p

and

EU(R) = 4p1+ 1p2 +0(1 — p1 — p2)

=4p1+p
Player 2
q 1-q
L R
P1 T 3,2 1,4
Player 1 p, C 1,3 2,1
1- P1— P2 B 2,2 2,0

Fig. 3.17 Assigning probabilities to each pure strategy
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Hence if player 2 mixes, he must be indifferent between L and R, entailing:
24pr=4pi+p

pP1 = 1/2

implying that player 1 mixes between C and B with a 50 % probability on each. We
have, thus, found the mixing strategy of player 1, and we can then turn to player 2
(which entails analyzing the expected payoffs of player 1). We next consider dif-
ferent mixed strategies for player 1, showing that only some of them can be sus-
tained in equilibrium.

Mixing between T and C alone. If player 1 mixes between T and C alone
(assigning no probability weight to B), then he must be indifferent between T and
C, as follows:

EUI(T) = EU](C)
1+2g =2 — g, which yields ¢ = 1

Hence, player 1 randomizes between T and C, assigning a probability of ¢ = %to
Tandl—q:%to C.

Mixing between T and B alone. If, instead, player 1 mixes between T and B
(assigning no probability to C), then his indifference condition must be:

EU\(T) = EU\(B)
1 +2g = 2, which yields ¢ = 1/2

implying that player 2 mixes between L and R with 50 % on each. We have then

identified a msNE:
1T oC 1B 1L lR
2777727 ) \272

In words, player 1 evenly mixes between T and B, i.e. p; = 1/2 and p, =0,
while player 2 evenly mixes between L and R.

Mixing between C and B alone. Finally, if player 1 mixes between C and B, it
must be that he is indifferent between their expected payoffs

EU,(C) = EU\(B)
2 —q =2, which yields ¢ =0

Therefore, player 1 cannot randomize between C and B alone; otherwise, player
2 would play R with certainty (¢ = 0), driving player 1 to best respond with B or C
(both of them yield the same payoff, 2); a contradiction.
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Mixing among all three actions. Note that a msNE in which player 1 randomizes
between all three strategies cannot be sustained since for that mixing strategy he
would need:

EU,(T) = EU,(C) = EU,(B)
142g=2—g=2

Providing us with two equations 1+42g =2 and 2 — ¢ =2, which cannot
simultaneously hold, i.e., 1 +2¢ = 2 entails g = 1/2 while 2 — g = 2 yields g = 0.

Exercise 6—Pareto Coordination Game®

Consider the Pareto coordination game depicted in Fig. 3.18. Determine the set of
psNE and msNE, and depict both players’ best response correspondences.

Answer
Let us first analyze the set of psNE of this game. If Player 2 chooses L (in the
left-hand column), then Player 1’s best response is BR(L) = U; while if he
chooses R (in the right-hand column), Player 1 responds with BR|(R) = D. Let us
now analyze Player 2’s best responses. If Player 1 chooses U (in the top row), then
Player 2’s best response is BR,(U) = L; while if Player 1 chooses D (in the bottom
row), then Player 2 responds with BR;(D) = R. The payoff matrix in Fig. 3.19
underlines the payoff associated to every player’s best responses. Since there are
two cells in which all players payoffs are underlined (indicating that they are
playing mutual best responses), there exist 2 pure strategy Nash equilibria:
PSNE = {(UaL)v (DaR)}'

Let us now examine the msNE of the game. Let p denote the probability that
Player 1 chooses U and g the probability that Player 2 selects L. For Player 1 to be
indifferent between U and D, we need

Player 2
L R
Player I U 9,9 0,8
D 8,0 1,7
Fig. 3.18 Pareto coordination game
Player 2
R
Player I U 9,9 0,8
D 8,0 7.7

Fig. 3.19 Underlining best response payoffs in the Pareto coordination game
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EU,(U) = EU,(D)
that is,
9q+0(1 —q) =8q+7(1 —q)

And solving for ¢q yields ¢g* = %. Similarly, for Player 2 to be indifferent between L
and R, we need

EU>(L) = EU>(R)
or
9 +0(1 —p) =8p+7(1 —p)

And solving for p, we obtain p* = % Hence, the msNE of this game is

Nve=1d(Tulp) (70 lr
REEA 8T8 ) 87

We can now construct the best response correspondences for each player:

e For Player 1 we have that if g < 7, then Player 1’s best response is BR;(¢q) = D.
Intuitively, in this setting, Player 2 is not likely to select L, but rather R. Hence,
player 1’s expected payoff from D is larger than that of U, thus implying p = 0.
If, instead, ¢ > % Player 1’s best response becomes BR;(q) = U, thus entailing
p = 1. Finally, if ¢ is exactly g = %, then Player 1’s best response is to ran-
domize between U and D, given that he is indifferent between both of them. This
is illustrated in Fig. 3.20, where BR)(g) implies p = 0 along the vertical axis of
all g< % (in the left-hand side of the figure), becomes flat at exactly g = %, and
turns vertical again (i.e., p = 1 in the right-hand side of the figure) for all g > %

e Similarly, for Player 2, we have that: (1) if p< %, his best response becomes
BRy(p) =R, thus implying ¢ =0; (2) if p> 7 his best response is
BR;(p) = L, thus entailing ¢ = 1;and 3) if p = %, Player 2 randomizes between
U and D. Graphically, BR;(p) lies at g = 0 along the horizontal axis for all p < %
(as illustrated in the left-hand side of Fig. 3.20), becomes vertical at exactly
p= % and turns horizontal again for all p > % (i.e., g =1 at the upper
right-hand part of the figure).

Therefore, BR1(q) and BR;(p) intersect at three points; illustrating two psNE

(p,q) = (0,0) = psNE(D,R)
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psNE 1\

Fig. 3.20 Pareto coordination game—Best response functions

(paq) - (17 1) :>pSNE(U,L)

and one msNE:
o) = (2.1 = msved (Tulp) (1o 1k
=|=-.,= m — — —L.—
4= \3'3 s g 8" ) \g™3

Exercise 7—Mixing Strategies in a Bargaining Game®

Consider the sequential-move game in Fig. 3.21. The game tree describes a bar-
gaining game between Player 1 (proposer) and Player 2 (responder). Player 1 makes

a take-it-or-leave-it offer to Player 2, specifying an amount s = {07% ) v} out of an

initial surplus v, i.e., no share of the pie, half of the pie, or all of the pie, respec-
tively. If Player 2 accepts such a distribution, Player 2 receives the offer s, while
Player 1 keeps the remaining surplus v — s. If Player 2 rejects, both players get a

zero payoff.

Part (a) Describe the strategy space for every player.

Part (b) Provide the normal form representation of this bargaining game.
Part (c) Does any player have strictly dominated pure strategies?

Part (d) Does any player have strictly dominated mixed strategies?
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Player 1

Player 2

Player 2

0 0 v/2 0 \' 0
v 0 v/2 0 0 0

Fig. 3.21 Bargaining game

Answer

Part (a) Strategy set for player 1

1%
S] == {O,E,V}

Strategy set for player 2
S, = {AAA,AAR,ARR,RRR, RRA,RAA,ARA, RAR}

For every triplet, the first component specifies Player 2’s response upon
observing that Player 1 makes offer s = v (in the left-hand side of Fig. 3.21), the
second component is instead his response to an offer s = 3, and the third component
describes Player 2’s response to an offer s = 0 (in the right-hand side of Fig. 3.21).
Part (b) Normal form representation: Using the three strategies for Player 1 and the
eight available strategies for Player 2 found in part (a), the 3 x 8 matrix of Fig. 3.22
represents the normal form representation of this game.

Part (¢) No player has any strictly dominated pure strategy:

Player 1. For Player 1, we find that s = J yields a weakly (not strictly) higher
payoff than s = v, that is u, (s = %,sz) >uy(s = v,s,) for all strategies of Player 2,
s> € 85, (i.e., some columns in the above matrix), which is satisfied with strict
equality for some strategies of Player 2, such as ARR, RRR or RRA.
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Player 2
AAA AAR ARR RRR RRA RAA ARA RAR
S=v 0,v 0,v 0,v 0,0 0,0 0,0 0,v 0,0
Player 1 s=42| 4242 | 4/2,0/2 0,0 0,0 0,0 02,02 0,0 /2,02
s=0 2,0 0,0 0,0 0,0 2,0 2,0 2,0 0,0

Fig. 3.22 Normal-form representation of the Bargaining game

Similarly, s = 0 yields a weakly (but not strictly) higher payoff than s = 3. That

is, ui(s = v,8) >uy (s = %,sz) for all s, € S,, with strict equality for some s, € S5,
such as ARR and RRR. Similarly, s = 3 yields a weakly higher payoff than s = 0 for
some strategies of Player 2, such as RRR, but a strictly larger payoff for other
strategies, such as RAR. Hence, there is no weakly dominated strategy for Player 1.

Player 2. Similarly, for Player 2, u>(s2,51) > u2 (s, s1) for any two strategies of
Player 2 s, # s, and for all s; € §; with strict equality for some s; € S;.

Part (d) Once we have shown that there is no strictly dominated pure strategy, we
focus on the existence of strictly dominated mixed strategies.

We know that Player 1 is never going to mix assigning a strictly positive
probability to his pure strategy s = v (i.e., offering the whole pie to Player 2) given
that it will reduce for sure his expected payoff, for any strategy with which Player 2
responds. Indeed, such strategy yields a strictly lower (or equal) payoff than other of
his available strategies, such as s =0 or s = 5.

If Player 1 mixes between s = 0 and s = 3, we can see that he is going to obtain
a mixed strategy o that yields a expected utility, u;(ay,s;), which exceeds his
utility from selecting the pure strategy s = v. That is,

ui(o1,s1) >ui(s =v,s;) forall s, € S,

with strict equality for s, = ARR and s, = RRR, but strict inequality (yielding a
strictly higher expected payoff) for all other strategies of player 2. We can visually
check this result in Fig. 3.22 by noticing that s = v, in the top row, yields a zero
payoff for any strategy of player 2. However, a linear combination of strategies
s =7%and s = 0, in the middle and bottom rows, yields a positive expected payoff
for columns AAA, AAR, RRA, RAA, ARA and RAR; since all of them contain at least
one positive payoff for Player 1 in the middle or bottom row. However, in the
remaining columns (ARR and RRR), Player 1’s payoff is zero both in the middle and
bottom row; thus implying that his expected payoff, zero, coincides with his payoff
from playing the pure strategy s = v in the top row. A similar argument applies to
Player 2. Therefore, there doesn’t exist any strictly dominated mixed strategy.
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Player 2
L R
Player 1 U 6,6 2,7
D 7,2 0,0

Fig. 3.23 Normal-form game

Exercise 8—Depicting the Convex Hull of Nash Equilibrium
Payoffs©

Consider the two-player normal form game depicted in Fig. 3.23.

Part (a) Compute the set of Nash equilibrium payoffs (allowing for both pure and
mixed strategies).

Part (b) Draw the convex hull of such payoffs.

Part (c) Is there any correlated equilibrium that yields payoffs outside this convex
hull?

Answer

Part (a) Set of Nash equilibrium payoffs.

psNE. Let us first analyze the set of psNE. Player 1’s best responses are BR, (L) = D
when player 2 chooses L (in the left-hand column), and BR,(R) = U when player 2
selects R (in the right-hand column). Player 2’s best responses are BR,(U) = R when
player 1 chooses U (in the top row) and BR,(D) = L when player 1 selects D (in the
bottom row). Hence, there are two cells in which all players are playing mutual best
responses. That is, there are two psNEs, (U, R), (D, L), with associated equilibrium
payoffs of:

(2,7) for psNE (U, R), and
(7,2) for psNE (D, L).

msNE. Let us now examine the msNE of this game. Player 1 randomizes with
probability p, as depicted in Fig. 3.24.
Hence, Player 2 is indifferent between L and R, if

EU,(L) = EU,(R)
6p+2(1 —p) =Tp+0(1 —p)

And solving for probability p, we obtain p = %
Similarly, Player 2 randomizes with probability g. Therefore, Player 1 is indifferent
between his two strategies, U and D, if

EU,(U) = EU,(D)
6g+2(1—¢q)="79+0(1 —q)
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Player 2
q I-q
R
Player 1 p U 6,6 2,7
1-p D 7,2 0,0

Fig. 3.24 Normal-form game

And solving for probability g, we find g = % Therefore, the msNE is given by:

ve=1(2ulp) (2Ll
mWEEEAGY3Y ) 373

The expected payoff that Player 1 obtains from this symmetric msNE is:

s 2|2 1 12 1
Player 2 plays L Player 2 plays R
38 414
9 9 3

And similarly, the expected payoff of Player 2 is

2 (2 1 12 1
Player 1 plays U Player 1 plays D
38414
9 9 3

Hence the expected payoffs for playing this msNE are given by EU;(p*,¢*) =
14/3 for both players i = 1,2.

Best Responses. Figure 3.25 depicts the best response for each player. For
Player 1, note that: (1) when g < %, his best response becomes BR;(q) = U, thus
implying p = 1, as indicated in the vertical segment of BR(q) on the right-hand
side of the figure; (2) when g = %, his best response is to randomize between U and
D, as illustrated in the horizontal line at exactly g = %; finally (3) when g > %, his
best response is BR|(gq) = D, thus entailing p = 0, as depicted in the vertical
segment of BR|(g) in the left-hand side of the figure which overlaps with the
vertical axis for all g > % A similar analysis applies to the best response function of
player 2, BR;(p), where BR,(p) = L when p < 3, this implying ¢ = 1 (as depicted
in the horizontal segment at the top of Fig. 3.25), while his best response becomes
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q F
) BRy(p)
2 2
/'msm 2egi~g
2
3 | ¢
BRy(q)
0 - : _ »
2 P
0 3 d

Fig. 3.25 Best response functions

BR>(p) = R when p > 2, which entails g = 0, as indicated in the horizontal line
that coincides with the p-axis for all p > %
Part (b) Convex hull of equilibrium payoffs. From our previous analysis, equilib-
rium payoffs are (2,7) for the psNE (U, D), and (7,2) for the psNE (D, L). Fig-
ure 3.26 depicts these two payoffs pairs (see northwest and southeast corners,
respectively). In addition, it also illustrates the expected payoff from the msNE,
13—4 = 4.66 for each player, and the convex hull of Nash equilibrium payoffs (shaded
area).
Part (c) Let us now analyze the correlated equilibrium. Assume that a trusted party
tells each player what to do based on the outcome of the following experiment
(using a publicly observable random variable, such as a three-sided dice whose
outcome all players can observe; as illustrated in Fig. 3.27).

Hence, player 1’s expected payoff at the correlated equilibrium is

1 1 1 15

24— T4 6=—=5

3 + 3 * 3 3
since player 1 obtains a payoff of 2 when players choose outcome (U, R), a payoff
of 7 when they select (D, L), and a payoff of 6 in outcome (U, L). And similarly for
player 2’s expected payoff

1 1 1
—_ —-2 _— = — =
37+3 —|-36 3 5
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UlA
2l TERTTTTTI (227)
6
Convex hull of
5 NE payoff
(4.5,4,5)51'

2 [ ------- toeee N \ (72)

i >
0 2 5 6 7 "

Fig. 3.26 Convex hull of equilibrium payoffs

Outcome  Probability

UR 1/3
DL 1/3
UL 1/3

Fig. 3.27 Experiment

Therefore, as Fig. 3.26 shows, the correlated equilibrium yields a payoff pair
(5,5) outside this convex hull of Nash equilibrium payoffs. However, notice that
there exists a Nash equilibrium (potentially involving mixed strategies) in which
each player obtains a expected payoff of EU; = EU, = 4.5, which lies at the
southwest frontier of the convex hull.

The equation of the line connecting points (2,7) and (7,2) is u =9 — u;. To
see this, recall that the slope of a line can be found in this context with
m= % = —1, while the vertical intercept is found by inserting either of the two
points on the equation. For instance, using (2,7) we find that 7 = b — 2 which,
solving for b, yields the vertical intercept b = 9. It is then easy to check that point

(4.5,4.5) lies on this line since 4.5 = 9 — 4.5 holds with equality.
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Game 1 Game 2
Player 2 Player 2
L R L R
Player 1 U 2.1 0,0 U | 4,4 1,5
D | 0,0 1,2 D | 51 0,0

Fig. 3.28 Two normal-form games

Exercise 9—Correlated Equilibrium®

Consider the two games depicted in Fig. 3.28, in which player 1 chooses rows and
player 2 chooses columns:

Part (a) In each case, find the set of Nash equilibria (pure and mixed) and depict
their equilibrium payoff pairs.

Part (b) Characterize one correlated equilibrium where the correlating device is a
publicly observable random variable, and illustrate the payoff pairs on the figure
you developed in part (a).

Part (c) Characterize the set of all correlated equilibria, and depict their payoff
pairs.

Answer

Part (a) Game 1. Let’s first characterize the best response of each player in Game
1. If Player 1 plays U (in the top row), Player 2’s best response is BR,(U) = L;
while if player 1 plays D (in the bottom row), Player 2’s best response is BR,(D) =
R. For Player 1’s best responses, we find that if Player 2 plays L (in the left-hand
column), then BR; (L) = U; whereas if Player 2 plays R (in the right-hand column),
BR;(R) = D. These best responses yield payoffs depicted with the bold underlined
numbers in the matrix of Fig. 3.29.

As a consequence, we have two PSNE: {(U,L), (D,R)}, with corresponding
equilibrium payoffs pairs (2, 1) and (1, 2).

In terms of mixed strategies, Player 2 randomizes by choosing a probability
q that makes Player 1 indifferent between choosing Up or Down, as depicted in
Fig. 3.30. Hence, if Player 1 is indifferent between U and D, we must have that

EU,(U) = EU,(D)

=g
O I

=2
(o

Fig. 3.29 Underlining best response payoffs of Game 1



88 3 Mixed Strategies, Strictly Competitive Games ...

q 1-q
L R
p U 2,1 0,0
I-p D 0,0 1,2

Fig. 3.30 Searching for msNE in Game 1

which implies,
2q+0-(1—-¢q)=0g+1-(1-gq)
rearranging, and solving for probability ¢, yields

1
2q:1—q<—>q:§

Similarly, Player 1 randomizes by choosing a probability p such that makes Player
2 indifferent between left or right,

EUy(L) = EUx(R)
or
1-p+0(1 —p) =0p+2(1 —p)
rearranging, and solving for probability p, we obtain
2
p= 2 — 2p —p= g

Hence, the msNE of Game 1 is

NE 2utp) (Lr2R
m. fry — — — —_
s 3737 ) \373

And the associated expected payoffs in this MSNE are given by,

21 2 1M 2 22 12 4 2 6
EU (6. 65 )==|=-24+=.0 =0+ Z 1| =2 24 2= 42—
1(71.93) 3[3 T3 ]+3[3 T3 } 3373379757 ¢
_2
3
12 1 202 1 2 22 2 4 6 2
EUy(6t,08) == |2 14+=-0|+2 |2 0+--2| =242 2=24 =_==Z
2(01,03) 3{3 *3 }+3[3 t3 } 973379757973
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up
2 (1,2),psNE (D,R)

(2, 1), psNE (U,L)

2/3
MSNE

23 1 2 u;

Fig. 3.31 Convex hull of equilibrium payoffs (Game 1)

U 4,4
D 5.1

j=0[7)}

o=

Fig. 3.32 Underlining best response payoffs in Game 2

Figure 3.31 depicts the convex hull representing all Nash equilibrium payoffs of
game 1.

Game 2. Let’s now characterize the best responses of each player in Game 2: if
Player 1 plays U (in the top row), then Player 2’s best response becomes
BR,(U) = R; while if player 1 plays D (in the bottom row), Player 2 responds with
BR,(D) = L. For Player 1’s best responses, we find that if Player 2 plays L (in the
left-hand column), then BR (L) = D; whereas if Player 2 plays R (in the right-hand
column), BR|(R) = U. These best responses yield the payoffs depicted with the
bold underlined numbers in the matrix of Fig. 3.32.

Hence we have two cells in which all players’ payoffs were underlined, thus
indicating mutual best responses in the Nash Equilibrium of the game. This game,
therefore, has two psNE: {(U, R), (D, L)}, with associated equilibrium payoff pairs
of (1, 5) and (5, 1).

Let us now analyze the set of msNE in this game. Similarly as in Game 1, Player
2 mixes between L and R with associated probabilities g and 1 — g to make Player
1 indifferent between his two pure strategies (U and D), as follows:

EU,(U) = EU,(D)
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or
49+1-(1-¢q)=5¢+0-(1—q)
rearranging, and solving for probability ¢, yields

1
4q—|—1—q=5q<—>q=§

Similarly, Player 1 mixes to make Player 2 indifferent between choosing left or
right,

EU>(L) = EU>(R)
or
4p+1(1 —p) = 5p+0(1 —p)
rearranging, and solving for probability p, we obtain
4p+l—p:5p<—>p:%

Therefore, the msNE of game 2 is:

ve=d(Ltulp) (Lo 1r
mEEEA Y2 ) 2t

And the associated payoffs of this msNE are:

11 11 . 1 15 15 10 5
EU(ct.0l)==|=-44+ =-1 =54 -0l =224+ .2 =_"=Z
(71, 02) 2[2 i) ]+2L i) } 227227472
11 11 15 15 10 5

EU (6" ) ==|= 4+ - 1|l+=-|20+=--5|=-.2 4 .2 =22
2(01,93) 2[2 ) ]‘Lz{z 3 } 227227472

Figure 3.33 illustrates the convex hull representing all Nash equilibrium payofts
of Game 2.

Part (b) Game 1. First, note that intuitively, by using a correlating device
(a publicly observable random variable) we construct convex combinations of the
two PSNE of the game. For example, we can determine that the publicly observable
random variable is a coin flip, where Heads makes Player 1 play U and Player 2
play L; while Tails make Player 1 play D and Player 2 play R. Hence, the prob-
abilities assigned to every strategy profile for Game 1 are summarized in Fig. 3.34.
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U
(1, 5), psNE (D,R)

5/2 MSNE

(5, 1), psNE (U,L)

:V

1 5/2 5

Fig. 3.33 Convex hull of equilibrium payoffs (Game 2)

U

S N

D

Nl - o |F

Fig. 3.34 Probabilities assigned to each strategy profile in a correlated equilibrium (Game 1)

Given the above probabilities, the expected payoffs for each player in Game 1
are:

2+

1
EUl: Ul(UaL)+§U1(DaR):

N —
N —
NSHROS}

1
2

-2

1 1
EU, :E UZ(UaL)+ 5 UZ(DaR) =

Y
YR

A+

N —

Graphically, we can see that the correlated equilibrium payoffs are located in the
midpoint of the line connecting the two psNE payoffs, i.e., owuy(U,L)+
(1 — @)up (D, R), as depicted in Fig. 3.35, where o = 1/2 since the correlating device
assigns the same probability to Nash equilibria (U, L) and to (D, R).

Game 2. The probabilities that the publicly observable random variable assigns
to each strategy profile (in pure strategies) in Game 2 are summarized in Fig. 3.36.
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u2 A (1, 2), from the
Y psNE (D,R)
' au,(U,L)+(1-a)u,(D,R) ,,..»""/45° line
Py IS O S (312, 3/2), Correlated
equilibrium payoffs
1 T S (2, 1), from the
p psNE (U,L)
2/3 e
MSNE
23 1 312 2 u

Fig. 3.35 Nash and correlated equilibrium payoffs (Game 1)

~

U

o NIRRT

D

N|[R=R| ©

Fig. 3.36 Probabilities assigned to each strategy profile in a correlated equilibrium (Game 2)

Yielding expected payoffs for each player of

1 1
EU, §'U|(U,R)+§-U|(D,L):

1 1 6

_.1 —_— = — =

p ity =373
1 6

S 54— 1=2=3
tal=s

And the graphical representation on the frontier of the convex hull is (Fig. 3.37).
Similarly as for Game 1, correlated equilibrium payoffs lie at the midpoint of the
NE payoffs, since the correlating device assigns the same probability to Nash

equilibria (U, R) and to (D, L).

Part (c) Let us now allow for the correlated equilibrium to assign a more general
probability distribution given by p, g, r to strategy profiles (U, L), (U, R) and (D, L),

respectively; as depicted in the table of Fig. 3.38.

Player 1 Consider that Player 1 receives the order of playing U. Then, his con-

ditional probability of being at cell (U, L) is [)Lq,

while his conditional probability
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u L
25 (1, 5), from the

5looo psNE (D,R) <" 45° line

B
B

5/2 MSNE
1 A | (5, 1), from the
~ i i psNE (UL)
1 52 3 5 'ul

Fig. 3.37 Correlated equilibrium payoffs (Game 2)

L R
U p q
D r 1-p-q-r

Fig. 3.38 Probabilities assigned to each strategy profile

of being at (U, R) is I%q. (Note that, in order to find both conditional probabilities,

we use the standard formula of Bayes’ rule.)
If instead, Player 1 receives the order of playing D, then his conditional prob-
ability of being at cell (D, L) is —:—, while his conditional probability of being at

l—p—q
s l=p—q—r 3
(D, R) is T

Player 2 If Player 2 receives the order of playing L we have that his conditional
probability of being at cell (U, L) is -£—, while his conditional probability of being

p+r
at (D, L) is pir.
If instead, Player 2 receives the order of playing R, his conditional probability of

being at cell (U, R) is ﬁ, and his conditional probability of being at (D, R) is

1—p—qg—r 4
l—p—r °

*The denominator is given by the probability of outcomes (D, L) and (D, R), ie.,
r+(1—p—qg—r)=1—p—gq; while the numerator reflects, respectively, the probability of
outcome (D, L), r, or outcome (D, R), | —p — g — r; as depicted in the matrix of Fig. 3.38.

“Similarly as for Player 1, the denominator represents the probability of outcomes (U, R) and
(D, R), ie, g+(1—p—qg—r)=1—p—r; while the numerator indicates, respectively, the
probability of outcome (U, R), g, or (D, R), 1 — g — p — r; as illustrated in the matrix of Fig. 3.38.
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We know that in a correlated equilibrium the players must prefer to stick to the
rule that tells them how to play (i.e., there must be no profitable deviations from this
rule), which we can represent by the following incentive compatibility conditions
for Player 1

EU,(U|he is told U) > EU, (D|he is told U)
EU,(Dlhe is told D) > EU, (U |he is told D)
and for Player 2,
EU,(L|he is told L) > EU,(R|he is told L)
EU,(R|he is told R) > EU,(L|he is told R)

Let’s now apply these conditions, and the conditional probabilities we found
above, to each of the games:

Game 1

1 1
1. EU,(Ulhe is told U) > EU,(D|heistold U) <> ——-2p> ——-q,  which
pP+q pP+tq

simplifies to 2p > q.

2. EU(D|he is told D) > EU,(U|he is told D) < (1=p—q—r)>

X l-=p—q
—— - 2r, which reduces to 1 —p — g >3r
l-p—gq | .
3. EUy(L|he is told L) > EUy(R|he is told L) <& —— - p> —— - 2r, which can

p+r p+r
be rearranged as p > 2r.

4. EUx(Rlhe is told R) > EU,y(L|he is told R) <

1
l—p—r

_p_r%l—p—q—ﬁz

- q, which simplifiesto 1 —p —r> %q

—_—

Summarizing, the set of correlated equilibria for Game 1 can be sustained for
any probability distribution (p, g, r) that satisfies:

2p>q and 1 —p —q>3r forPlayer 1, and

3
p>2r and 1 —p—r> Eq for Player 2.

As aremark, note that the numerical example we analyzed in the previous part of
the exercise (where ¢ =0, r =0, p=1/2 and 1 — p — g — r = 1/2) satisfies these
conditions. In particular, for Player 1, condition 2p > g reduces to 1 = 0, while
condition 1 — p — g > 3r simplifies to %2 2 0 in this case. Similarly, for Player 2,
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condition p > 2r reduces to 1 = 0, whereas condition 1 —p — r> %q simplifies to
% 2 0 in this numerical example.
Game 2. Applying the same methodology to Game 2 yields:

1 1
1. EU,(Ulhe is told U) > EU,(Dlhe is told U) & —— - (4p+q) > —— - 5q,
(U] ) (D ) Py ( ) P
which simplifies to g > p

2. EU,(D|heistold D) > EU,(Ulheistold U) < 5r>

l-p—gq l-p—gq
(4r+1—p — g —r), which can be rearranged to 2r>1—p — ¢

1 1
3. EU>(L|heistold L) > EU,(Rlheistold L) & ——- (4p +r) > —— - 5p, which
2 (L] )= EU (R R et
reduces to r > p

1
4. EUy(Rlheistold R) > EU,(L|he istold R) &

S V7P —"
l—p—r l—p—r
(4g+1 —p — q — r), which simplifies to 2¢>1—p —r

Summarizing, the set of all correlated equilibrium in Game 2 are given by
probability distributions (p, g, r) that satisfy the following four constraints:

qg>p and 2r>1—p—q for Player 1,and
r>pand2qg>1—p—r for Player 2

By definition, these probability distribution over the four outcomes of these
2 X 2 games are defining a polytope in A3 (the equivalent of a simplex in A, but
depicted in 3 dimensions) that will have associated a set of EU; which will be a
superset of the convex hull of NE payoffs.

Exercise 10—Relationship Between Nash and Correlated
Equilibrium Payoffs®

Consider the relationship between Nash and correlated equilibrium payoffs. Can
there be a correlated equilibrium where both players receive a lower payoff than
their lowest symmetric Nash equilibrium payoff? Explain or give an example.

Answer

Yes, there is such a correlated equilibrium. In particular, it is easy to find a cor-
related equilibrium in Exercise 3.8 (an anti-coordination game) in which both
players obtain a lower payoff than in the lowest Nash equilibrium payoff of the

Player 2
L R
Player 1 U 6,6 2,7
D 7,2 0,0

Fig. 3.39 Payoff matrix
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Player 2
L R
Player 1 U 0 2/5
D 2/5 1/5

Fig. 3.40 Probabilities assigned to each strategy profile

convex hull (where each player obtains EU; = EU, = 4.5 in the MSNE of the
game). For completeness, Fig. 3.39 reproduces the payoff matrix of exercise 3.8.

Consider a correlated equilibrium with the probability distribution summarized
in Fig. 3.40.

Let us now check that no player has incentives to unilaterally deviate from this
correlated equilibrium. If Player 1 is told to play U, it must be that the outcome
arising from the above probability distribution in the correlated equilibrium is
(U, R), since (U, L) does not receive a positive probability. In this setting, Player 1°s
expected utility from selecting U is 2, while that from unilaterally deviating towards
D is only zero. (See the payoff matrix in Fig. 3.39 where, fixing Player 2’s strategy at
the left-hand column, player 1’s payoff is higher when he sticks to the order of
playing U, which yields a payoff of 2, than deviating to D, which only entails a
payoff of zero.) Hence, Player 1 does not have incentives to deviate. Similarly, if
Player 1 is told to play D, then he does not know whether the realization of the above
probability distribution is outcome (D,L) or (D,R). His expected payoff from
agreeing to select D (in the bottom row of the payoff matrix) is

2
5

1
T+ 52 0=

EU,(D) 2
(D) = 0==.
PR EY

7 =4.66

(Note that the first ratio identifies the probability of outcome (D, L), conditional
on D occurring, i.e., a straightforward application of Bayes’ rule. Similarly, the
second term identifies the conditional probability of outcome (D, R), given that D
occurs.).

If, instead, Player 1 deviates to U, his expected utility becomes

z 1 2 1
26+ 572 2=2-64<-2=4.66
5+s 3 3

Therefore, Player 1 does not have strict incentives to deviate in this setting
either. By symmetry, we can conclude that player 2 does not have incentives to
deviate from the correlated equilibrium.

Let us now find the expected payoff in this correlated equilibrium
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Fig. 3.41 Nash and Uy o
Correlated equilibrium

payoffs ) TN preee ,

Convex hullof

/’ NE payoff

7 Uy
Correlated equilibrium

payoff

PiplaysD
PiplaysU
2 312 1
EU = 2.2 +2]| Z. ~.0 | =3
1 5 +5 3 T + 3 0 3.6
~~~ ~~~

PoplaysL PoplaysR

S

And similarly for player 2,

PrplaysR
PyplaysL
2 312 1
EU= -2 - =7 =0 | =36
2T 57513073
~~ ~~

PiplaysU PiplaysD.

Figure 3.41 depicts the payoff pair (3.6, 3.6) arising in this correlated equilibrium,
and compares it with the NE payoff pairs (as illustrated in the shaded convex hull
which we obtained in Exercise 3.8). As required, our example illustrates that players
obtain a lower payoff in the correlated equilibrium, 3.6, than in any of the symmetric
Nash equilibria of the game (where the lowest payoff both players can obtain is 4.5.)

Exercise 11—Identifying Strictly Competitive Games®

For the following games, determine which of them satisfy the definition of strictly
competitive games:



98 3 Mixed Strategies, Strictly Competitive Games ...

Player 2
H T
Player 1 H 1,-1 -1,1
T -1,1 1,-1

Fig. 3.42 Matching pennies game

Part (a) Matching Pennies (Anti-coordination game),
Part (b) Prisoner’s Dilemma
Part (c) Battle of the Sexes (Coordination game).

Answer
Recall the definition of strictly competitive games as those strategic situations
involving players with completely opposite interests/incentives. We provide a more
formal definition below.

Strictly Competitive game (Definition): A two player, strictly competitive game
requires that, for every two strategy profiles s and s', if player i prefers s then his
opponent, player j, must prefer s'. That is,

If ui(s) > u(s) then u;(s)<u;(s') forall i ={1,2} and j#i

Intuitively, if player i is better off when the outcome of the game changes from s'to
s, ui(s) > u;(s"), player j must be worse off from such a change; a result that holds
for any two strategy profiles s and s’ we compare. Alternatively, a game is not
strictly competitive if we can identify at least two strategy profiles s and s’ for which
players’ incentives are alined, i.e., both players prefer s to s’, or both prefer s’ to s.

Part (a) Matching Pennies Game. Consider the matching pennies game depicted
in Fig. 3.42, where H stands for Heads and T denotes Tails.

To establish if this is a strictly competitive game, we must compare the payoff
for player 1 under every pair of strategy profiles, and that of player 2 under the same
two strategy profiles.

When comparing strategy profiles (H, H) and (H, T), i.e., the cells in the top row
of the matrix, we find that player 1’s payoffs satisfy

ul(H,H) =1>—-1= M](H,T)
while that of player 2 exhibits the opposite ranking,
w(H,H) = —-1<1=uy(H,T).

When comparing strategy profiles (H, H) and (T, T) on the main diagonal of the
matrix, we find that player 1 is indifferent between both strategy profiles, i.e.,
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u(HH)=1=1=u(T,T)
and so is player 2 since
wH,H)=—-1=—-1=u(T,T)

An analogous result applies for the comparison of strategy profiles (H, T) and (T,
H), where player 1 is indifferent since

u(H,T)=—-1=—-1=u(T,H)
and so is player 2 given that
MQ(H, T) =1=1= uz(T,H)

Finally, when comparing (H, T) and (T, T), in the right-hand column of the
matrix, we obtain that player 1 prefers (T, T) since

Ml(H,T) =—-l<1= M](T,T)
while player 2 prefers (H, T) given that
MQ(H, T) =1>—-1= MQ(T, T)

Hence, for any two strategy profiles s = (s1,52) and s’ = (s],53), we have
shown that if wu;(s) > ui(s’) then wuy(s") > uy(s), or if wuj(s) =u;(s’) then
uy(s') = uy(s). Therefore, the Matching pennies game is strictly competitive.

Part (b) Prisoner’s Dilemma. Consider the Prisoner’s Dilemma game in Fig. 3.43,
where C stands for Confess and NC denotes Not confess. For this game we also start
comparing the payoffs that player 1 and player 2 obtain at every pair of strategy
profiles.

When comparing (C, NC) and (NC, C), we find that player 1 prefers the latter,
ie.,

) (C,NC) = —10<0 = u; (NC, C).

Player 2

c NC

Player 1 C 5,51 -10, 0

NC |0, -10| -1, -1

Fig. 3.43 Prisoner’s dilemma game
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while player 2 prefer the former, i.e.,
u(C,NC) =0> — 10 = up(NC, C)

Similarly, when comparing (C, C) and (C, NC), in the left-hand column of the
matrix, we find that player 1 prefers the latter, i.e.,

I/tl(C, C) =-5<0= ul(C,NC)
while player 2 prefer the former, i.e.,
u(C,C) =—-5> — 10 = up(C,NC).

In all our comparisons of strategy profiles thus far, we have obtained that
strategy profiles that are favored by one player are opposed by the other player, as
required in strictly competitive games. However, when comparing (C, C) and (NC,
NC), on the main diagonal of the matrix, we find that player’s preferences become
aligned, since both players prefer (NC, NC) to (C, C). Indeed, player 1 finds that

u(NC,NC) = -1> —=5=u(C,QC).
Similarly, player 2 also prefers (NC, NC) over (C,C) since
u(NC,NC) = —1> —5=u(C,C).

Hence, this game is not strictly competitive because we could find a pair of
strategy profiles, namely (C, C) and (NC, NC), for which both players are better off
at (NC, NC) than at (C, C). That is, if s = (NC,NC) and s’ = (C, C), then we obtain
that u;(s)<ui(s") and wup(s)<up(s’), which violates the definition of strictly
competitive games.

Note: As long as we can show that there are two strategy profiles for which the
definition of strictly competitive games does not hold, i.e., for which players’
preferences are aligned, then we can claim that the game is not strictly competitive,
without having to continue checking whether player’s preferences are aligned or
misaligned over all remaining pairs of strategy profiles.

Wife

Husband F 3,1 0,0

Fig. 3.44 Battle of the Sexes game
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Part (c) Battle of the sexes. The payoff matrix in Fig. 3.44 describes the Battle of
the Sexes game, where F denotes going to the Foorball game, while O represents
going to the Opera.

In this game, we can easily find a pair of strategy profiles for which the definition
of strictly competitive games does not hold. In particular, for strategy profiles (O, F)
and (F, F), both of them in the left-hand column of the matrix, we have that both the
husband (row player) and the wife (column player) prefer strategy profile (F, F)
over (O, F). In particular, the husband finds that

ug(O,F) =0<3 =uy(F,F)
and similarly for the wife, since
uw(0,F) =0<1=uy(F,F).

Intuitively, the husband prefers that both players attend his preferred choice
(football game), than being alone at the opera. Similarly, the wife prefers to attend
to an event she dislikes (football game) with her husband, than being alone at the
football game, as described in strategy profile (O, F). Hence, we found a pair of
strategy profiles for which players’ preferences are aligned, implying that the battle
of the sexes game is not a strictly competitive game.

Exercise 12—Maxmin Strategies®

Consider the game in Fig. 3.45, where player 1 chooses Top or Bottom and player 2
selects Left or Right.

Part (a) Find every player’s maxmin strategy. Draw every player’s expected utility,
for a given strategy of his opponent.

Part (b) What is every player’s expected payoff from playing her maxmin strategy?
Part (c) Find every player’s Nash equilibrium strategy, both using pure strategies
(psNE) and using mixed strategies (msNE).

Part (d) What is every player’s expected payoff from playing her Nash equilibrium
strategy?

Part (e) Compare player’s payoff when they play maxmin and Nash equilibrium
strategies (from parts (b) and (d), respectively). Which is higher?

Player 2
Left Right
Player 1 Top 6,0 0,6

Bottom | 3, 2 6,0

Fig. 3.45 Normal-form game
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Player 2
q I-q
Left Right
Player 1
p Top 6,0 0,6

1-p Bottom | 3, 2 6,0

Fig. 3.46 Normal-form game with assigned probabilities

Answer

Part (a) Let p denote the probability with which player 1 plays Top, and thus 1—p
represent the probability that he plays Bottom. Similarly, ¢ and (1—g) denote the
probability that player 2 plays Left (Right, respectively); as depicted in Fig. 3.46.
Player 1. Let us first analyze player 1. When Player 2 chooses Left (fixing our
attention on the left-hand column) Player 1’s expected utility from randomizing
between Top and Bottom with probabilities p and 1 — p, respectively, is:

EU,(p|Left) =6p+3(1 —p)=6p+3—3p=3p+3

Figure 3.47 depicts this expected utility, with a vertical intercept at 3, and a positive
slope of 3, which implies that, at p = 1, EU; becomes 6.

And when Player 2 chooses Right (in the right-hand column) Player 1’s expected
utility becomes

EU, (p|Right) = Op+6(1 — p) =6 — 6p

which, as Fig. 3.47 illustrates, originates at 6 and decreases in p, crossing the
horizontal axis when p = 1. In particular, EU, (p|Right) and EU,(p|Left) cross at

Fig. 3.47 Expected utilities EU,(p/L,R) EU,(p/L)=3+3p

for pl 1
or player . \\

EU,(p/R)=6-6p

p=1/3 1 p
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3g+3=6—-6p<=p=1/3

Recall the intuition behind maxmin strategies: player 1 first anticipates that his
opponent, player 2, seeks to minimize player 1’s payoff (since by doing so, player 2
increases his own payoff in a strictly competitive game). Graphically, this implies
that player 2 chooses Left for all p < % and Right for all p > }, yielding a lower
envelope of expected payoffs for player 1 represented by equation 3+ 3p from
p=0to p=1 and by equation 6 — 6p, for all p > i; as depicted in Fig. 3.48.
Taking such lower envelope of expected payoffs as given (i.e., assuming that Player
2 will try to minimize Player 1’s payoffs), Player 1 chooses the probability p that
maximizes his expected payoff, which occurs at the point where EU,(p|Left)
crosses EU; (p|Right). This point graphically represents the highest point of the
lower envelope, as Fig. 3.48 depicts, i.e., his maxmin strategy, as it maximizes the
minimum of his payoffs.

Player 2. Let us now examine Player 2 using a similar procedure. When Player 1
chooses Top (in the top row), Player 2’s expected utility becomes

EU(q|Top) = 0g +6(1 — q) = 6 — 6q

which originates at 6 and decreases in ¢, crossing the horizontal axis when g = 1; as
Fig. 3.49 illustrates. And when Player 1 chooses Bottom (in the bottom row),
Player 2’s expected utility is

EU;(g|Bottom) =2q+0(1 — q) = 2q

which originates at (0, 0) and increases with a positive slope of 2, thus reaching a
height of 2 when g = 1; also depicted in Fig. 3.49. Hence, the expected utilities
EU,(q|Top) and EU,(q|Bottom) cross at:

6—6q=2q<p=3/4

Fig. 3.48 Lower envelope of EU,(p/L,R) EU,(p/L)=3+3p
expected payoffs (player 1) :
6 \

&«— Highest point of the
lower envelope

3 T /EUl(p/R =6-6p

Lower
envelope

p=1/3 1 p
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Fig. 3.49 Expected utilities EU,(q/T,B)
of player 2
6
EU,(qIT)=6—6q
2
EUz(‘I/B)ZZ‘I\ :
|
\
q=3/4 1 q

Fig. 3.50 Lower envelope of EU,(q/T,B)

expected payoffs (player 2)
6
EU,(q/T)=6—6q
2
EU,(q /B)=2q \ . Highest point of the
Lower envelope
Lower
envelope ‘

q=3/4 1 q

A similar intuition as for player 1 applies to Player 2: considering that Player 1
seeks to minimize Player 2’s payoff in this strictly competitive game, Player 2
anticipates a lower envelope of expected payoffs given by 2g from ¢ = 0 to g = %,
and by 6 — 6q for all g > %; as depicted in Fig. 3.50. Hence, Player 2 chooses the
value of ¢ that maximizes his expected payoff, which occurs at the point where
EU,(q|Top) crosses EU,(g|Bottom), i.e., g =3 at his maxmin strategy.

Summarizing, the maximin strategy profile is:

1 2
Player 1 : {§ Top,gBottom}, and
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3 1
P 2:<=Left,~Ri
layer {4 eft,4 lght}

Part (b) In order to find player 1’s expected utility in the maxmin strategy profile,
we can use either EU, (p|Left) or EU,(p|Right), since they both reach the some
height at p = %, given that they cross at exactly this point.

I 1
EU1<p—§|Left) —3+3p—3+3(§> =3+1=4

And similarly for the expected utility of Player 2 in this maximin strategy profile

3 3
EUz(q:Z|Top> :6—6q:6—6<z) =15

Part (c) psNE. Let us first check for psNEs in this game. For player 1, we can
immediately identify that his best responses are BRi(L) =T and BR;(R) = B,
where he does not have a dominant strategy. The payoffs that player 1 obtains when
selecting the above best responses are underlined in the payoff matrix of Fig. 3.51
in the (Top, Left) and (Bottom, Right) cells. Similarly, for player 2, we find that his
best responses are BR,(T) = R and BR,(B) = L, indicated by the underlined payoff
in cells (Top, Right) and (Bottom, Left). There does not exists a mutual best
response by both players, i.e., in the payoff matrix there is no cell with the payofts
of all players being underlined. Hence, there is no psNE (Fig. 3.51).

msNE. Let us now search for msNE (recall that such equilibrium must exist
given that we could not find any psNE). Player 1 must be indifferent between Top
and Bottom; otherwise, he would be selecting one of these strategies in pure
strategies. Hence, player 1 must face EU;(Top) = EU,(Bottom), and the value of
probability g that makes player 1 indifferent between T and B is

EU,(Top) = EU,(Bottom)

6g=3g+6(1—¢q)=q=2/3

Player 2
q I-q
Left Right
Player 1
P Top 6,0 0,6

1-p Bottom| 3, 2 6,0

Fig. 3.51 Normal-form game



106 3 Mixed Strategies, Strictly Competitive Games ...

Similarly, player 2 must be indifferent between Left and Right, since otherwise
he would choose one of them in pure strategies. Therefore, the value of probability
p that makes player 2 indifferent between L and R is

EU>(L) = EU>(R)
20l—p)=6p&p=1/4

Hence, the msNE of this game is

1T EB 1t gLft 1R' ht
40p,400m, 36,3 18

Part (d) Let us now find the expected utility that player 1 obtains in the previous
msNE:

EUy = 6pq+0p(1 — q) +3q(1 —p) +6(1 — q)(1 — p)
RUCRGIRECIORE S

And similarly for player 2, his expected utility in the msNE becomes

EU, = Opg+6p(1 — q) +24(1 —p) +0(1 — p)(1 — q)
()60

Part (e) Player 1’s expected utility from playing the msNE of the game, 4,
coincides with that from playing his maxmin strategy, 4. A similar argument applies
to Player 2, who obtains an expected utility of 1.5 under both strategies.



Introduction

In this chapter we move from simultaneous-move to sequential-move games, and
describe how to solve these games by using backward induction, which yields the
set of Subgame Perfect Nash equilibria (SPNE). Intuitively, every player anticipates
the optimal actions that players acting in subsequent stages will select, and chooses
his actions accordingly. Formally, we say that every player’s action is “sequentially
rational,” meaning that his strategy represents an optimal action for player i at any
stage of the game at which he is called on to move, and given the information he
has at that point. From a practical standpoint, “sequential rationality” requires every
player to put himself in the shoes of players acting in the last stage of the game and
predict their optimal behavior on that late stage; then, anticipating the behavior of
players acting in the last stage, study the optimal choices of players in the previous
to last stage; and similarly for all previous stages until the first move.

We first analyze games with two players, and then extend our analysis to settings
with more than two players, such as a Stackelberg game with three firms sequen-
tially competing in quantities. We consider several applications from industrial
organization as an economic motivation of settings in which players act sequen-
tially. For completeness, we also explore contexts in which players are allowed to
choose among more than two strategies, such as bargaining games (in which
proposals are a share of the pie, i.e., a percentage from 0 % to 100 %), or the
Stackelberg game of sequential quantity competition (in which each firm chooses
an output level from a continuum). In bargaining settings, we analyze equilibrium
behavior not only when players are selfish, but also when they exhibit inequity
aversion and thus avoid unequal payoff distributions. Finally, we study a moral
hazard game in which a manager offers a menu of contracts in order to induce a
high effort level from his employee.

The original version of the chapter was revised: The erratum to the chapter is available at:
10.1007/978-3-319-32963-5_11
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Exercise 1—Ultimatum Bargaining Game®

In the ultimatum bargaining game, a proposer is given a pie, normalized to a size
$1, and he is asked to make a monetary offer, x, to the responder who, upon
receiving the offer, only has the option to accept or reject it (as if he received an
“ultimatum” from the proposer). If the offer x is accepted, then the responder
receives it while the proposer keeps the remainder of the pie 1—x. However, if he
rejects it, both players receive a zero payoff. Operating by backward induction, the
responder should accept any offer x from the proposer (even if it is low) since the
alternative (reject the offer) yields an even lower payoff (zero). Anticipating such as
a response, the proposer should then offer one cent (or the smallest monetary
amount) to the responder, since by doing so the proposer guarantees acceptance and
maximizes his own payoff. Therefore, according to the subgame perfect equilibrium
prediction in the ultimatum bargaining game, the proposer should make a tiny offer
(one cent or, if possible, an amount approaching zero), and the responder should
accept it, since his alternative (reject the offer) would give him a zero payoff.
However, in experimental tests of the ultimatum bargaining game, subjects who are
assigned the role of proposer rarely make offers close to zero to the subject who
plays as a responder. Furthermore, sometimes subjects in the role of the responder
reject positive offers, which seems to contradict our equilibrium predictions. In
order to explain this dissonance between theory and experiments, many scholars
have suggested that players’ utility function is not as selfish as that specified in
standard models (where players only care about the monetary payoff they receive).
Instead, the utility function should also include social preferences, measured by the
difference between the payoff a player obtains and that of his opponent, which gives
rise to envy (when the monetary amount he receives is lower than that of his
opponent) or guilt (when his monetary payoff is higher than his opponent’s). In
particular, suppose that the responder’s utility is given by

ur(x,y) = x+a(x —y),

where x is the responder’s monetary payoff, y is the proposer’s monetary payoff,
and « is a positive constant. That is, the responder not only cares about how much
money he receives, x, but also about the payoff inequality that emerges at the end of
the game, a(x — y), which gives rise to either envy, if x <y, or guilt, if x > y. For
simplicity, assume that the proposer is selfish, i.e., his utility function only con-
siders his own monetary payoffs up(x,y) =y, as in the basic model.

Part (a) Use a game tree to represent this game in its extensive form, writing the
payoffs in terms of m, the monetary offer of the proposer, and parameter o.

Part (b) Find the subgame perfect equilibrium. Describe how equilibrium payoffs
are affected by changes in parameter o.

Part (c) Depict the equilibrium monetary amount that the proposer keeps, and the
payoff that the responder receives, as a function of parameter o.
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Answer

Part (a) First, player 1 offers a division of the pie, m, to player 2, who either accepts
or rejects it. However, payoffs are not the same as in the standard ultimatum
bargaining game. While the utility of player 1 (proposer) is just the remaining share
of the pie that he does not offer to player 2, i.e., 1 — m, the utility of player 2
(responder) is

m+oam— (1 —m)|=m+a(2m—1)

where m is the payoff of the responder, and 1— m is the payoff of the proposer. We
depict this modified ultimatum bargaining game in Fig. 4.1.

Part (b) Operating by backward induction, we first focus on the last mover (player 2,
the responder). In particular, player 2 accepts any offer m from player 1 such that:

m+oa(2m—1)>0,

since the payoff he obtains from rejecting the offer is zero. Solving for m, this
implies that player 2 accepts any offer m that satisfies m > 2. Anticipating such a

1 +2a
response from player 2, player 1 offers the minimal m that generates acceptance,
i.e., m* = 7%, since by doing so player 1 can maximize the share of the pie he

keeps. This implies that equilibrium payoffs are:

(1 “ m?) 1+a o
-—m'm)=+—-,——
’ 1420’ 1420

The proposer’s equilibrium payoff is decreasing in « since its derivative with
respect to « is

(1 —m*) 1

1-m, m+oa(2m-1)

Responder

Proposer

0,0

Fig. 4.1 Ultimatum bargaining game (extensive-form)
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PayolT »
o - Proposer’s
« cquilibrium payoff
08 | :
08
Responder’s
04 cquilibrium payoff
0z
02 u;z oé 0s 10 .(A‘.

Fig. 4.2 Equilibrium payoff in ultimatum bargaining game with social preferences

which is negative for all « > 0. In contrast, the responder’s equilibrium payoff is
increasing in o given that its derivative with respect to « is

om' 1
o (1+20)*

which is positive for all o > 0.

Part (c¢) In Fig. 4.2 we represent how the proposer’s equilibrium payoff (in red
color) decreases in «, and how that of the responder (in green color) increases in o.
Intuitively, when the responder does not care about the proposer’s payoff, o = 0,
the proposer makes an equilibrium offer of m* = 0, which is accepted by the
(selfish) responder, as in the SPNE of the standard ultimatum bargaining game
without social preferences. However, when o increases, the minimum offer that the
proposer must make to guarantee acceptance, m”, increases. Intuitively, the
responder will not accept very unequal offers since his concerns for envy are
relatively strong.

When o« =0.5 the equilibium split becomes (1 —m* m*)=
(1';’2% ) 1&%) = (42,%) = (0.75,0.25), thus indicating that the proposer
offers more to the responder as he cares more about the payoff difference, and when
the proposer cares the most about the payoff difference, o = 1, the equilibrium split
becomes (2/3,1/3). However, for all the values of o between zero and one, the
proposer’s payoff is higher than that of the responder.
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80,80

Blue party
0,50

0,100
50,0
B T
lue party iy
Red party S rv\: 70,70
High 20,80
100,0
Middle 80.20
Blue party
High 50,50

Fig. 4.3 Sequential electoral competition

Exercise 2—Electoral competition®

Consider the game tree in Fig. 4.3, describing a sequential-move game played
between two political parties. The Red party acts first choosing an advertising level:
Low, Middle or High. The Blue party observes the Red party’s advertising and
responds with its own advertising level (Low, Middle or High as well). Find the
SPNE of the game.

Answer

We use backwards induction to find the SPNE of the game. First we examine the
optimal response of the Blue party in the last stage of the game, which is to choose
High regardless of the Red party’s level of advertising in the first stage of the game.
Indeed, after observing Low (see top of the tree) 100 > 80 > 50; after observing
Middle (center of the game) 80 > 70 > 0; and after observing High (see bottom of
the tree) 50 > 20 > 0. As a consequence, a High advertising level is a strictly
dominant strategy for the Blue party. Figure 4.4 highlights the branches that the
Blue party chooses as its optimal responses in each contingency.

Anticipating the Blue candidate’s response of High for all advertising levels of
the Red party, the Red party compares its payoffs from each advertising level, as
depicted in Fig. 4.5. Specifically, the Red party’s payoffs from choosing High
becomes 50, from Middle is 20, and from Low is 0. Hence, the Red party chooses
High, and the unique SPNE is {High, (High, High, High)} where the first component
reflects the Red party’s choice (first mover), while the triplet (High, High, High)
indicates that the Blue party (second mover) chooses a High advertising level
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80,80

Blue party
0,50

0,100

50,0
Blue party

Red party 70,70

Middle
20,80

100,0

80,20

Blue party

High 50,50

Fig. 4.4 Sequential electoral competition—optimal responses of the last mover

80,80

Blue party
0,50

0,100

50,0
Blue party

Red party > 70,70

Middle

20,80
100,0

Middle 80.20

Blue party

High 50,50

Fig. 4.5 Sequential electoral competition—optimal actions
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regardless of the Red party’s advertising level in the first stage of the game. As a
remark, note that (High, High) is the equilibrium outcome of this sequential-move
game, but not the SPNE of the game. Instead, the SPNE needs to specify optimal
actions both on- and off-the-equilibrium path. In this case, this means describing
optimal action both after the Red party chooses Low or Middle (off-the-equilibrium).

Exercise 3—Electoral Competition with a Twist®

Consider the game tree in Fig. 4.6, describing a sequential-move game played
between two political parties. The game is similar to that in Exercise 4.2, but with
different payoffs. The Red party acts first choosing an advertising level. The Blue
party acts after observing the Red party’s advertising level (Low, Middle or High)
and responds with its own advertising level. Find the SPNE of the game.

Answer

Second mover First, we examine the payoffs received by the Blue party in the lower
part of the game tree. When analyzing each sub-game independently by comparing
the payoffs for the Blue party (the number on the right side of each payoff pair).
Starting from the subgame on the left-hand side of the tree, when the Red party
chooses Low, we can see that for the Blue party is better to choose High because
100 > 80 > 50. In the case of the subgame in the center of the figure, when the Red
party chooses Middle, the Blue party have incentives to choose also High, because
80 > 70 > 30. In the case the Red party chooses High, the Blue party responds with

80,80
Blue party
30,50
10,100
50,30
Low
B
lue party _tige
Red porey Middle \ -
High 20,80
100,60
Blue party
High 30,30

Fig. 4.6 Sequential electoral competition with a twist
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Fig. 4.7 Sequential electoral competition with a twist—optimal responses
80,80
Blue party
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=% 30,50
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50,30
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Fig. 4.8 Sequential electoral competition with a twist—optimal actions
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Low advertisement expenditure since 60 > 30 > 20. We shade the branches cor-
responding to these optimal responses (High, High, Low) in Fig. 4.7.

First mover Once the best responses at the subgames for the Blue party are
identified, we proceed to identify the best strategy for the Red party by comparing
its payoffs in each case. In case the Red party chooses Low advertisement level, the
response for the Blue party is to choose High, implying that the Red party gets 10.
If the Red party chooses Middle, the payoff given the High response of Blue party
is 20. Finally, if Red party’s strategy is to choose High, then its payoff is 100, since
the best response by Blue is to choose Low. Hence, since 100 > 20 > 10, the
backwards induction strategy to solve the game indicates that the equilibrium is
{High, (High, High, Low)} as depicted in Fig. 4.8.

In this game, the Blue party (second mover) responds with Low advertising to
High advertising from the Red party (first mover), and with High advertising to
Low advertising, i.e., it responds choosing the opposite action than the first mover
selects. Anticipating such a best response from the other party, the party acting as
the first mover chooses a High level of advertising in order to induce the other party
to respond with a Low level of advertisement.

Exercise 4—Trust and Reciprocity (Gift-Exchange Game)®

Consider the following game that has been used to experimentally test individuals’
preferences for trust and reciprocity. The experimenter starts by giving player 1 ten
dollars and player 2 zero dollars. The experimenter then asks player 1 how many
dollars is he willing to give back to help player 2. If he chooses to give x dollars, the
experimenter gives player 2 that amount tripled, i.e., 3x dollars. Subsequently,
player 2 has the opportunity to give to any, all, or none of the money he has
received from the experimenter to player 1. This game is often known as the
“gift-exchange” game, since the trust that player 1 puts on player 2 (by giving him
money at the beginning of the game), could be transformed into a large return to
player 1, but only if player 2 reciprocates player’s trust.

Part (a) Assuming that the two players are risk neutral and care only about their
own payoff, find the subgame perfect equilibrium of this game. (The subgame
perfect equilibrium, SPNE, does not need to coincide with what happens in
experiments.)

Part (b) Does the game have a Nash equilibrium in which players receive higher
payofts?

Part (c) Several experiments show that players do not necessarily behave as pre-
dicted in the SPNE you found in part (a). In particular, the subject who is given the
role of player 1 in the experiment usually provides a non-negligible amount to
player 2 (e.g., $4), and the subject acting as player 2 responds by reciprocating
player 1’s kindness by giving him a positive monetary amount in return. An
explanation for these experimental results is that the players may be altruistic. Show
that the simplest representation of altruism—each player maximizing a weighted
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Fig. 4.9 Gift-exchange P1
game modified

P2

sum of his own dollar payoff and the other player’s dollar payoff—cannot account
for this experimental regularity except for one very extreme choice of the weights.

Answer

Figure 4.9 depicts the extensive-form representation of the game. The amount
x represents the offer that player 1 gives to player 2, and y is the amount of money
player 2 gives to player 1 in return.

Note that the utility function of the first mover is u (x,y) = 10 — x +y, since he
retains 10 — x dollars after giving x dollars to player 2, and afterwards receives
y dollars from player 2 (and we are assuming no discounting). The utility function
of the second mover is uy(x,y) = 3x — y, given that for every unit given up by
player 1, x, the experimenter adds up 2 units, and afterwards, player 2 gives y units
to player 1.

Part (a) SPNE: Working by backwards induction, we need to find the optimal
amount of y that player 2 will decide to give back to player 1 at the end of the game:

max up(x,y) =3x —y

Obviously, since y enters negatively on player 2’s utility function, the value of
y that maximizes u;(x,y) is y*(x) = 0 for any amount of money, x, received from
player 1. Hence, y*(x) = O can be interpreted as player 2’s best response function
(although a very simple best response function, since giving zero dollars to player 1
is a strictly dominant strategy for player 2 once he is called on to move).

Player 1 can anticipate that, in the subgame originated after his decision, player 2
will respond with y*(x) = 0. Hence, player 1 maximizes

max u;(x,y) = 10 —x+y
sty (x) =0

That is,

max u; (x,y) =10 — x
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By a similar argument, since x enters negatively into player 1’s utility function,
the value of x that maximizes u;(x,y) is x* = 0. Therefore, the unique SPNE is
(x*,y*) = (0,0), which implies a SPNE payoff vector of (u},u3) = (10,0).

Part (b) NE. Note that player 2 should always respond with y*(x) = 0 along the
equilibrium path for any offer x chosen by player 1 in the first period, i.e.,
responding with y = 0 is a strictly dominant strategy for player 2. Hence, there is no
credible threat that could induce player 1 to deviate from x = O in the first period.
Therefore, the unique NE strategy profile (and outcome) is the same as in the SPNE
described above.

Part (c¢) Operating by backwards induction, the altruistic player 2 chooses the value
of y that maximizes the weighted sum of both players’ utilities:

myax up(x,y) + oquy (x,y)

where o; denotes player 2’s concern for player 1’s utility. That is:
mglx(3x —y) 4+ (10 —x+y) =3x —oyx — y+ oy + 100
’ = 3x(1 — o) +y(oy — 1) + 100
Taking first-order conditions with respect to y, we obtain
0 —1<0 & o<1

and, in an interior solution, where y* > 0, we then have «; = 1. (Otherwise, i.e., for
all oy <1, we are at a corner solution where y* = 0). Therefore, the only way to
justify that player 2 would ever give some positive amount of y back to player 1 is if
and only if «; > 1. That is, if and only if player 2 cares about player 1’s utility at
least as much as he cares about his own.

Exercise 5—Stackelberg with Two Firms”

Consider a leader and a follower in a Stackelberg game of quantity competition.
Firms face an inverse demand curve p(Q) = 1 — Q, where Q = g1 + gr. denotes
aggregate output. The leader faces a constant marginal cost ¢; > 0 while the fol-
lower’s constant marginal cost is ¢z > 0, where 1 > ¢ > ¢, indicating that the
leader has access to a more efficient technology than the follower.

Part (a) Find the follower’s best response function, BRFF, i.e., gr(qr).

Part (b) Determine each firm’s output strategy in the subgame perfect equilibrium
(SPNE) of this sequential-move game.

Part (c) Under which conditions on ¢; can you guarantee that both firms produce
strictly positive output levels?
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Part (d) Assuming cost symmetry, i.e., ¢, = ¢ = ¢, determine the aggregate
equilibrium output level in the Stackelberg game, and its associated equilibrium
price. Then compare them with those arising in (1) a monopoly; in (2) the Cournot
game of quantity competition; and (3) in the Bertrand game of price competition
(which, under cost symmetry, is analogous to a perfectly competitive industry).
[Hint: For a more direct and visual comparison, depict the inverse demand curve p
(Q) = 1 — Q, and locate each of these four aggregate output levels in the horizontal
axis (with its associated prices in the vertical axis).]

Answer

Part (a) The follower observes the leader’s output level, g;, and chooses its own
production, g, to solve:

max (1 — g, — qr)qr — crqr
qr >0

Taking first order conditions with respect to g yields
l =g —2gr —cr=0
and solving for gz we obtain the follower’s best response function

l—CF 1
—54L

2 2

qr(qL) =

which, as usual, is decreasing in the follower’s costs, i.e., the vertical intercept
decreases in cr, indicating that, graphically, the best-response function experiences
a downward shift as cy increases. In addition, the follower’s best-response function
decreases in the leader’s output decision (as indicated by the negative slope, — %).
Part (b) The leader anticipates that the follower will respond with best response
function gr(qr) = 1’2‘? —1qu, and plugs it into the leader’s own profit maxi-
mization problem, as follows

1 1- CFr 1
max |1 — g, — - = —c
P qL 2 ZCIL qrL — cLqL
—_—
qr

which simplifies into

[(14+cr) —qilqr — crar

N | —

Taking first order conditions with respect to ¢, yields

(l—CF)—qL—CL:O

N =
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and solving for g; we find the leader’s equilibrium output level

1+CF72CL

q; = >

which, thus, implies a follower’s equilibrium output of

N 14crp —2c 1 —=3cp+2c,
qr = 4r ) = 2

Note that the equilibrium output of every firm i={L, F'} is decreasing in its own cost, c;,
and increasing in its rival’s cost, ¢;, where j#i. Hence, the SPNE of the game is

% 1+CF—2CL1—CF 1
(CIUCIF(C]L)) = 2 T _EqL

which allows the follower to optimally respond to both the equilibrium output level
from the leader, ¢j, but also to off-the-equilibrium production decisions g, # ¢ .
Part (c) The follower (which operates under a cost disadvantage), produces a
positive output level in equilibrium, i.e., g5 > 0, if and only if

1- 3CF +26L

>0
4 ’

which, solving for ¢y, yields
1 3
cr > —§+§CFECA.

Similarly, the leader produces a positive output level, g; > 0, if and only if

1—|—CF — 2CL ~0
2
or, solving for ¢y,
< ! + Lep = C
Cr, ) ZCF = (p.

Figure 4.10 depicts cutoffs C4 (for the follower) and Cp (for the leader), in the
(cr, c)—quadrant. (Note that we focus on points below the 45°-line, since the
leader experiences a cost advantage relative to the follower, i.e., ¢, < cF.)

First, note that cutoff Cj is not binding since it lies above the 45°-line. Intuitively,
the leader produces a positive output level for all (cr, c,)—pairs in the admissible
region of cost pairs (below the 45°-line). However, cutoff C4 restricts the of cost
pairs below the 45°-line to only that above cutoff C4. Hence, in the shaded area of the
figure, both firms produce a strictly positive output in equilibrium.
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Fig. 4.10 Region of cost pairs for which both firms produce positive output
Part (d) Stackelberg competition. When firms are cost symmetric, cp = ¢, = c, the
leader produces

1—|—c—20_1—c
2 2

q, =
while the follower responds with an equilibrium output of

., 1—=3c+2¢c 1-c¢
Ir=""4 Ty

thus producing half of the leader’s output. Hence, aggregate equilibrium output in
the Stackelberg game becomes

l—-¢c 1-c¢ 3(1-c¢)

Stackel.
0 2 4 4

which yields an associated price of

3(1-c) 1+3c

Stackel.\ __ _
P(Q )=1 4 4
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Cournot competition. Under Cournot competition, each firm i = {1, 2} simulta-
neously and independently solves

H};}X(l —qi — )49 — cqi

which, taking first-order conditions with respect to ¢;, and solving for ¢;, yields a
best response function of

1—¢c 1
qi(q,-) =75 T34

Simultaneously solving for g; and ¢g;, we obtain a Cournot equilibrium output of
q; = '3;‘ for every firm i = {1, 2}." Hence, aggregate output in Cournot is

. s 2(l—c
QCuurnol =q +q2 _ ( 3 )
which yields a market price of
21—¢) 1+4c
P Cournoty __ 1— — .
(QCom) ==

Bertrand competition. Under the Bertrand model of price competition and sym-
metric costs, the Nash equilibrium prescribes both firms to set a price that coincides
with their common marginal cost, i.e., p; = p» = c. (This equilibrium is analyzed in
Exercise 1 of Chap. 5, where we discuss other applications to Industrial Organi-
zation. However, since this equilibrium price coincides with that in perfectly
competitive industries, we can at this point consider such a market structure in our
subsequent comparisons.) Hence, aggregate output in this context coincides with
that under a perfectly competitive industry,

c = 1 _Q7 or QBertrand — l —c

Monopoly. A monopoly chooses the output level Q that solves
max(1 - Q)0 — Q.
Taking first order conditions with respect to Q yields
1-20—¢c=0

and, solving for O, we obtain a monopoly output of

"Recall from Chap. 2, that you can find this equilibrium output by inserting best response function
q(g;) into g(g;), and then solving for g;.
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Fig. 4.11 Aggregate output and prices across different market structures

QMonop — l—c

2
which implies a monopoly price of

l—c 1l+c

Monop\ __ _
P@™) =1 2 2

Comparison. Figure 4.11 depicts the inverse linear demand P(Q) = 1 — Q, and
locates the aggregate output levels found in the four market structures described
above in the horizontal axis, afterwards mapping their corresponding prices in the
vertical axis. Aggregate output is the lowest at a monopolistic market structure,
larger under Cournot competition (when firms simultaneously and independently
select output levels), larger under Stackelberg (when firms’ competition is in
quantities, but sequentially), and yet larger in a perfect competitive industry. The
opposite ranking applies for equilibrium prices.

Exercise 6—First- and Second-Mover Advantage in Product
Differentiation

Consider an industry with two firms, 1 and 2, competing in prices and no production
costs. Firms sell a differentiated product, with the following direct demand functions

q1 = 150 — 2p; + p, and g, = 150 — 2p, +p;



Exercise 6—First- and Second-Mover Advantage in Product Differentiation 123

Intuitively, if firm 7 increases its own price p; its sales decrease, while if its rival
increases its price p; firm i’s sales increase. However, the own-price effect on sales
is larger in absolute value than the cross-price effect, thus indicating that a marginal
increase in p; has a larger negative effect on ¢; than the positive effect that an
increase in p; has (in this particular setting, the former is twice as big as the latter).
Part (a) Simultaneous-move game. If firms simultaneously and independently
choose their prices (competition a la Bertrand), find their best response functions,

Sim ., Sim

the equilibrium price pair (pl D5 ), the equilibrium sales by each firm
(g™, g5™), and the equilibrium profits (7§, 7§i").

Answer
Firm 1 solves

max (150 — 2p; +p2)p1
P1

Taking first-order conditions with respect to p; yields
150 —4py +p, = 0.
And solving for p;, we obtain firm 1’s best response function

150 1

p1(p2) 4 + sz

Similarly, firm 2 solves

max (150 — 2p, + p1)p2.
P2

Taking first-order conditions with respect to p, yields
150 —4p, +p; = 0.
And solving for p,, we obtain firm 2’s best response function

150 1
p2(p1) =—+ -p1.

4 4
Note that both firms’ best response functions are positively sloped, indicating
that if firm j increases its price, firm i can respond by optimally increasing its own
(i.e., prices are strategic complements). Inserting p,(p;) into p{(p2), we obtain the
point where both best response functions cross each other,

(pi,p;) = (50,50)
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which constitutes the Nash equilibrium of this simultaneous-move game of price
competition. Note that such equilibrium is symmetric, as both firms set the same
price (i.e., graphically, best response functions cross at the 45-degree line). Using
the direct demand functions, we find that sales by each firm are

g1 = 150 — 2p; +p> = 100 and
g2 = 150 — 2p, + p; = 100.

Finally, equilibrium profits are

7y = 5000 and m; = 5000.

Part (b) Sequential-move game. Let us now consider the sequential version of the
above game of price competition. In particular, assume that firm 1 chooses its price
first (leader) and that firm 2, observing firm 1’s price, responds with its own price
(follower). Find the equilibrium price pair ( HEH p§fq> the equilibrium sales by

each firm <q59q7q§eq> and the equilibrium profits ( Seq. Seq) Which firm obtains
the highest profit, the leader or the follower?

Answer

The follower (firm 2) observes firm 1°s price, p;, and best responds to it by using
the best response function identified in part (a), i.e., p2(p1) = 150“’ L Since firm 1
(the leader) can anticipate the best response function that firm 2 W111 subsequently

use in the second stage of the game, firm 1’s profit maximization problem becomes

150
max | 150 — 2p; + % * Py
p1

P2

which depends on p; alone. Taking first-order conditions with respect to p;, we
obtain

=0
4

150 — 4p; +
Solving for py, yields an equilibrium price for the leader of p; = 22 ~ 53.6. Using
the direct demand functions, we find that the sales of each firm are

150+ p;

@1 =10 —=2p; + —,

~ 93.8 and

¢ = 150 — 2p, + p; ~ 101.8.
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And equilibrium profits in this sequential version of the game become
ny = 5027.7 and m, = 5181.62.

Finally, note that the leader obtains a lower profit than the follower when firms
compete in prices; as opposed to the profit ranking when firms sequentially compete
in quantities (standard Stackelberg competition where the leader obtains a larger
profit than the follower).

Exercise 7—Stackelberg Game with Three Firms Acting
Sequentially®

Consider an industry consisting of three firms. Each firm i = {1, 2, 3} has the same
cost structure, given by cost function C(g;) = 5 + 2¢;, where ¢; denotes individual
output. For every firm i, industry demand is given by the inverse demand function:

P(Q) =18 -0

where Q denotes aggregate output, i.e., Q = q; + g2 + g3. The production timing is
as follows: Firm 1 produces its output first. Observing firm 1’s output, g, firm 2
chooses its own output, ¢;. Finally, observing both firm 1’s and firm 2’s output, firm
3 then produces its own output g3. This timing of production is common knowledge
among all three firms. The industry demand and cost functions are also known to
each firm. Find values of output level g;, g and g3 in the SPNE of the game.

Answer
Firm 3. Using backward induction, we first analyze the production decision of the
last mover firm 3, which maximizes profits by solving:

H}EX(IS (@1 +a2+q3))g3 — (5+2q3)

Taking first order conditions with respect to g3, we obtain
18—q1—q»—2g3 —2=0.

Hence, solving for g3 we obtain firm 3’s best response function (which decreases in
both ¢ and ¢»)

16 —q1—q»

6]3(6]17672) = 5

Firm 2. Given this BRF3(q1, q2), we can now examine firm 2’s production decision
(the second mover in the game), which chooses an output level g, to solve
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16 — g1 —
max [ 18 — 6]1+6]2+# g2 — (5+2q2).
q2

q3

Where we inserted firm 3’s best response function, since firm 2 can anticipate
firm 3’s optimal response at the subsequent stage of the game. Simplifying this
profit, we find

1 1
10— =gy — = —5—2q,.
H}{?"( 2611 2612) q2 q2

Taking first order conditions with respect to g,, yields
10 ! 2=0
26]1 q2 =U.

And solving for ¢, we find firm 2’s best response function (which only depends on
the production that occurs before its decision, i.e., q;),

1
q2(q1) =8 — 24
Firm 1. We can finally analyze firm 1°s production decision (the first mover).
Taking into account the output level with which firm 2 and 3 will respond, as
described by BRF, and BRF3, respectively, firm 1 maximizes

1 16—qg; — (81
max | 18 — [ g1 + 8—5611 + o 2( 24) q1 — (5+2q1)
q1 NI
q2 a3

which simplifies to
1
max 6——(]1 q1 -5 —26]1.
qi 4
Taking first order conditions with respect to g;, we obtain
6 : 2=0
2611 =0

Solving for g; we find the equilibrium production level for the leader (firm 1),
q} = 8. Therefore, we can plug g = 8 into firm 2’s and 3’s best response function
to obtain
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1
@ = q2(8) =8 — 5(8) = 4 units
for firm 2 and
16 —8—4
@ =q3(8,4) = — = 2 units

for firm 3. Hence, the output levels that arise in equilibrium are (8,4,2). However,
the SPNE of this Stackelberg game must specify optimal actions for all players,
both along the equilibrium path (for instance, after firm 2 observes firm 1 producing
¢; = 8 units) and off-the-equilibrium path (for instance, when firm 2 observes firm
1 producing g; # 8 units). We can accurately represent this optimal action at every
point in the game in the following SPNE:

1 16—qg1—q
(Qiqﬂqﬂ,qﬂqhqﬁ)<&8§qb———75——— .

Exercise 8—Two-Period Bilateral Bargaining Game®

Alice and Bob are trying to split $100. As depicted in the game tree of Fig. 4.12, in
the first round of bargaining, Alice makes an offer at cost ¢ (to herself), proposing to
keep x4 and give the remaining xg = 100 — x4 to Bob. Bob either accepts her offer
(ending the game) or rejects it. In round 2, Bob makes an offer of (y4, yp), at a cost
of 10 to himself, which Alice accepts or rejects. If Alice accepts the offer, the game
ends; but if she rejects it, the game proceeds to the third round, in which Alice
makes an offer (z4,zp), at a cost ¢ to herself. If Bob accepts her offer in the third
round, the game ends and payoffs are accrued to each player; whereas if he rejects
it, the money is lost. Assume that players are risk-neutral (utility is equal to money
obtained minus any costs), and there is no discounting. If ¢ =0, what is the
subgame-perfect equilibrium outcome?

Answer

Third period. Operating by backward induction, we start in the last round of the
negotiation (third round). In ¢ = 3, Alice will offer herself the maximum split z4
that still guarantees that it is accepted by Bob:

up(Accepts) = ug(Rejects)
100 — 74 — 10 = —10, i.e., z4 = 100.

That is, Alice offers (z4,z5) = (100,0) in r = 3.
Second period. In r = 2, Bob needs to offer Alice a split that makes her indifferent
between accepting in ¢t = 2 and rejecting in order to offer herself the entire pie in
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Fig. 4.12 Two-period Alice
bilateral bargaining game
X
Bob
A R
Bob
Xa-C
100-x4
Yy
A
100-yg-c
yB-10
A R
zp-2c -2¢

100-z4-10 -10
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t = 3 (which we showed to be her equilibrium behavior in the last round of play). In
particular, Alice is indifferent between accepting and rejecting if

us(Accepty) = ua(Reject,)
100 — y = 100, that is y5 — 0

That is, Bob offers (y4,yg) = (100,0) in ¢t =2. (This is an extreme offer,
whereby Bob cannot enjoy any negotiation power from making offers, and can only
offer the entire pie to Alice. Intuitively, this offer emerges as equilibrium behavior
in t = 2 in this exercise because players do not discount their future payoffs and
they do not incur any cost in making offers, ¢ = 0. Otherwise, the offers could not
be so extreme).

First period. In r = 1, Alice needs to offer Bob a split that makes him indifferent
between accepting in t = 1 and rejecting (which entails that he will offer himself
yg = 0 in the subsequent period, ¢ = 2):

up(Accept;) = ug(Reject;)
100 — x4 — 10 = 0 — 10, that is x4, = 100

That is, Alice offers (x4,x5) = (100,0) in # = 1. So the agreement is reached
immediately and Alice gets the entire pie.

Exercise 9—Alternating Bargaining with a Twist®

Consider a two-player alternating offer bargaining game with 4 periods, and where
player 1 is the first one to make offers. Rather than assuming discounting of future
payoffs, let us now assume that the initial surplus shrinks by one unit if players do
not reach an agreement in that period, i.e., surplus at period ¢ becomes § = 6 — ¢ for
all +={1,2,3,4}. As in similar bargaining games, assume that every player
accepts an offer when being indifferent between accept and reject. Find the SPNE of
the game.

Answer

Let us solve this sequential-move game by applying backward induction:

Period 4. In period 4, player 2 makes an offer to player 1, who accepts any offer
x4 > 0. Player 2, anticipating such a decision rule, offers x4 = 0 in the 4th period,
leaving player 2 with the remaining surplus 6 — 4 = 2.

Period 3. In the previous stage (period 3), player 1 makes an offer to player 2,
anticipating that, for player 2 to accept it, he must be indifferent between the offer
and the payoff of $2 he will obtain in the subsequent period (when player 2
becomes the proposer). Hence, the offer in period 3 must satisfy x3 > 2, making
player 1 an offer of exactly x3 =2, which leaves player 1 with the remaining
surplus of (6 —3) —2 = $1.
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Period 2. In period 2, player 2 makes offers to player 1 anticipating that the latter
will only obtain a payoff of $1 if the game were to continue one more period.
Hence, player 2’s offer in period 2 must satisfy x, > 1, implying that player 2 offers
exactly x, = 1 to player 1 (the minimum to guarantee acceptance), yielding him a
remaining surplus of (6 —2) — 1 = $3.

Period 1. In the first period, player 1 is the individual making offers and player 2 is
the responder. Player 1 anticipates that player 2’s payoff will be $3 if the game
progresses towards the next stage (when player 2 becomes the proposer). His offer
must then satisfy x; >3, implying that player 1 offers x; = $3 to player 2 to
guarantee acceptance. Interestingly, player 1 offers a fair offer (half of the surplus)
to player 2, which guarantees acceptance in the first stage of the game, implying
that the surplus does not decrease over time.

Exercise 10—Backward Induction in Wage Negotiations”

Consider the following bargaining game between a labor union and a firm. In the first
stage, the labor union chooses the wage level, w, that all workers will receive. In the
second stage, the firm responds to the wage w by choosing the number of workers it
hires, i € [0, 1]. The labor union’s payoff function is u;(w,h) = w - h, thus being
increasing in wages and in the number of workers hired. The firm’s profit is

n(w,h) = (h —h;) — wh

Intuitively, revenue is increasing in the number of workers hired, &, but at a
. . 2 . . . .
decreasing rate (i.e., h — % is concave in h), reaching a maximum when the firm
hires all workers, i.e., » = 1 where revenue becomes 1/2.

Part (a) Applying backward induction, analyze the optimal strategy of the last
mover (firm). Find the firm’s best response function A(w).

Part (b) Let us now move on to the first mover in the game (labor union).
Anticipating the best response function of the firm that you found in part (a), h(w),
determine the labor union’s optimal wage, w*.

Answer

Part (a) The firm solves the following profit maximization problem:

h2
max (h — —) — wh
hel0,1] 2

Taking the first-order conditions with respect to &, we obtain:

1—-h—w<0
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Solving for A, yields a best response function of:
hiw)=1—-w

Intuitively, the firm hires all workers when the wage is zero, but hires fewer
workers as w increases. If the salary is the highest, w = 1, the firm responds hiring

no workers. [Note that the above best response function i(w) defines a maximum

& 4 . . .
E g%’h) = —1, thus guaranteeing concavity in

since second-order conditions yield
the profit function.]
Part (b) The labor union solves:

Ivguém(w, hy=w-h
subjectto h(w) =1 —w

The constraint reflects the fact that the labor union anticipates the subsequent hiring
strategy of the firm. We can express this problem more compactly by inserting the
(equality) constraint into the objective function, as follows:

max ur(w(h),h) = w(l —w) =w —w?

Taking first-order conditions with respect to w yields:
1-2w<0

and, solving for w, we obtain an optimal wage of w* = % Hence, the SPNE of the
game is:

o )} = {51 -}

and, in equilibrium, salary w* :% is responded with h(%) =1- % :% workers

hired, i.e., half of workers are hired. In addition, equilibrium payoffs become
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Exercise 11—Backward Induction-I®

Solve the game tree depicted in Fig. 4.13 using backward induction.

Answer

Starting from the terminal nodes, the smallest proper subgame we can identify is
depicted in Fig. 4.14 (which initiates after player 1 chooses In). Recall that a
subgame is the portion of a game tree that you can circle around without breaking
any information sets. In this exercise, if we were to circle the portion of the game
tree initiated after player 2 chooses A or B, we would be breaking player 3’s
information set. Hence, we need to keep enlarging the circle (area of the tree) until

Fig. 4.13 Extensive-form 1 » 2,22 32 1
game Out X al
3
In
A
50,0
2
1,2,6
B
C
7,55
4,3,1
Fig. 4.14 Smallest proper 3,2, 1
subgame 3 X
[
A
Y 5,0,0
2
1,2,6
X
B
L
C 3
Y 7,5,5

4,31
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Player 3
X Y
A 3,2,1 5,0,0
Player 2 B 126 755
Cc 43.1 43,1

Fig. 4.15 Smallest proper subgame (in its normal-form)

Fig. 4.16 Extensive-form 1

2,2,2
game (first stage) Out

4, 3,1 <«——This payoff triplet originates from
the NE of the only proper
subgame, (C,X)

we do not break information sets. This happens when we circle the portion of the
tree initiated after player 1 chooses In; as depicted in Fig. 4.14.

In this subgame in which only two players interact (players 2 and 3), player 3
chooses his action without observing player 2’s choice. As a consequence, the
interaction between players 2 and 3 in this subgame can be modeled as a
simultaneous-move game. In order to find the Nash equilibrium of the subgame
depicted in Fig. 4.14, we must first represent it in its normal (matrix) form, as
depicted in Fig. 4.15.

For completeness, Fig. 4.15 also underlines the payoffs that arise when each player
selects his best responses.” In outcome (C, X) the payoffs of player 2 and 3 are
underlined, thus indicating that they are playing a mutual best response to each other’s
strategies. Furthermore, we do not need to examine player 1, since only player 2 and 3
are called on to move in the subgame. Hence, the Nash equilibrium of this subgame
predicts that players 2 and 3 choose strategy profile (C, X). We can now plug the
payoff triple resulting from the Nash equilibrium of this subgame, (4, 3, 1), at the end
of the branch indicating that player 1 chooses In (recall that this was the node initiating
the smallest proper subgame depicted in Fig. 4.14), as we illustrate in Fig. 4.16.

By inspecting the above game tree in which player 1 chooses In or Out, we can
see that his payoff from In (4) is larger than from Out (2). Then, the SPNE of this
game is (In, C, X).

2See exercises in Chap. 2 for more examples of this underlining process.
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Exercise 12—Backward Induction-II®

Consider the sequential-move game depicted in Fig. 4.17. The game describes
Apple’s decision to develop the new iPhone (whatever the new name is, 5s, 6, 0,
etc.) with radically new software which allows for faster and better applications
(apps). These apps are, however, still not developed by app developers (such as
Rovio, the Finnish company that introduced Angry Birds). If Apple does not
develop the new iPhone, then all companies make zero profit in this emerging
market. If, instead, the new iPhone is introduced, then company 1 (the leader in the
app industry) gets to decide whether to develop apps that are compatible with the
new iPhone’s software. Upon observing company 1’s decision, the followers (firm
2 and 3) simultaneously decide whether to develop apps (D) or not develop (ND).
Find all subgame perfect Nash equilibria in this sequential-move game.

Do not develop new iPhone Apple

A

Apple 0
Firm 1 0
Firm 2 0 Develop new iPhone
Firm 3 0
Firm 1 (Leader)
Develop Do not develop
Firm 2
DND
Firm 3 Firm 3
D DND D DND D DND D DND
10 6 6 -4 6 -4 4 -6
4 2 2 -2 0 0 0 0
4 2 0 0 2 -2 0 0
4 0 2 0 2 0 2 0

Fig. 4.17 Developing iPhone and apps game
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Firm 3
Develop Do not develop
Firm 2 | Develop 4,4 2,0
Do not develop 0,2 0,0

Fig. 4.18 Smallest proper subgame (after firm 1 develops)

Answer

Company 1 develops. Consider the subgame between firms 2 and 3 which initiates
after Apple develops the new iPhone and company 1 develops an application (in the
left-hand side of the game tree of Fig. 4.17).

Since that subgame describes that firm 2 and 3 simultaneously choose whether or
not to develop apps, we must represent it using its normal form in order to find the
NEs of this subgame; as we do in the payoff matrix of Fig. 4.18.

We can identify the best responses for each player (as usual, the payoffs asso-

ciated to those best responses are underlined in the payoff matrix of Fig. 4.18). In
particular, BR,(D, D) = D and BR,(D,ND) = D for firm 2; and similarly for firm
3, BR3(D,D) = D and BR;(D,ND) = D. Hence, Develop is a dominant strategy
for each company, so there is a unique Nash equilibrium (Develop, Develop) in this
subgame.
Company 1 does not develop. Next, consider the subgame associated with Apple
having developed the new iPhone but company 1 not developing an application
(depicted in the right-hand side of the game tree in Fig. 4.17). Since the subgame
played between firms 2 and 3 is simultaneous, we represent it using its normal form
in Fig. 4.19.

This subgame has two Nash equilibria: (Develop, Develop) and (Do not develop,
Do not develop). (Note that, in our following discussion, we will have to separately
analyze the case in which outcome (D, D) emerges as the NE of this subgame, and
that in which (ND, ND) arises.)

Company 1—Case 1. Let us move up the tree to the subgame initiated by Apple
having developed the new iPhone. At this point, company 1 (the industry leader)
has to decide whether or not to develop an application. Suppose that the Nash
equilibrium for the subgame in which company 1 does not develop an application is
(Develop, Develop). Replacing the two final subgames with the Nash equilibrium
payoffs we found in our previous discussion, the situation is as depicted in the tree
of Fig. 4.20. In particular, if firm 1 develops an application, then outcome (D, D)
which entails payoffs (10, 4, 4, 4), as depicted in the terminal node at the bottom
left-hand side of Fig. 4.20. If, in contrast, firm 1 does not develop an application for

Firm 3
Develop Do not develop
Firm 2 | Develop 2,2 2,0
Do not develop 0,-2 0,0

Fig. 4.19 Smallest proper subgame (after firm 1 does not develop)
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Do not develop new iPhone Apple

A

Apple
Firm 1
Firm 2
Firm 3

Develop new iPhone

[eNeoNoNe]

Firm 1 (Leader)

Develop Do not develop

—
Rl )
DN O O

Fig. 4.20 Extensive-form subgame (Case I)

the new iPhone, then outcome (D, D) arises, yielding payoffs of (6, 0, 2, 2), as
depicted in the bottom right-hand corner of Fig. 4.20.

We can now analyze firm 1’s decision. If company 1 develops an application,
then its payoff is 4, while its payoff is only O (since it anticipates the followers
developing apps) from not doing so. Hence, company 1 chooses Develop.
Company 1—Case I1. Now suppose the Nash equilibrium of the game that arises
after firm 1 does not develop an app has neither firm 2 or 3 developing an
app. Replacing the two final subgames with the Nash equilibrium payoffs we found
in our previous discussion, the situation is as depicted in Fig. 4.21. Specifically, if
firm 1 develops, outcome (D, D) emerges, which entails payoffs (10, 4, 4, 4); while
if firm 1 does not develop firm 2 and 3 respond not developing apps either, ulti-
mately yielding a payoff vector of (—6, 0, 0, 0). In this setting, if firm 1 develops an
application, its payoff is 4; while its payoff is only O from not doing so. Hence, firm
1 chooses Develop.

Thus, regardless of which Nash equilibrium is used in the subgame initiated after
firm 1 chooses Do not develop (in the right-hand side of the game in Figs. 4.20 and
4.21), firm 1 (the leader) optimally chooses to Develop.

First mover (Apple). Operating by backward induction, we now consider the first
mover in this game (Apple). If Apple chooses to develop the new iPhone, then, as
previously derived, firm 1 develops an application and this induces all followers 2
and 3 to do so as well. Hence, Apple’s payoff is 10 from introducing the new iPhone.
It is then optimal for Apple to develop the new iPhone, since its payoffs from so
doing, 10, is larger than from not developing it, 0. Intuitively, since Apple anticipates
all app developers will react introducing new apps, it finds the initial introduction of
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Do not develop new iPhone Apple

A

Apple
Firm 1
Firm 2
Firm 3

Develop new iPhone

oOooo

Firm 1 (Leader)

Develop Do not develop
10 -6
4 0
4 0
4 0

Fig. 4.21 Extensive-form subgame (Case II)

the iPhone to be very profitable. We can then identify two subgame perfect Nash
equilibria (where a strategy for firm 2, as well as for firm 3, specifies a response to
firm 1 choosing Develop and a response to company 1 choosing Do not develop®):

(Develop iPhone, Develop, Develop/Develop, Develop/Develop), and

(Develop iPhone, Develop, Develop/Do not develop, Develop/Do not develop).

Note that both SPNE result in the same equilibrium path, whereby, first, Apple
introduces the new iPhone, the industry leader (firm 1) subsequently chooses to
develop applications for the new iPhone, and finally firms 2 and 3 (observing firm
1’s apps development) simultaneously decide to develop apps as well.

Exercise 13—Moral Hazard in the Workplace®

Consider the following moral hazard game between a firm and a worker. A firm
offers either Contract 1 to a worker, which guarantees him a wage of w =26
regardless of the outcome of the project that he develops in the firm, or Contract 2,
which gives him a salary of $36 when the outcome of the project is good (G) but
only $9 if the outcome is bad (B), i.e., wg = 36 and wg = 9. The worker can exert
two levels of effort, either high (ey) or low (er). The probability that, given a high
effort level, the outcome of the project is good is f(Gley) = 0.9 and, therefore, the

3For instance, a strategy Develop/Develop for firm 2 reflects that this company chooses to develop
apps, both after observing that firm 1 develops apps and after observing that firm 1 does not
develop.
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probability that, given a high effort, the outcome is bad is only f(B|ey) = 0.1. If,
instead, the worker exerts a low effort level, the good and bad outcome are equally
likely, i.e., f(Gler) = 0.5 and f(B|er) = 0.5. The worker’s utility function is

UW(Wﬂ 6) = \/"_V - l(e)v

where /w reflects the utility from the salary he receives, and /(e) represents the
disutility from effort which, in particular, is /(ey) = 1 when he exerts a high effort
but /(er) = 0 when his effort is low (he shirks). The payoff function for the firm is
90 — w when the outcome of the project is good, but decreases to 30 — w when the
outcome is bad.

Part (a) Depict the game tree of this sequential-move game. Be specific in your
description of players’ payoffs in each of the eight terminal nodes of the game tree.
Part (b) Find the subgame perfect equilibrium of the game.

Part (c) Consider now the existence of a social security payment that guarantees a
payoff of $x to the worker. Determine for which monetary amount of $x the worker
chooses to exert a low effort level in equilibrium.

Answer

Part (a) Fig. 4.22 depicts the game tree of this moral hazard game: First, the firm
manager offers either contract 1 or 2 to the worker. Observing the contract offer, the
worker then accepts or reject the contract. If he rejects the contract, both players
obtain a payoff of zero. However, if the worker accepts it, he chooses to exert a high
or low effort level. Finally, for every effort level, nature randomly determines
whether such effort will result in a good or bad outcome, i.e., profitable or
unprofitable project for the firm. As a summary, Fig. 4.23 depicts the time structure
of the game.

In order to better understand the construction of the payoffs in each terminal
node, consider for instance the case in which the worker accepts Contract 2 (in the
right-hand side of the tree), responds exerting a low effort level and, afterwards, the
outcome of the project is good (surprisingly!). In this setting, his payoff becomes
V36 —0 = 6, since he receives a wage of $36 and exerts no effort, while the firm’s
payoff is 90 — 36 = 54, given that the outcome was good and, as a result of the
monetary incentives in Contract 2, the firm has to pay a salary of $36 to the worker
when the outcome is good. If the firm offers instead Contract 1, the worker’s salary
remains constant regardless of the outcome of the project, but decreases in his effort
(as indicated in the four terminal nodes in the left-hand side of the game tree).
Part (b) In order to find the SPNE, we must first notice that in this game we can
define 4 proper subgames plus the game as a whole (as marked by the large circles
in the game tree of Fig. 4.24).

Let us next separately analyze the Nash equilibrium of every proper subgame:
Subgame (1), initiated after the worker accepts Contract 1. Let’s first find the
expected utility the worker obtains from exerting a high effort level.
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Fig. 4.22 Moral hazard in the workplace
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EU,,(H|Contract 1) = f(Gley)(V26 — 1) +f(Blen)(v/26 — 1)
= 0.9(v26 — 1) +0.1(+v/26 — 1) = V26 — 1

And the expected utility of exerting a low effort level under Contract 1 is

EU,,(L|Contract 1) = 0.5v/26 4+ 0.5v/26 — 0 = v/26

Hence, the worker exerts a low effort level, e;, since
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Fig. 4.23 Time structure of the moral hazard game
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Fig. 4.24 Proper subgames in the moral hazard game

EU,,(H|Contract 1) <EU,,(L|Contract 1) — /26 — 1 <+/26

And the worker chooses to exert e; after accepting Contract 1. Intuitively,
Contract 1 offers the same salary regardless of the outcome. Thus, the worker does
not have incentives to exert a high effort.
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Fig. 4.25 Subgame 3 in the worker
moral hazard game
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Subgame (2), initiated after the worker accepts Contract 2. In this case, the expected
utility from exerting a high or low effort level is:

EU,,(H|Contract2) =0.9-5+0.1-2=4.7, and
EU, (L|Contract2) =0.5-6+0.5-3—-0=4.5

Hence, the worker exerts a high effort level, ey, after accepting Contract 2.
Subgame (3), initiated after receiving Contract 1. Operating by backwards induc-
tion, the worker can anticipate that, upon accepting Contract 1, he will exert a low
effort (this was, indeed, the Nash equilibrium of subgame 1, as described above).
Hence, the worker faces the reduced-form game in Fig. 4.25 when analyzing
subgame (3).

As a consequence, the worker accepts Contract 1, since his expected payoff from
accepting the contract, 0.5v/26 + 0.5v/26 = 1/26, exceeds his payoff from rejecting
it (zero). That is, anticipating a low effort level upon the acceptance of Contract 1,

EU,,(A|Contract 1,e;) > EU,,(R|Contract 1,er) < 0.5v/26+0.5v/26 >0

Subgame (4), initiated after the worker receives Contract 2. Operating by back-
wards induction from subgame (2), the worker anticipates that he will exert a high
effort level if he accepts Contract 2. Hence, the worker faces the reduced-form game
in Fig. 4.26.

Therefore, the worker accepts Contract 2, given that:

EU,,(A|Contract2,ey) > EU,,(R|Contract 2, ey
09:-6+01-3-1>0<47>0
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Fig. 4.26 Subgame 4 in the worker
moral hazard game
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Game as a whole: Operating by backward induction, we obtain the reduced-form
game in Fig. 4.27.

When receiving Contract 1, the worker anticipates that he will accept it to
subsequently exert a low effort; while if he receives Contract 2 he will also accept it
but in this case exert a high effort.

)

Fig. 4.27 Reduced-form Employer
game
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Analyzing the above reduced-form game, we can conclude that the employer
prefers to offer Contract 2, since it yields a larger expected payoff. In particular,

En(Contract 1|A, e;) <En(Contract2|A, ey), thatis
0.5-64+05-4<09-54+0.1-21 < 34<50.7

Hence, in the SPNE the employer will offer Contract 2 to the worker paying him
the wage scheme (wg, wg) = (36, 9), which induces the worker to exert a high effort
level in Contract 2 (in equilibrium) and a low effort in Contract 1
(off-the-equilibrium).

Part (c) In part (b) we obtained that, in equilibrium, the employer offers Contract 2
and the worker exerts high effort. Since the social security payment needs to
achieve that the worker exerts a low effort, the easiest way to guarantee this is by
making the worker reject Contract 2. Anticipating such rejection, the employer
offers Contract 1, which implies an associated low level of effort. That is, a social
security payment of $x induces the worker to reject Contract 2 as long as $x satisfies

EU,,(A|Contract 2, ey) <EU,,(R|Contract 2, ey )
0.9-v36+0.1- V9 — 1 <x

which simplifies to x > 4.7. That is, the social security payment must be relatively
generous. In order to guarantee that the worker still accepts Contract 1, we need that

EU,,(A|Contract 1,er) > EU,,(R|Contract 1,er)
0.5-v26+0.5- V26 > x

which reduces to x<1/26 2 5.09, thus implying that the social security payment
cannot be too generous since otherwise the worker would reject both types of
contracts. Hence, when the social security payment is intermediate, i.e., it lies in the
interval x € [4.7, \/%], we can guarantee that the worker rejects Contract 2, but
accepts Contract 1 (where he exerts a low effort level).



Introduction

This chapter helps us apply many of the concepts of previous chapters, dealing with
simultaneous- and sequential-move games under complete information, to common
industrial organization problems. In particular, we start with a systematic search for
pure and mixed strategy equilibria in the Bertrand game of price competition
between two symmetric firms, where we use several figures to illustrate our dis-
cussion. We then extend our explanation to settings in which firms are allowed to
exhibit different costs.

We also explore the effects of cost asymmetry in the Cournot game of output
competition. We afterwards move to a Cournot duopoly game in which one of the
firms is publicly owned and managed. While private companies seek to maximize
profits, public firms seek to maximize a combination of profits and social welfare,
thus affecting its incentives and equilibrium output levels. At the end of the chapter,
we examine applications in which firms can choose to commit to a certain strategy
(such as spending in advertising, or competing in prices or quantities) before they
start their competition with other firms. Interestingly, these pre-commitment strate-
gies affect firm’s competitiveness, and the position of their best-response functions,
ultimately impacting subsequent equilibrium output levels and prices.

We also analyze an incumbent’s incentives to invest in a more advanced tech-
nology that helps him to reduce its production costs in order to deter potential
entrants from the industry; even if it leaves the incumbent with overcapacity (idle or
unused capacity). We end the chapter with two more applications: one about a
firm’s tradeoff between directly selling to its customers or using a retailer; and
another in which we analyze firms’ incentives to merge, which depend on the
proportion of firms in the industry that join the merger.

The original version of the chapter was revised: The erratum to the chapter is available at:
10.1007/978-3-319-32963-5_11
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Exercise 1—Bertrand Model of Price Competition®

Consider a Bertrand model of price competition between two firms facing an
inverse demand function p(q) = a — bg, and symmetric marginal production costs,
c] = ¢y = ¢, where ¢ < a.

Part (a) Show that in the unique Nash equilibrium (NE) of this game, both firms set
a price that coincides with their common marginal cost, i.e., p] = p; = c.

Part (b) Show that p] = p5 = c is not only the unique NE in pure strategies, but
also the unique equilibrium in mixed strategies.

Answer

Part (a) We will analyze that p] = p5 = ¢ is indeed a Nash equilibrium (NE).
Notice that at this NE both firms make zero profits. Now let us check for profitable
deviations:

e If firm i tries to deviate by setting a higher price p; > ¢ then firm j will capture
the entire market, and firm i will still make zero profits. Hence, such a deviation
is not profitable.

e Iffirm i tries to deviate by setting a lower price p; <c then it sells to the whole
market but at a loss for each unit sold given that p; <c. Hence, such a deviation
is not profitable either.

As a consequence, once firms charge a price that coincides with their common
marginal cost, i.e., p} = p5 = c, there does not exist any profitable deviation for any
of the firms. Therefore, this pricing strategy is a NE.

Let us now show that, moreover, the NE strategies p] = p5 = ¢ are the unique
NE strategies in the Bertrand duopoly model with symmetric costs ¢; = ¢, = c.

e First, let us suppose that min{pf, pﬁ} < c. In this case, the firm setting the lowest
price p; = min{p’f, pg} is incurring losses; as depicted in Fig. 5.1. If this firm
raises its prices beyond the marginal cost, i.e., p; > ¢, the worst that can happen
is that its price is higher than that of its rival, p; <p;, and as a consequence firm
i loses all its customers thus making zero profits (otherwise firm i will capture
the entire market and make profits, which occurs when p; > p; > ¢). Then, the
price choices given by min{pf, pz} < ¢ cannot constitute a NE because there
exist profitable deviations. [This argument is true for any firm i = {1, 2} which
initially gets the lowest price.]

e Second, let us suppose that p; = ¢ and py > ¢ where k # j. Then, firm j captures
the entire market, since it is charging the lowest price, but makes zero profits.

pi p./’ c

p

Fig. 5.1 p;<p;<c
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Fig. 5.3 Firm & has incentives to undercut firm j’s price

Firm j has then incentives to raise its price to p; = py — ¢, slightly undercutting
its rival’s price; as depicted in Fig. 5.2.

In particular, note that by deviating, firm j will still capture all the market (it is
still the firm with the lowest price), but at a positive margin. Then, the initially
considered price choices p; = ¢ and p; > ¢ where k # j cannot constitute a NE,
since there are profitable deviations for firm j.

e Third, let us suppose that both firms set prices above the common marginal cost,
i.e., pj > c and p; > c, but consider that such a price pair (p;, px) is asymmetric,
so that we can identify the lowest price p; < pg, whereby firm j captures the
entire market. Hence, firm k earns zero profit, and has incentives to lower its
price. If it undercuts firm j’s price, i.e., px = p; — ¢, setting a price lower than
that of its rival but higher than the common marginal cost (as illustrated in
Fig. 5.3), then firm k& captures all the market, raising its profits to
(px — ¢) - q(px)- Hence, we found a profitable deviation for firm &, and there-
fore, px > p; > ¢ cannot be sustained as a NE.

Therefore, we have shown that any price configuration different from pj =
D> = ¢ cannot constitute a NE. Since at least one firm has incentives to deviate from
its strategy in such price profile. Therefore, the unique NE of the Bertrand duopoly
model is p] = p; = c.

As a remark, we next describe how to represent firms’ best-response functions in
this game. Figure 5.4 depicts, for every price firm 2 sets, p,, the profit maximizing
price of firm 1. First, if p, <c, firm 2 is capturing all the market (at a loss), and firm
1 responds setting p; = c; as illustrated in the horizontal segment for all p, <c.
Note that if firm 1 were to match firm 2’s price, despite sharing sales, it would
guarantee losses for each unit sold. Hence, it is optimal to respond with a price of
p1 = c. Second, if firm 2 increases its price to ¢ <p, <p™, where p™ denotes the
monopoly price that firm 2 would set if being alone in the market, then firm 1
responds slightly undercutting its rival’s price, i.e., p; = p» — ¢€; as depicted in the
portion of firm 1’s best response function that lies e-below the 45-degree line.
Finally, if firm 2 sets an extremely high price, i.e., p» > p™, then firm 1 responds
with a price p; = p”. Such a monopoly price is optimal for firm 1, since it is lower
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than that of its rival (thus allowing firm 1 to capture all the market) and maximizes
firm 1’s profits; as illustrated in the horizontal segment at the right hand of the
figure.

A similar analysis is applicable to firm’s 2 best response function, as depicted
Fig. 5.5. Note that, in order to superimpose both firms’ best response functions in
the same figure, we use the same axis as in the previous figure.

We can now superimpose both firms’ best response functions, immediately
obtaining that the only point where they both cross each other is pj = p; = c, as
shown in our above discussion (Fig. 5.6).

Part (b) Let us work by contradiction, so let us assume that there exists a mixed
strategy Nash Equilibrium (MSNE). It has to be characterized by firms randomizing
between at least two different prices with strictly positive probability. Firm 1 must
randomize as follows:

1

Prob. — qll‘ q =|1*q1
I 1

. 1 2
Prices — p, V2
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Where, for generality, we allow the prices and their corresponding probabilities to
take any values. Firm 2 must be similarly mixing between two prices, as follows:

Prob. — qlé 0 =}—q£

I 1
1 1 2
Prices — p, D5

That is, firm 2 sets a price p»,

_ J p) with prob a5
Pr=p? with prob @ =1-4¢!

For simplicity, let us first examine randomizations that cannot be profitable for
either firm:

e First, note that in any MSNE we cannot have both firms losing money: pi1 <c
and p? <c for all firm i = {1,2}. In other words, we cannot have that both the
lower and the upper bound of the randomizing interval lie below the marginal
cost ¢, for both firms; as illustrated in Fig. 5.7.

e Second, if both p! > ¢ and p? > c¢ for all firm i = {1, 2}, both the lower and the
upper bounds of the randomizing intervals of both firms lie above their common
marginal cost; as depicted in Fig. 5.8. Then one of the firms, for instance firm j,
can gain by deviating to a pure strategy that puts all probability weight on a
single price, i.e., pj1 = pjz = pj, which slightly undercuts its rival’s price. In
particular, firm j can benefit from setting a price slightly below the lower bound
of its rival’s randomization interval, i.e., p; = p,l — & Hence we cannot have
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p} > c and p? > c being part of a MSNE, because there are profitable deviations
for at least one firm.

e Finally, let us consider that for both firms i = {1,2} we have that p/ > ¢ and
p[2 <c, as depicted in Fig. 5.9. That is, the lower bound of randomization, pl.l,
lies below the common marginal cost, ¢, while the upper bound, p?, lies above
this cost. In this setting, every firm j could win the entire market by setting a
price in which, rather than randomizing, uses a degenerate probability distri-
bution (i.e., a pure strategy) by setting a price pjl :pj? = pj, which slightly
undercuts its rival’s lower bound of price randomization, i.e., p; = PL— e
Therefore, having for both firms p! <c and p? > ¢ cannot be a MSNE given that
there are profitable deviations for every firm j.

Hence, we have reached a contradiction, since no randomizing pricing profile
can be sustained as a MSNE of the Bertrand game. Thus, no MSNE exists. As a
consequence, the unique NE implies that both firms play degenerated (pure)
strategies, namely, p} = p; = c.

Fig. 5.9 Randomizing interval around c¢
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Exercise 2—Bertrand Competition with Asymmetric Costs®

Consider a Bertrand model of price competition where firms 1 and 2 face different
marginal production costs, i.e., c¢;<c;, and an inverse demand function
p(Q) = a — bQ, where Q denotes aggregate production, and a > ¢; > cj.

Part (a) Find all equilibria in pure strategies: First, for the case in which prices are a
continuous variable; and, second, when prices are a discrete variable (e.g., prices
must be expressed in dollars and cents).

Part (b) Repeat your analysis for mixed strategies (for simplicity, you can focus on
the case of continuous pricing).

Answer
Part (a)
Case 1 Pricing in terms of continuous monetary units is allowed.

Claim In a Bertrand duopoly model with heterogeneous costs ¢; < ¢; < a and
continuous pricing there does not exist a Nash equilibrium in which both firms use
degenerated (pure) strategies.

Proof In order to prove this claim we will show that, for any possible pricing
profile, we can find a profitable deviation. All the possible pricing profiles are:

(1) p; <pj<ci<cs. In this case, both firms are making negative profits, since they
are both setting a price below their corresponding marginal cost. Hence, they
both have incentives to increase their prices.

(2) pi<c1<pj<cy. Firm i is making negative (or zero) profits. Note that this is
true regardless of its identity, either firm 1 or firm 2. Hence, this firm then has
incentives to charge a price p; = p; — ¢ for a small ¢ > 0. When firm i’s
identity is firm 1, or to a price p; = ¢, when its identity is firm 2. Either way,
firm i has incentives to deviate from the original configuration of prices.

(3) c¢1<pi<pj<cy. Firm i serves all the market. So it is profitable for firm i to
increase its price to p; = p; — ¢, i.e., undercutting its rival’s price by e.

4) c1 <p1 <cy<p,. Both firms are making positive (or zero) profits, and firm 1 is
capturing all the market. In this setting, firm 1 has incentives to set a price
marginally close to its rival’s cost, p; = ¢, — ¢, which allows firm 1 to further
increase its per-unit profits.

(5) ci1<pi <cy=py. If p; = p; = 3, then firms are splitting the market. In this
context, the very efficient firm 1 has an incentive to set a price p; = ¢, — ¢,
which undercuts the lowest price that its (less efficient) competitor can prof-
itably charge, helping firm 1 to capture all the market.

(6) c1 <cy <p; <p;. In this context, firm i serves all the market if p; < p;, or firms
share the market, if p; = p;. However, firm j has an incentive to undercut firm
i’s price by setting p; = p; — e.
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(T p1<ci<cy<p;. In this setting, firm 1 serves all the market and makes
negative (zero) profits if p; <c; (p; = ¢y, respectively). Firm 1 has incentives
to set p; = ¢ — ¢ for small g, which implies that this firm captures all the
market and makes a positive margin on every unit sold.

8) pr»<cy<cp,<p;. This case is analog to the previous one. Since firm 1 is
making zero profits (no sales), this firm has incentives to deviate to a lower
price, i.e., p; = ¢y — ¢, allowing it to capture all the market.

Hence, we have checked that, for any profile of prices, some (or both) firms have
profitable deviations. Therefore, none of these strategy profiles constitutes a pure
strategy Nash equilibria. Hence, in the Bertrand duopoly model with heterogeneous
costs, ¢; < ¢, and continuous pricing there does not exist pure strategy Nash
equilibria.

Case 2 Discrete pricing

Claim If ¢c; — c; > ¢ (i.e., ca > ¢| + ¢) the unique Bertrand equilibrium is for the
least competitive firm (firm 2 in this case) to set a price that coincides with its
marginal cost, py = c,, while the more competitive firm (company 1) sets a price
slightly below that of its rival, i.e., p1 = ¢, — &.

Note that this pricing profile yields an equilibrium output of g, = 0 for firm 2
and ¢, = w for firm 1. In this context, firm 2 does not have incentives to
deviate to a lower price. In particular, while a lower price captures some consumers,
it would be at a loss for every unit sold. Similarly, firm 1 does not have incentives to
lower prices, given that doing so would reduce its profit per unit. Firm 1 cannot
increase prices either (further approaching them to c,) since, unlike in the previous
part of the exercise (where such convergence can be done infinitely), in this case
prices are discrete. Intuitively, firm 1 is charging 1 cent less than firm 2’s marginal
cost c.

Part (b)

Claim In the Bertrand duopoly model with heterogeneous costs c¢; <cy<a the
following strategy constitutes a mixed strategy Nash equilibrium (MSNE) of the
game:

e The most competitive firm (Firm 1 in this case) sets a price that coincides with
its rival’s marginal cost, i.e. p; = ¢;

e The least competitive firm (Firm 2) sets a price p, by continuously randomizing
over the interval [cy,cy+¢] for any ¢ >0, with a cumulative distribution
function F(p;e), with associated density f(p;e) > 0 at all p; as depicted in
Fig. 5.10.

Proof In order to check that this strategy profile constitutes a MSNE we need to
check that each firm i is playing its best response, BR;.
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F(p;e) 4

| N
, >
¢ p=c,c,+e P

Fig. 5.10 MSNE in the Bertrand game with asymmetric firms

e Let us fix firm 2 randomizing over [c;, ¢; + €], and check if firm 1 is playing its
BR; by setting p; = ¢, (as prescribed). First, note that firm 1 (the most com-
petitive company) sets the lowest price of all firms in equilibrium, except in the
event that firm 2 sets a price exactly equal to p, = c¢,. This event, however,
occurs with a zero-probability measure, since firm 2 continuously randomizes
over the interval [cz,c; +¢]. Hence, firm 1 captures all the market demand,
except in a zero-probability measure event.

If firm 1 deviates towards a lower price, i.e., setting p; <cj, then it lowers its
profits for every unit sold relative to those in p; = ¢,. Hence, p; <c; is not a
profitable deviation for firm 1.

If firm 1 sets instead a higher price, p; > ¢;, then two effects arise: on one hand,
firm 1 makes a larger margin per unit (as long as its price, py, still lies below that
of firm 2) but, on the other hand, firm 1 gives rise to a negative effect, since it
increases its probability of ending up with no sales (if the realization of p, is
p2<p1) at arate of f(p; ¢). In order to show that the negative effect of setting a
price p; > ¢y, i.e., a price in the interval [c;, ¢; + ¢], dominates its positive effect
(and thus firm 1 does not have incentives to deviate), let us next examine firm
1’s profits

Amount sold
at price p
~ =
m(p) = (1—F(p;e))  D(p) (p—c1)
%,_/ \
prob{p <p>} per unit profits

In this context, a marginal increase in its price yields the first order condition:

omny(p)
dp

= —f(p;e)D(p)(p — c1) + (1 = F(p; &) [D'(p)(p — 1) + D(p)] <O

Hence, firm 1 doesn’t have incentives to set a price above p; = ¢;.
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e Letus now fix firm 1’s strategy at p; = ¢, and check if firm 2 randomizing over
[c2,c2+¢] is a best response for firm 2. If firm 2 sets a price below ¢, (or
randomizing continuously with a lower bound below c¢,) then firm 2 makes zero
(or negative) profits. If firm 2 sets a price above ¢, (or randomizing continuously
with an upper bound above c¢,) then firm 2 makes zero profits as well, since it
captures no customers willing to buy the product at such a high price. Therefore,
there does not exist a profitable deviation for firm 2, and the strategy profile can
be sustained as a MSNE of the Bertrand game of price competition when firms
exhibit asymmetric production cost."

Exercise 3—Duopoly Game with A Public Firm®

Consider a market (e.g. oil and natural gas in several countries) with one public firm
(firm 0), and one private firm, (firm 1). Both firms produce a homogenous good
with identical and constant marginal cost ¢ > 0 per unit of output, and face the same
inverse linear demand function p(X) = a — b X with aggregate output X = xy + xy,
and where a > c. The private firm maximizes its profit

1 = p(X)x; — cxy,
And the public firm maximizes a combination of social welfare and profits

V() = 0W+ (1 - 0)7‘50

where social welfare (W) is given by W = f(f p(y)dy — c(xo+x1), and its profits
are my = p(X)xp — cxp. Intuitively, parameter € represents the weight that the
manager of the public firm assigns to social welfare, while (1 — 6) is the weight that
he assigns to its profits. Both firms simultaneously and independently choose output
(as in the Cournot model of quantity competition).

Part (a) In order to better understand the incentives of these firms, and compare
them with two private firms competing in a standard Cournot model, first find the
best-response functions of the private firm, x;(xo), and of the public firm, xo(x;).
Part (b) Depict the best response functions. For simplicity, you can restrict your
analysis to 6 = 0,0 =0.5,0 = 1. Intuitively explain the rotation in the public
firm’s best response function as 6 increases. Connect your results with those of a
standard Cournot model where both firm's only care about profits, i.e., 8 = 0.
Part (c) Calculate the equilibrium quantities for the private and public firms. Find
the aggregate output in equilibrium.

Part (d) Calculate the socially optimal output level and compare it with the
equilibrium outcome you obtained in part (c).

'For more details on this MSNE, see Andreas Blume (2003) “Bertrand without fudge” Economic
Letters, 7, pp. 167-68.
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Answer

Part (a) The private firm maximizes
m = [a — b(xo +x1)]x1 — exy,

Taking the first-order conditions with respect to x;, we find the best-response
function of the private firm:

a—c X

2b 2"

X1 ()Co) =

The public firm maximizes Vo = OW + (1 — 0)m. That is,
Xo + X1
V=_>1-0)(la— b(xo+x1)]x0 — cxo) —1—0{/ (a — bx)dx — c(xo+x1) |,
0

Taking the first-order conditions with respect to xy, we have

ov
o (1 =0)(a—bx; —c—2bxp)+0la—blxo+x1) —c)] =0,

And solving for xp, we find the best-response function of the public firm:

_a—c X
Cw(1-9 2(1-9)

X0

Part (b) In order to better understand the effect of € on the public firm’s best
response function and, as a consequence, on equilibrium behavior, let us briefly
examine some comparative statistics of parameter 6. In particular, when 6 increases
from O to 1 the best-response function of the public firm pivots outward, with its
vertical intercept being unaffected. Let us analyze some extreme cases (Fig. 5.11
depicts the public firm’s best response function evaluated at different values of 6):

e At @ = 0, the best response function of the public firm becomes analog to that of
private firm: the public firm behaves exactly as the private firm and the equi-
librium is symmetric, with both firms producing the same amount of output.
Intuitively, this is not surprising: when 6 = 0 the manager of the public com-
pany assigns no importance to social welfare, and only cares about profits.

e As 6 increases, the slope the best-response function of the public firm, 2(1 — g),
becomes flatter, and the public firm produces a larger share of industry output,
i.e. the crossing point between both best response functions happens more to the
southeast.
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Private firm’s
best response
function

Fig. 5.11 Best response function of the private firm (solid line) and public firm (dashed line)

e At 6 =1, only the public company produces in equilibrium, while the private
firm does not produce (corner solution).

Part (c) The equilibrium quantities solve the system of two equations:

a—c xp
2b 2
a—c X1

“(-9) 209

X1 =

X0

Simultaneously solving for xp and x;, we find the individual output levels:

1 a—c l1—-0a—c
0=3Tap 0 M T3 g
Note that for 8 = 0 the outcome is the same as that for a Cournot duopoly, with
both firms producing xo = x; = %5, and for § = 1 the public firm produces the
competitive outcome, xo = %<, and the private firm produces nothing, x; = 0. (This
result was already anticipated in our discussion of the pivoting effect in the best
response function in the previous question.)
The aggregate output as a function of 0 is, therefore,

2—0a—c

XO) =x0tn =375
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Finally, note that differentiating the aggregate output with respect to 6 yields

dx(0) 1 a-c
= > 0.
o (3-20 b

Hence, an increase in 6 results in an increase in output, and an increase in social
welfare.
Part (d) The socially optimal output level corresponds to p(X) = ¢, which implies
a—bX =c,ie, X = %. The equilibrium output of the mixed duopoly, %”%,
is below the socially optimal level, 3¢, for any 0 satisfying f%fo < 1.That is,
2 — <3 —20 or 0<1. However, it exactly attains this output level at = 1.

Exercise 4—Cournot Competition with Asymmetric Costs”

Consider a duopoly game in which firms compete a la Cournot, i.e., simultaneously
and independently selecting their output levels. Assume that firm 1 and 2’s constant
marginal costs of production differ, i.e., ¢c; > ¢,. Assume also that the inverse
demand function is p(q) = a — bq, with a > ¢,. Aggregate output is ¢ = q; + ¢»

Part (a) Find the pure strategy Nash equilibrium of this game. Under what con-
ditions does it yield corner solutions (only one firm producing in equilibrium)?
Part (b) In interior equilibria (both firms producing positive amounts), examine
how do equilibrium outputs vary when firm 1’s costs change.

Answer

Part (a) In a Nash equilibrium (g}, ¢3), firm 1 maximizes its profits by selecting the
output level g, that solves

max m (q],q;) = (a — b(ql —|—q§))q1 —ci1q) = aqy — bq% — quql — C14q1
q1 20,9,

where firm 1 takes the equilibrium output of firm 2, g3, as given. Similarly for firm 2,
which maximizes

max m(q},q2) = (a — b(q; +42)) a2 — 292 = ag> — bgq> — bg; — c2qn

g2 > 0,q;
which takes the equilibrium output of firm 1, ¢}, as given. Taking first order

conditions with respect to g; and ¢, in the above profit-maximization problem,
we obtain:

omy (QIaQZ)

=a—2bq, — bg;, — 5.1
8q1 a ql Q2 Cl ( )
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an2(QT7q2)

=a— bqg} — 2bg, — c;. 5.2
9> a q1 q, — €2 (5.2)

Solving for ¢g; in (5.1) we obtain firm 1’s best response function:

) =it _a—a o
Nn\% 2b 2 2

(Note that, as usual, we rearranged the expression of the best response function to
obtain two parts: the vertical intercept, “5;*, and the slope, — %). Similarly, solving

for g, in (5.2) we find firm 2’s best response function

a—bql—czza—cz_ﬂ
2b 2b 2

0(q1) =

Plugging firm 1’s best response function into that of firm 2, we obtain:

. _a—o 1(a—cl qz)
L=, T2\ 2

Since this expression only depends on ¢,, we can now solve for g, to obtain the

equilibrium output level for firm 2, g5 = % Plugging the output we found g¢;
into firm 1’s best response function ¢, = %, we obtain firm 1’s equilibrium

output level:

a—2b[tta=2o] ¢, _a+c—2c

* _
4@ = b 3D
Hence, for ¢} = ‘”"327,;2“ <0 we need firm 1’s costs to be sufficiently high, i.e.,
solving for ¢; we obtain “T‘z <c¢y. A symmetric condition holds for firm 2’s
output. In particular, g3 :““317;2"2 <0 arises if ‘”’TC‘ < ¢;. Therefore, we can

identify three different cases (two giving rise to corner solutions, and one providing
an interior solution):

(1) if¢;> %for all firm i = {1, 2}, then both firms costs are so high that no firm
produces a positive output level in equilibrium;

() if ¢; > “29 but ¢;< “5%, then only firm j produces a positive output (intu-
itively, firm j would be the most efficient company in this setting, thus leading
it to be the only producer); and

(3) if ¢; < “5% for all firm i = {1,2}, then both firms produce positive output
levels.
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Fig. 5.12 Cournot game— C2 a+rc 0 q:
Cost pairs, and production ‘ G = Tz 45 _I:ne/
decisions 1%
/
N one _
Oy firm 1 produce
procuces /a4
rTTTT A
7 : Only firm 2
a s | produces
5 | Both firn(s |
2 prgduce |
/ |
-
a a Ci
2

Figure 5.12 summarizes these equilibrium results as a function of ¢; and c,. In
addition, the figure depicts what occurs when firms are cost symmetric,
c1 = ¢, = ¢ along the 45°-line, whereby either both firms produce positive output
levels, i.e., if c< “T“ or ¢ <a; or none of them does, i.e., if ¢ > a.

For instance, when ¢, > HTCI’ only firm 1 produces, as depicted in Fig. 5.13,
where the best response functions of firms 1 and 2 only cross at the vertical axis
where g, > 0 and ¢ = 0.

Part (b) In order to know how the (¢}, g3) varies when (c,c;) change we sepa-
rately differentiate each (interior) equilibrium output level with respect to ¢; and c»,

as follows:
9q; _ 2 9q; _ 1

aCI ——§<0and 802—5 >0

Hence, firm 1’s equilibrium output decreases as its own costs go up, but
increases as its rival’s costs increase. A similar intuition applies to firm 2’s equi-
librium output:
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1A
Nash equilibrium
‘/ (corner)
a—q¢
26 [
a—c, \ N ~
b N _BRF,
| \ N
N
| \BRFZ ~
N
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L — _\ _____ N —_—)
a-6 a-4 4,
2b b

Fig. 5.13 A corner solution in the Cournot game

Exercise 5—Strategic Advertising and Product
Differentiation®

Consider a two stage model. At the first stage, each firm selects how much money
to spend on advertising. The amount selected by firm i = {1,2} is denoted by A;.
After the firm selects its level of advertising, it faces an inverse demand for its
product given by:

pi(ai,qj) = [a — bq; — diq;]

where i # j, b,d; > 0 and 0 <d; <b, where parameter d; is inversely related to A;.
Hence, if firm i advertises more its product is perceived to be more differentiated
relative to that of firm j (i.e., 9d;/0A; < 0).

At the second stage, each firm decides how much to produce. Find the SPNE of
the two-stage game by solving it backwards. In particular, for given A; and A,,
derive the equilibrium quantities of the second stage (q1(A1,A2), q» (A1,A2)).
Afterwards, given the derivation of the second stage, find the equilibrium spending
on advertising. (For simplicity, assume no production costs.)

Answer

Using backwards induction we start at the second stage:

Second Stage Game: For given levels of advertising, every firm i chooses the
output level g; that maximizes its profits, taking the production level of its rival, g;,
as given.
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maxla — bg; — diqld;

Taking first order conditions with respect to g;, we obtain a — 2bg; — d;q; = 0
and solving for g;, we obtain firm i’s best response function: g; (qj) = %")qj.
Plugging firm j’s best response function into firm i’s, we find

a _ digi
_a di(%_ZZ)
~2b 2b

qi

which yields an equilibrium output level of:

% (Zb — d,')a
I i i 5.3
LTERw) (5.3)

First Stage Game: Given the equilibrium output levels, ¢;, found in expression
(5.3) above, we can now move to the first stage game, where every firm inde-
pendently and simultaneously selects an advertisement expenditure, A;, that max-
imizes its profit function.

max [a —bq; — d,»qﬂ q; — A,

where we plug the equilibrium value of g; in the second stage of the game. Taking
first order conditions with respect to A;, we find

dn; Om; OqF om; 0q; on;

dA,‘ B 8q,~ BA,‘ 86]]‘ 8A,‘ 8A,~
~~~ N—— ~~~

0 Indirect  Direct
effect effect

where the first term on the right-hand side is zero since % = 0 because of the

envelope theorem. The third term represents the direct effect that advertising entails
on firm i’s profits (the cost of spending more dollars on advertising). The second
term, however, reflects the indirect (or strategic) effect from advertising, capturing
the fact that a change in a firm’s advertising expenditure affects the equilibrium
production of its rival, g;, which ultimately affects firm i’s profits. Importantly, this
suggest that, for A; to be effective, it must be irreversible and perfectly observable
by its rivals, since otherwise firm i would not be able to affect its rival’s output
decision in the second period game.
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Hence, expanding the above first-order condition, we obtain:

dT[,‘ o 87'[,' (9611* . 811,»
dA, o aqj 8A, BA,

. on; 3611* od,; B
B 6qj 8d1 814,
9q; dd;
= (— iqik) 9 -1
' 0d; 0A;

. . aq: . . . « _ (2b—d))a
where in particular, 77 is found by using the best response function, g; = a8
follows

Og; _ (2b—dj)ad; _  qid;
adi (4b2 — d,‘dj)z (4b2 - dtdj)
Substituting in the above expression, we obtain
dTE,‘ C[EK 'j (?d,
an, ~ (-a) [(41)2 —didy) | 9A;
od; did;
= —qgiqg’ — | —=1=0.
4% 3a, [(4192 - d,-dj)]
Therefore, solving for g—/‘ffi, we find
ad; 4b* —did; 1
_ 7 Ay (5.4)

oA dd;  qiq

Hence, the optimal level of advertising by firm i in the first stage, A;, is the level of
A; such that the advertising effect on firm i’s product solves the above expression.

As a remark, note that if, instead, advertising was selected simultaneously with
output, equilibrium advertising would be determined as follows:

dT[,’ 8d,
— —g0i——1=0
da; ~  iga,

Where now term 0_‘51/» is absent. Intuitively, advertising A; does not affect firm j’s
optimal output level in this case. Solving for g—j';_, we find
od; 1

= — . 5.5
0A; qiq; (33)
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Comparing the right-hand side of expressions (5.4) and (5.5), we can conclude
that a given increase in advertising expenditures produces a larger decrease in d;
6(1,‘

(more product differentiation), i.e. ;- is larger (in absolute value), when firms

determine their level of advertising sequentially (before choosing their output level)
than when they choose it simultaneously with their output level.

Exercise 6—Cournot Oligopoly®

Compute the Cournot equilibrium with N firms when the firms face the inverse

demand function P(Q) = 0 '/% where ¢ > 1, and have identical constant marginal
cost c.

Answer
Every firm i simultaneously and independently chooses its output level g; in order
to maximize profits

max (Q’% — c) qi.

qi

Taking first order conditions with respect to ¢;, we obtain,

1 [P
0 }'—C—EQ ’l" bogi=0.

At a symmetric equilibrium, Q = N - ¢;, and hence ¢; = Q/N. Rearranging the
above first-order conditions,

1 1 1, 0 a1, 0
& — —_ — & —:0@ & — — B - —_ =
¢ sQ N Q 8Q N ¢
1|eN —1
= e =

And solving for Q we find, Q* = [”N &1]22. In the limit when N — oo we obtain

Cé,

Nlim o = (%)I which coincides with the outcome for a perfectly competitive
—00

market. To see this take the demand function P(Q) = Q"¢ and solve for Q,

Q=(P)" =(1/pP)

In a perfectly competitive market it must be true that p(Q) = ¢, hence

0 = (1/c)
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Exercice 7—Commitment in Prices or Quantities?®

This exercise is based on Singh and Vives (1984).” Consider a market that consists
of two firms offering differentiated products. The inverse demand that each firm
faces is:

pi=a—bgi—dg;  0<d<b.

Consider the following two stage game. In the first stage each firm can commit
either to supply a certain quantity g; or to set a price p;. In the second stage, the
remaining variables that were not chosen in the first stage are determined in order to
clear the market (prices, if quantities were chosen in the first stage; or quantities, if
prices were selected in the first stage). Show that a commitment to quantity in the
first stage is a dominant strategy for each firm.

Answer
Operating by backward induction, let us first analyze the second stage of the game.

Second Stage
Part (a) If both firms commit to quantities in the first stage, then firm i’s market

demand is

pi(gi,qj) = a — bq; — dg;.

Part (b) If both firms commit to prices in the first stage, then market demand is
found by solving for ¢; in p;(g;, q;), as follows

_a(b—d) — bp; — dg;
M= b d) (bt d)

Part (¢) If one firm commits to prices, p;, and the other to quantities, g;, then
market demand for firm i is

_ _ a—dqg; —pi
pi:aquiquj*)qi:%
and that for firm j is

__a(b—d) —bp; —dp;
YT —d)bra)

a—dg; _Pi)

Hpj:d—bqj—d< b

%Singh, N., & Vives, X. (1984). “Price and Quantity Competition in a Differentiated Duopoly”.
The Rand Journal of Economics, 15, 4, 546-554.
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First Stage
If both firms commit to quantities, then from the demand function in point (a), we

obtain the Cournot outcome. In particular, taking first order conditions with respect
to g; in

max (a — bg; — dg;)q;
we obtain

a—2bg; —dg; =0

which yields a best response function of g;(g;) = & — £ g;. Simultaneously solving

for g; and g;, we find equilibrium outputs of ¢; = ¢g; = ffﬁf}f, thus entailing
equilibrium profits of 7¢ = (b’fzd)z for every firm i = {1,2}.

If both firms commit to prices, from point (b), we obtain the Bertrand outcome.
In particular, every firm i chooses its price level p; that maximizes

a(b —d) — bp; — dg;
“}fi""”‘( b-d)b+d )

Taking first order conditions with respect to p; yields

a(b —d) — 2bp; — dg;
»_ 2

=0

and solving for p;, we obtain firm i’s price

_a(b—d)—dg;

Di b

The price of firm j, p;, is symmetric. Hence, plugging these results into firm 7’s
(b—d)a?

Bt b—df for every

profit function, we obtain firm i’s equilibrium profits 7% =

firm i = {1, 2}, where n® <n¢ for all parameter values.
From (c), we obtain a hybrid outcome, which can be found by maximizing firm
i’s profits:

B <a—dq,—p,->
maxm; = | ———— | i
Pi b
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Taking first-order conditions with respect to p;, since firm i commits in using prices,
we obtain:

a—d"-—Z"i _
%:0_)1,1.(%): _

qj-

N
NS IEW

Similarly, firm j, which commits to using quantities, maximizes profits

_ a—dg—pi\ |-
—bg, —d| — .
Hg_‘x[a qj < b )}qj

Taking first-order conditions with respect to g;, we find

 fa—2dg —pi . alb—d)+dp;
a—beZj—d<Tj> :OHQj(Pi)ZW

Substituting the expression we found for p; into g;, we have

a—dg;
B _a(b_d)"'d(qu) o 2ab — ad
=T — @) U= a2 32

Plugging the equilibrium quantity of firm j, g;, into p;(g;) =4 —¢

gj, we obtain

qj

——~
_a d{2ab—ad alb—d)(2b+d)
P=373 -

42 — 342 402 — 342

We can now find g; by using the demand function firm i faces, p; = a — bg; — dg;,
and the expressions for p; and g; we found above. In particular,

alb—d)(2b+d) 2ab — ad
PTE Iy R R (T o p v
Di qj

Solving for ¢;, we obtain an equilibrium output of ¢; = %. Hence, the

profits of the firm that committed to prices (firm i) are
_a(b—d)2b+d) alb—d)(2b+d) @ (b—d)*(2b+d)

p = D: . T . -
T; Piqi 4b2 — 342 b(4b2 — 3d2) b(4b2 — 3d2)2
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Similarly, regarding firm j, we can obtain its equilibrium price, p;, by using the
demand function firm j faces, p; = a — bg; — dg;, and the expressions for g; and g;
found above. Specifically,

o [acb=a) a(b—d)2b+d)] _a(b—d)(2b — d)(b+d)
pr=a- {4192 - 3d2] - [ b(4b> — 3d2) ] T b —3d2)

qj qi

Thus, the profits of the firm that commits to quantities (firm j) are

o alb—d)(2b—d)(b+d) 2ab—ad _a*(b—d)(2b—d)(b+d)
NPT T 4 — 3R 42 — 342 b(4h? — 3d2)

Summarizing, the payoff matrix that firms face in the first period game is:

Firm j
Prices Quantities
. B B P o]
Prices T 7 2N &
Firm i T
. P
Quantities ?T,-Q 2 7T ; :’rx.c 7z
— il el 3

If firm j chooses prices (fixing our attention on the left column), firm i’s best
response is to select quantities since niQ > nf given that d > 0 by assumption.
Similarly, if firm j chooses quantities (in the right column), firm i’s best responds
with quantities since n¢ > nf given that d > 0. Since payoffs are symmetric, a
similar argument applies to firm j. Therefore, committing to quantities is a strictly
dominant strategy for both firms, and the unique Nash equilibrium is for both firms

to commit in quantities.

Exercise 8—Fixed Investment as a Pre-Commitment
Strategy®

Consider a market that consists of two firms producing a homogeneous product.
Firms face an inverse demand of p; = a — bg; — dg;. The cost function facing each
firm is given by
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TCi(c;) = F(ci) + ciqi , where F'(¢;)<0,F"(c;) >0.

Hence, the fixed costs of production decline as the unit variable cost increases.
Alternatively, as fixed costs increase, the unit variable costs decline. Consider the
following two-stage game: in the first stage, each firm chooses its technology,
which determines its unit variable cost ¢; (to obtain a lower unit variable cost c¢; the
firm needs to invest in improved automation, which increases the fixed cost F(c;)).
In the second stage, the firms compete as Cournot oligopolists.

Part (a) Find the equilibrium of the two-stage game, and discuss the properties of
the “strategic effect.” Which strategic terminology applies in this case?

Part (b) Assume that F(¢;) = o — f+ O.SC%. Derive the closed form solution of the
equilibrium of the two stage game. What restrictions on parameters o and f are
necessary to support an interior equilibrium?

Answer

Part (a) In the first stage, firm i chooses a level of ¢; that maximizes its profits,
given its equilibrium output in the second stage of the Cournot oligopoly game.
That is,

max 7i(ci, gi(¢i), gj(ci))
Taking first-order conditions with respect to ¢;, we find

dn;  Om; 67r,»% ani%
de;  Oc; dg; Oc; ~ 0qj Oc;
(1) (2) 3)

Let us separately interpret these three terms:

(1) Direct Effect: an increase in c; produces a change in costs of g—’;

(2) This effect is zero since in the second stage ¢;(c;) is chosen in equilibrium (i.e.,
by the envelope theorem).

; Or; 94, .
(3) Strategic Effect. ﬁ_qja_c; can be expressed as:

on Ogy O

0q; 15] i 86‘,’
g q

<0

Intuitively, the strategic effect captures the fact that an increase in c¢; (in the third
component) reduces firm i’s production, which increases firm j’s output, ultimately
reducing firms i’s profits. Hence, the overall strategic effect is negative. Therefore,
the firm seeks to invest in increased automation, for unit variable costs to be lower
than in the absence of competition. Firms, hence, want to become more competitive
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in the second period game, i.e., a “top dog” type of commitment. Let us analyze this
first-order condition in more detail.

Second stage. For a given c; and c; chosen in the first stage, in the second stage firm
i chooses ¢; to maximize the following profits

max m; = (a — bg; — bg; — ci)q; — F(c:)

Taking first order conditions with respect to g; we obtain a — 2bg; — bg; — ¢; = 0,
which yields the best response function g;(g;) = %¢ — 1¢g;, ultimately entailing a
Nash equilibrium output level of g; = % (This is a familiar result in Cournot
duopolies with asymmetric marginal costs.) Hence, first stage equilibrium profits
are

(a —2c¢;+ cj)2
9

T, =

— F(C,‘).

First stage. In the first stage, firm i chooses ¢; to maximize its profits, yielding first
order conditions:

aﬂji 4(61—2C,'+Cj)

=—— " " _Fl(¢;)=0
e, b (<)
and second order conditions:
;8
i I ) <0
oct b (<)

Hence, to guarantee that second order conditions hold, we need F"(c;) > 8/9b.
In addition, to guarantee that firms choose a positive output at the symmetric

8(‘.

! 6‘1162:0

equilibrium, we need that the first order condition satisfies
4 4
—5¢—F'(0) >0, or F'(0) > g2
on

Note that we do not solve for c; in the first order condition 37 since we would not

> (. Hence,

be able to obtain a closed form solution for the best response function c;(c;) of firm
i until we do not have more precise information about the parametric function of F
(c;). We will do that in the next section of the exercise, where we are informed
about the functional form of F(c;).

Assessing Both Effects. To assess the strategic effect, note that in the first stage:

87'6,‘ (97'6,‘ 8n,~ %

a—c,»_ Bc,- + aCj 86,'7
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where m; = (a — bg; — bg; — ¢;)q; — F(c;), implying that the first term (direct
effect) is hence:

aTEi ’
aci ql (Cl)

While the second term (strategic effect) is given by

aﬂi%_ 1

—bg;)— <0
aqjac,- ( q)3b<

Part (b) We now solve the above exercise assuming that the functional relationship
between fixed and variable costs is F(c;) = a — fic;+ 0.56‘[-2. In this context,
F'(¢;) = —f+ci, and F”(c¢;) = 1. Substituting them into the first order condition of
the first stage, yields:

on; 4(a —2¢;i+ cj)

T T
While the second order condition becomes
8271'[ 8
=——1<0.
6cl~2 9b -

Therefore, in order for the second-order condition to hold, we need b > 8/9.
At the symmetric equilibrium ¢; = ¢; = ¢, we thus have

4(a —c)
ST p-c=o0.
b +p—-c
Solving for ¢, we obtain ¢* = 43:3?. Hence, we need —F’(0) > ;‘—Z, ie, f> g—‘b’ to

guarantee an interior solution ¢* > 0.

Exercise 9—Entry Deterring Investment®

Consider an industry with two firms, each firm i = {1,2} with demand function
qi=1—2p;+p;. Firm 2’s (the entrant’s) marginal cost is 0. Firm 1’s (the
incumbent’s) marginal cost is initially %2. By investing I = 0.205, the incumbent
can buy a new technology and reduces its marginal cost to 0 as well.

Part (a) Consider the following time structure: The incumbent chooses whether to
invest, then the entrant observes the incumbent’s investment decision; and subse-
quently the firms compete in prices. Show that in the subgame perfect equilibrium
the incumbent does not invest.
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Part (b) Show that if the investment decision is not observed by the entrant, the
incumbent’s investing becomes part of the SPNE. Comment.

Answer

Part (a) Second period. Recall that in the first period the incumbent decides to
invest/not invest, while in the second period firms compete in a Bertrand duopoly.
Operating by backward induction, let us next separately analyze firms’ pricing
decisions (during the second stage) in each of the two possible investment profiles
that emerge from the first period (either the incumbent invests, or it does not).
The Incumbent Invests. In this setting, both firms’ costs are zero, i.e., ¢c; = ¢, = 0.
Then, each firm i # j chooses the price p; that maximizes

max (1 =2pi+p))pi-

Taking first order conditions with respect to p;, we have 1 —4p;+p; =0.

Solving for p;, we obtain the firm i’s best response function p;(p;) = IZp .. (Note
that second order conditions also hold, since they are —4 <0, guarantee that such a
price level maximizes firm i’s profit function.)

By symmetry, firm j’s best response function is p;(p;) = # . Plugging p;(p;)

14p
. . i} , s .
into p;(p;), we obtain p; = —*— = 51L6P and thus equilibrium prices are p; = § and

pji= % These prices yield equilibrium profits of:

1 2 1 2
§(l_§+§> =9 for every firm i

Nonetheless, the profits that the incumbent earns after including the investment
in the cost-reducing technology are

= g —0.205 = 0.017.

The Incumbent does not Invest. In this case, the incumbent’s costs are higher than
the entrant’s, i.e., ¢ :% and ¢, = 0. First, the incumbent’s profit maximization
problem is

max (1 —2p1 +p2)(p1 — 0.5) = p1 — 2p +pap1 — 0.5+ p; — 0.5p,

Taking the first order conditions with respect to p;, we find

1—dpi+pr+1=0.
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And solving for p;, we obtain firm 1’s (the incumbent’s) best response function

2+po

pi(p2) = y)

(A)
Second, the entrant’s profit-maximization problem is

max (1 =2p2+p1)p2.

Taking first order conditions with respect to p,,
1 —4p,+p; =0.
And solving for p,, we find firm 2’s (the entrant’s) best response function

palp) =2 (®)

Solving simultaneously for (p;,p,) in expressions (A) and (B), we obtain the
equilibrium price for the incumbent

248 94, 3

7 T

P1

And the equilibrium price for the entrant

Entailing associated profits of

3 2\/3 1
= <1 — 2=+ —) ( ) = 0.02 for the incumbent

5'5)\5 2
2 3\2
Ty = (1 —2-5 + 5)520.32 for the entrant.

First stage. After analyzing the second stage of the game, we next examine the first
stage, whereby the incumbent must decide whether or not to invest in cost-reducing
technologies. In particular, the incumbent decides not to invest in cost-reducing
technologies since its profits when it does not invest, 0.02, are larger than when it
does, 0.017. Intuitively, the incumbent prefers to compete with a more efficient
entrant than having to incur a large investment cost in order to achieve the same
cost efficiency as the entrant, i.e., the investment is too costly.
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Part (b) Now the entrant only chooses a single price p,, i.e., a price that is not
conditional on whether the incumbent invested or not. We know from part (a) that
the entrant’s best response is to set a price:

ey

()]

_ [ 1 If the incumbent chooses Invest
P2=12 If the incumbent chooses Not Invest

If p = %, then the incumbent profits depends on whether it invests or not.
After investment, the incumbent maximizes:

1
max (1 —2p1 + §>p1

P1

Taking first order conditions with respect to p;, we find 1 — 4p, + % =0, and
solving for p; we obtain p; = % Hence the incumbent’s profits in this case are

2 1\ 1
=(1-2+4-)--0.205=0.017.
m ( 3+3>3 0.205 = 0.017

After no investment, the incumbent maximizes

1 1
1—2p+ = -=
m}z}lx ( p1 + 3) <p1 2)

Taking first order conditions with respect to p;, we find 1 — 4p; + % +1=0,
and solving for p; we obtain p; = 17—2 Therefore the incumbent’s profits are

14 1\/7 1
(124 2)(L-2)=0014.
& ( 12+3><12 2) 00

As a consequence, )" > qifomest if py =1

If pp = %, then the Incumbent profits are different from above. In particular
upon investment, the incumbent maximizes

2
max (1 —2p1 + §>p1

P1
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Taking first order conditions with respect to p;, we find 1 —4p, + % =0, and
solving for p; we obtain p; = 27—0. Thus, the incumbent’s profits are

14 2\ 7
— (1242} L 0205=0.04.
m ( 20+5)20

Upon no investment, the incumbent maximizes

2 1
1+2 - —=.
max (142914 2) (1 -3)

Taking first order conditions with respect to p;, we find 1 —4p, + % +1=0,
and solving for p; we obtain p; = %, thus yielding profits of

6 2\/3 1

Therefore, 7 > gfotmest jf p, =2

Hence, incumbent invests in pure strategies, both when p, = z and when p, = %,

1
3
and the unique SPNE of the entry game is (Invest, p; = p, = %).

Exercise 10—Direct Sales or Using A Retailer?©

Assume two firms competing in prices where the demand that firm i faces is given
by

qi =1—2p;+p;j forevery firm i,j =1,2 and j # i

There are no costs of production. Each firm has the option between selling the
product directly to the consumers, or contracting with a retailer that will sell the
product of the firm. If a firm contracts with the retailer, the contract is a franchise
fee contract specifying: (a) the wholesale price (p')) of each unit of the product that
is transferred between the firm and the retailer; and (b) the fixed franchise fee (F;)
for the right to sell the product.

The game proceeds in the following two stages: At the first stage, each firm
decides whether to contract with a retailer or to sell the product directly to the
consumers. The firm that sells through a retailer, signs the contract at this stage. At
the second stage, the firm or its retailer sets the retail price (p;) for the product.

Solve for the equilibrium of this two stage game. How does it compare with the
regular Bertrand equilibrium? Explain.
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Answer
Let us separately find which are the firm’s profits in each of the possible selling
profiles that can arise in the second stage of the game: (1) both firms sell directly
their good to consumers; (2) both sell their product through retailers; and (3) only
one firm i sells the product through a retailer. We will afterwards compare firms’
profits in each case.

Both Firms Sell Directly to Consumers: Then every firm i selects a price p; that
solves

max (1 = 2pi+p))pi

Taking first order conditions with respect to p;, 1 — 4p; + p; = 0, and solving for

pi, we obtain p; (p;) = 1:”-". Similarly for firm j and p;, where firm j’s best response
function is p;(p;) = 2.

price p; = %, with associated profits of

NI
= 373)/379

Both Firms Use Retailers: Let us first analyze the retailer’s profit-maximization
problem, where it chooses a price p; for the product, but has to pay a franchise fee
F; to firm i in order to become a franchisee, and a wholesale price p’ to firm i for
every unit sold.

Plugging p;(p;) into p;(p;), we obtain the equilibrium

max (1 —2p;+p;)(pi — P!,) — Fi

Intuitively, p; — p', denotes the margin that the retailer makes per unit when it
sells the product of firm i. Taking first order conditions with respect to p;,
1 —4p;+p;+ 2pl =0, and solving for p;, we obtain the retailer’s best response

. - 1+p+2pi,
function, p;(p.,,p;) = P

By symmetry, the franchisee of firm j has a similar best-response function, i.e.,
pi(p},;pi)- Hence, plugging p;(pj,pi) into pi(p,,,p;). we find p;(p},,p;) =

. J
1+ zp{u + <l Ap‘: 21’w>
—— - and solving for p;, we obtain the optimal price that the franchisee
of firm i (retailer) charges for its products to customers

5+8p +2p)
i :% for every firm i = {1,2} and j # i



176 5 Applications to Industrial Organization

Let us now study the firm’s decision of what wholesale price to charge to the
franchisee, piv, and what franchisee fee to charge, F;, in order to maximize its
profits. In particular, firm i solves:

max p, q; + F;
Py Fi

And given that F; = (p; — pi)g; (no profits for the retailer), then firm i’s
profit-maximization problem can be simplified to

max pl.qi +pigi = P4
Py
(which contains a single choice variable, p). Taking first-order conditions with
respect to pi,

87’[,‘ (9[7,' aﬁi% o
dpi dpi, ~ Op; dpi,

In addition, since firm i acts before the franchisee, it can anticipate the latter’s

. . 5+8pl +2pl, L .
behavior, who charges a price of p; = %. This simplifies our above first

order condition to (1 —4p;+p;) % +p,-% =0, or 8 —30p;+8p; =0. By sym-
metry 8 — 30p; + 8p; = 0 for firm j, which allows us to simultaneously solve both
equations for p;, obtaining p; =+ for all i = {1,2}.
As a consequence, sales of every good at these prices are
4 4 7

=1-2.— =",
1 THIETERET!

And the associated profits that firm i obtains from selling goods through a
franchisee are

= =—~0.231.

4 7 28
11 11 121

Only one Firm Uses Retailers: If firm j sells directly to customers, it sets a price
p; to maximize

mgx pj(l — ij+p,')

Taking first order conditions with respect to p;, we obtain 1 —4p;+p; =0,

which yields firm j’s best response function p;(p;) = #.
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If instead firm i uses a retailer, then the retailer’s profit-maximization problem is
m[?X (1 — 2171 —|—p])(p, _piv) — F,'

Taking first order conditions with respect to p; (the only choice variable for the

retailer), we obtain 1 — 4p; + p; 4+ 2p!, = 0, which yields p;(p;, p,) = %

Combining firm j’s best response function and the retailer’s best response
function, we find equilibrium prices of

14 Lt 5+ 2p,
pj=———(f P =", and

Ly 22 ol 58l
pi= . —pi="

We can now move to firm i’s profit-maximization problem (recall that firm i uses
a franchisee),

max p' g +F;
PoFi

And since F; = (p; — p',)q:, the profit maximization problem becomes
max piqi + pigi — plgi
Py

Taking first order conditions with respect to the wholesale price that firm
i charges to the franchisee, p{v, we obtain

87‘5,‘ 8p,‘ 87‘5,‘ (‘)pj -
dpi dp, ~ Op; Opi,

That is,

2
+pi—-=

8
(1=4pi+p)) {5 TPigs

15

And solving for p; yields

4 4
—p;, for all i = {1,2}.

AETRET
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. 8
Since p; = +5”“ and p

sion becomes

5+ I’w

from our above results, the previous expres-

S+8pl, 4442
15 15

And solving for the wholesale price, p!, we obtain p}, = :>5. Therefore, the
selling prices are

54835 S 54235 19
i =—— 12—~ andp, =—— 12—
P 15 12 " 15 56

while the amounts sold by each firm are

5 19\ 5 19 5\ 19
i=(1-2-—4+—=|=-andg=(1-2-—+ — ) ==,
1 < i 56> g e < 56 14) 28

and their associated profits are m; =3 - 5 = 25~ 0.22 and m; = L2 - 12 = 8L ~ 0.23.

Let us summarize the profits firms earn in each of the previous three cases with
the following normal-form game.

Firm j

Use Retailer Sell Directly

Firm i Use Retailer | 28/121, 28/121 [25/121, 361/1568

Sell Directly  |361/1568,25/121 2/9, 2/9

If firm j uses a retailer (in the left column), firm i’s best response is to also use a
retailer; while if firm j sells directly (in the right-hand column), firm i’s best
response is to use a retailer. Hence, using a retailer is a strictly dominant strategy for
firm i, i.e., it prefers to use a retailer regardless of firm j’s decision. Since firm j’s
payoffs are symmetric, the unique Nash equilibrium of the game has both firms
using a retailer.

Interestingly, in this equilibrium both ﬁrrns obtain higher profits franchising their

sales (using a retailer), i.e., m; = m; = m ~ 0. 231 than when they do not use a

retailer (in which case their profits are ©; = m; = § = 0.22).
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Exercise 11—Profitable and Unprofitable Mergers®

Consider an industry with n identical firms competing a la Cournot. Suppose that
the inverse demand function is P(Q) = a — bQ, where Q is total industry output,
and a, b > 0. Each firm has a marginal costs, ¢, where ¢ < a, and no fixed costs.

Part (a) No merger. Find the equilibrium output that each firm produces at the
symmetric Cournot equilibrium. What is the aggregate output and the equilibrium
price? What are the profits that every firm obtains in the Cournot equilibrium? What
is the equilibrium social welfare?

Part (b) Merger. Now let m out of n firms merge. Show that the merger is prof-
itable if and only if it involves a sufficiently large number of firms.

Part (c) Are the profits of the nonmerged firms larger when m of their competitors
merge than when they do not?

Part (d) Show that the merger reduces consumer welfare.

Answer

Part (a) At the symmetric equilibrium with n firms, we have that each firm 7 solves

max(a — bQ_; — bq;)q; — cq;
qi

where Q_; = > g; denotes the aggregate production of all other j # i firms. Taking
J#i
first-order conditions with respect to g;, we obtain

a—bQ_; —2bqg; —c=0.

And at the symmetric equilibrium Q_; = (n — 1)g;. Hence, the above first order
conditions become a — b(n — 1)qF — 2bgt —c =0ora — ¢ = b(n+ 1)g}. Solving
for ¢, we find that the individual output level in equilibrium is

. a—c

% :(n—&—l)b'

Hence, aggregate output in equilibrium is Q* = ng} = @ il)%; while the

equilibrium price is

a—=c¢ a—cn

n
pr=asbO =a- by =

And equilibrium profits that every firm i obtains are

(a—c)*

7'[%: *—c *: .
i =@ - g (i 1%
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Fig. 5.14 Profitable mergers n A .
satisfy n<m + /m — 1 45° —line, n=m

// n=m+\/%—l

»
»

m, merged firms

Y
The level of social welfare with n firms, W, is defined by W, = [[a — bQ|dQ — cQ.
0

Calculating the integral, we obtain aQ — (4)(Q?) — cQ. Substituting for Q0 = S

yields

W, — nn+2)(a —20)2 .
2n(n+1)

Part (b) Assume that m out of n firms merge. While before the merger there are
n firms in this industry, after the merger there are n — m + 1. [For instance, if n = 10
and m =7, the industry now has n —m + 1 =4 firms, i.e., 3 nonmerged firms and the
merged firm.] In order to examine whether the merger is profitable for the m merged
firms, we need to show that the profit after the merger, m,_, ., satisfies
Tp—m+1 = My,

(@—c  (a=c)

(n—m=+2)? " (n+1)

Solving for n, we obtain that n<m++/m — 1, as depicted in the (n,m)-pairs
below the line m + /m — 1 in Fig. 5.14.

And note that this condition is compatible with the fact that the merger must
involve a subset of all firms, i.e., m <mn; as depicted in the points below the
45-degree line. For instance, in an industry with n = 100 firms, the condition we
found determines that this merger is only profitable if at least 89 firms merge. This
result is due to Salant, Switzer and Reynolds (1983) and, since the function
m+ +/m — 1 can be approximated by a straight line with a slope of 0.8, it is usually
referred as the “80 % rule,” intuitively indicating that the market share of the
merged firms must be at least 80 % for their merger to be profitable.

Part (c) The output produced by the merged firms decreases (relative to their output
before the merger), implying that each of the nonmerged firms earns larger profits
after the merger because of 7,_,, 1 > 7m,. This condition holds for mergers of any
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size, i.e., both when condition n<m++/m — 1 holds and otherwise. This sur-
prising result is often referred to as the “merger paradox.”

Part (d) Since the equilibrium price p* is decreasing in n, and the merger reduces
the number of firms in the industry, it increases the equilibrium price. Similarly,
since W, is increasing in n, equilibrium social welfare is reduced as a consequence
of the merger.



Introduction

In this chapter we explore agents’ incentives to cooperate when they interact in
infinite repetitions of a stage game, such as the Prisoner’s Dilemma game or the
Cournot oligopoly game. Repeated interactions between the same group of indi-
viduals, or repeated competition between the same group of firms in a given
industry, are fairly common. As a consequence, this chapter analysis helps at
characterizing strategic behavior in several real-life settings in which agents expect
to interact with one another for several time periods. In these settings, we evaluate:

1. the discounted stream of payoffs that agents can obtain if they recurrently
cooperate;

2. how to find a player’s optimal deviation, and the associated payoff that he would
obtain from deviating; and

3. under which conditions the payoff in (1) is larger than the payoff in (2) thus
motivating players to cooperate.

We accompany our discussion with several figures in order to highlight the
trade-off between the current benefits that players obtain from deviating versus the
future losses they would sustain if they deviate today (i.e., the cooperative profits
that a firm gives up if it breaks the cooperative agreement today). To emphasize
these intuitions, we explore the case in which punishments from cooperation last
two, three, or infinite periods. We then apply this framework to study firms’
incentives to cooperate in a cartel: first, when the industry consists of only two
firms; and second, extend it to settings with more than two firms competing in either
quantities or prices, with perfect or imperfect monitoring technologies (i.e., when

The original version of the chapter was revised: The erratum to the chapter is available at:
10.1007/978-3-319-32963-5_11
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competing firms can immediately detect a defection from other cartel participants
or, instead, need a few periods before noticing such defection). For completeness,
we also investigate equilibrium behavior in repeated games where players can
choose among three possible strategies in the stage game, which allows for richer
deviation profiles. We then apply our analysis to bargaining games among three
players, and study how equilibrium offers are affected by players’ time preferences.

We end the chapter with exercises explaining how to graphically represent the set
of feasible payoffs in infinitely repeated games, and how to further restrict such area
to payoffs which are also individually rational for all players. This graphical rep-
resentation of feasible and individually rational payoffs helps us present the so-called
“Folk theorem”, as we next describe.

Folk Theorem. For every Nash equilibrium in the unrepeated version of the

game with expected payoff vector v = (vy,V,,...,Vy), where v; € R, there is a
sufficiently high discount factor § > 9, where & € [0, 1] for which any feasible and
individually rational payoff vector v = (vi,vs,...,vy) can be sustained as the

SPNE of the infinitely repeated version of the game.

Intuitively, if players care enough about their future payoffs (high discount
factor), they can identify an equilibrium strategy profile in the infinitely repeated
game that provides them with higher average per-period payoff than the payoff they
obtain in the Nash equilibrium of the unrepeated version of the game.

Exercise 1—Infinitely Repeated Prisoner’s Dilemma Game®

Consider the infinitely repeated version of the following prisoner’s dilemma game,
where C denotes confess and NC represents not confess (Table 6.1):

Part (a) Can players support the cooperative outcome (NC, NC) as a SPNE by
using tit-for-tat strategies, whereby players punish deviations from NC in a past
period by reverting to the stage-game Nash equilibrium where they both confess (C,
C) for just one period, and then returning to cooperation?

Part (b) Consider now that players play tit-for-tat, but reverting to the stage-game
Nash equilibrium where they both confess (C, C) for two periods, and then players
return to cooperation. Can the cooperative outcome (NC, NC) be supported as a
SPNE?

Table 6.1 Prisoner’s dilemma game

Player 1

NC 0,6 3,3
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Part (c) Suppose that players use strategies that punish deviation from cooperation
by reverting to the stage-game Nash equilibrium for ten periods before returning to
cooperation. Compute the threshold discount factor, d, above which cooperation
can be sustained as a SPNE of the infinitely repeated game.

Answer

Part (a) At any period 7, when cooperating in the (NC, NC) outcome, every player
i = {1, 2} obtains a payoff stream of:

3430435+ -

where ¢ is the discount factor. If, instead, player i deviates to C, he obtains a
payoff of 6 today. However, in the following period, he is punished by the (C, C)
outcome, which yields a payoff of 2, and then both players return to the competitive
outcome (NC, NC), which yields a payoff of 3. Hence, the payoff stream that a
deviating player obtains is:

2
6 + 26, + 36+

gain punishment back to cooperation

As a remark, note that once player j # i detects that player i is defecting (i.e.,
playing NC), he finds that NC is a best response to player i playing NC. Hence, the
punishment is credible, since player j has incentives to select NC, thus giving rise to
the (NC, NC) outcome.

Hence, cooperation can be sustained if:

34304387+ - >6+20+30+ -
and rearranging,
30-20>6-3

which yields ¢ >3, a condition that cannot hold since delta must satisfy ¢ € [0, 1].
Hence, no cooperation can be sustained with temporary reversion to the Nash
Equilibrium of the stage game for only one period. Intuitively, the punishment for
deviating is too small to induce players to stick to cooperation over time. Figure 6.1
represents the stream of payoffs that a given player obtains by cooperating, and
compares it with his stream of payoffs from cheating. Graphically, the instantaneous
gain the cheating player obtains today, 6 — 3 = 3, offsets the future loss he would
suffer from being punished during only one period tomorrow, 3 — 2 = 1.
Part (b) At any period ¢, when cooperating by choosing NC, players get the same
payoff stream we identified in part (a):

343043024358+ -

If, instead, a player i = {1, 2} defects to confess, C, he will now suffer a
punishment during two periods, thus yielding a payoff stream of:
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Fig. 6.1 Payoff stream when
defection is punished for one
period 61

Payoff from cheating

Payoff

Payoff from
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25 + 2587 St
6 +20+25 + 30+

gain punishment back to cooperation

Hence, cooperation can be sustained if:
34304382430+ - >64+204+20+35+ ---
and rearranging,

34+35436>>6+20+25°
¥ +5-3>0

Solving for 6 we have:

2x1 2

s_1EVIH(EXTx3) —1+£V13

which yields,
01 =-23<0 and 6,=13>1

Indeed, depicting 0> +0 — 3 =0, we can see that the function lies in the negative
quadrant, for all ¢ € [0, 1], as Fig. 6.2 illustrates. Hence, F+6-3 >0 cannot be
satisfied for any ¢ € [0, 1].

Therefore, cooperation cannot be supported in this case either, when we use a
temporary punishment of only two periods. Graphically, the instantaneous gain
from cheating (which increases a player’s payoff from 3 to 6 in Fig. 6.3) still offsets
the future loss from being punished, since the punishment only lasts for two
periods.

Part (c) At any period ¢, when a player i = {1, 2} chooses to cooperate, choosing
NC, while his opponent cooperates, his payoff stream becomes:
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Fig. 6.2 Function 6>+ — 3 o, Discount factor
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If instead, player i deviates, he obtains a payoff of 6 today, but he is subsequently
punished for 10 periods, obtaining a payoff of only 2 in each period, before
returning to the cooperation, where his payoff is 3. Hence, his payoff stream is:

64+204+28"+28% - +26"0 435" + ...
Hence, cooperation can be sustained if:

3436435430+ - +300436" + ... >64+204+25° 426 +26"0 435" + ...

Rearranging:

(3-2)0+(3-2)+3-2)0+ - +(3-2)">6-3
0+ +8+---4+069>3
S(140+8+ - +8)>3

Fig. 6.3 Payoff stream when Payoff Payoff from cheating
defection is punished for two
periods g
Payoff from
/ cooperating
3 ____________________

LOSS

| |
. I . I . I . f time
Period ¢ Period r+1 Period +2 Period ++3
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After discarding all solutions of J that are negative or larger than 1, we get:
0>0.76

Hence, a long punishment of ten periods allows players to sustain cooperation if
they assign a sufficiently high importance to future payoffs, i.e., J is close to 1.

Exercise 2—Collusion when firms compete in quantities®
Consider two firms competing as Cournot oligopolists in a market with demand:

r(q1,92) = a—bq) — bqy

Both firms have total costs, TC(q;) = c¢g; where ¢ > 0 is the marginal cost of
production, and a > c.

Part (a) Considering that firms only interact once (playing an unrepeated Cournot
game), find the equilibrium output, the market price, and the equilibrium profits for
every firm.

Part (b) Now assume that they could form a cartel. Which is the output that every
firm should produce in order to maximize the profits of the cartel? Find the market
price, and profits of every firm. Are their profits higher when they form a cartel than
when they compete as Cournot oligopolists?

Part (c) Can the cartel agreement be supported as the (cooperative) outcome of the
infinitely repeated game?

Answer

Part (a) Firm 1 chooses ¢; to maximize its profits

max 7y = (a = bg1 — bg2)q1 — cq.
1

= aq1 — bqi — bgrq1 — cqu
Taking first order conditions with respect to ¢; we find:

0
ﬂ:aqulquzfc:o
dq1

and solving for ¢; we find firm 1’s best response function

a—c 1

2w 2P

q1(q2) =
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We can obtain a similar expression for firm 2’s best response function, g»(q,),
since firms are symmetric

( )7a—cil
q2\91) = 2D 241

Plugging ¢>(q1) into g1(g2), we can find firm 1’s equilibrium output:

_a-—c l/a—c 1 N _a—c+l
D=5, T\ 21 ) TN Ty T g?

a—c¢

= q1 :7317

and similarly, firm 2’s equilibrium output is

a—c l(a—C)_a—c_a—c a—c
- 2b 6b 3b

2= "2\ 3 B

Therefore, the market price is

p(q1,q2) =a—bqr —bgy = a — b<a3_bc) _b(a3_bc)

_3a—a+c—a—|—c_a+2c
- 3 3

and the equilibrium profits of every firm i = {1, 2} are

cournot cournot

M = 1" = plq, q2) X gi — ¢ X gi
a+2c (a—C) (a—C) (a—c)?
= — C =
3 3b 3b 9b
Part (b) Since the cartel seeks to maximize the firms’ joint profits, they simulta-
neously choose g; and ¢, that solve

rqnz;x m + 71 = (a—bgy — bgx)q1 — cq1 + (a — bgy — bga)qz — cq2
1,92

which simplifies to

I;II}Z}])Z((CZ —bq1 — bq2)(q1 +q2) — c(q1 +q2)

Notice, however, that this profits maximization problem can be further simplified to

max(a — bQ)Q ~ ¢Q
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since 0 = q + ¢». This maximization problem coincides with that of a regular
monopolist. In other words, the overall production of the cartel of two firms which
are symmetric in costs coincides with that of a standard monopoly. Indeed, taking
first order conditions with respect to Q, we obtain

a—2bQ —c<0
Solving for Q, we find Q = %<, which is an interior solution given that a > ¢ by
definition. Therefore, each firm’s output in the cartel is

a—c
_ 2 _94"¢
= 4b

and the market price is:

a—C)ia—i—c

p:“*bQ:“*b(zb 2

Therefore, each firm’s profit in the cartel is:

m = pay — TC(q1) = (449) (%) — (%) = 55"

2

cartel __ _cartel __ (a—C¢)
T =T, =3

)2 )
Comparing the profits that every firm earns in the cartel, (“gb‘) , against those

2
under Cournot competition, <“;,f) , we can thus conclude that both firms have

incentive to collude in the cartel for all parameter values.

n?artel _ T[gartel > nioumut _ ngournot
Part (c) Cooperation: If at any period t, a given firm i cooperates producing the
cartel output, while all other firms produce the cartel output as well, its profit is

2
(“glf L Asa consequence, the discounted sum of the infinite stream of profits from

cooperating in the cartel is

(a—c)2+5(a—c)2+52(a—c)2+.”: | (a—c)z-

8b 8b 8b 1-6 8b

(Recall that 1 46+ 6%+ & + -+ can be simplified to 115.)

Deviation: Since firms are symmetric, we only consider one of the firms (firm 1). In
particular, we need to find the optimal deviation that, conditional on firm 2
choosing the cartel output, maximizes firm 1’s profits. That is, which is the output
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that maximizes firm 1’s profits from deviating? Since firm 2 sticks to cooperation
(i.e., produces the cartel output g, = %“ , if firm 1 seeks to maximize its current
profits, we only need to plug g, = ;¢ into firm 1’s best response function, ¢1(¢2) =

T %qz, as follows

T2 2 4b  8b

dev (a—C) a—c la—c 3(a—c)
KRN

This result provides us with firm 1’s optimal deviation, given that firm 2 is still
respecting the cartel agreement. In this context, firm 1’s profit is

=559 (255)
=3 (a ; C) (3(08; C)> - 9(06;;)2
while that of firm 2 is
m= oo (M5 7) (%) | (%)
(5 ) "

Hence, firm 1 has incentives to unilaterally deviate since its current profits are
larger by deviating than by cooperating. That is,

2 2
7_queviate — 9(“ _ C) > ,n:cartel _ (a B C)

64b ! 8b

Incentives to cooperate: We can now compare the profits that firms obtain from
cooperating in the cartel agreement against those from choosing an optimal devi-
ation plus the profits they would obtain from being punished thereafter (discounted
profits in the Cournot oligopoly). In particular, for cooperation to be sustained we
need

Solving for ¢ in this inequality, we obtain

SR
8(1—0) ~ 64  9(1—0)
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which yields

9
5 _
~ 17

Hence, firms need to assign a sufficiently high importance to future payoffs,
d € (&,1), for the cartel agreement to be sustained.

Credible punishments: Finally, notice that firm 2 has incentives to carry out the
punishment. Indeed, if it doesn’t revert to the Nash equilibrium of the stage game

3(a—c)?
326

while firm 2 produces the

since

(producing the Cournot equilibrium output), firm 2 obtains profits of

firm 1 keeps producing its optimal deviation g%’ = W <)

Cartel

cartel output g; = 43¢ If, instead, firm 2 practices the punlshment producing the

Cournot output %, its profits are (a %) , which exceed e 32h for all parameter values.

Hence, upon observing that firm 1 deviates, firm 2 prefers to revert to the production
of its Cournot output level than being the only firm that produces the cartel output.

Exercise 3—Collusion when N firms compete in quantities®

Consider n firms producing homogenous goods and choosing quantities in each
period for an infinite number of periods. Demand in the industry is given by
p=1—0, O being the sum of individual outputs. All firms in the industry are
identical: they have the same constant marginal costs ¢ < 1, and the same discount
factor J. Consider the following trigger strategy:

e Each firm sets the output g™ that maximizes joint profits at the beginning of the
game, and continues to do so unless one or more firms deviate.

e After a deviation, each firm sets the quantity g, which is the Nash equilibrium of
the unrepeated Cournot game.

Part (a) Find the condition on the discount factor that allows for collusion to be
sustained in this industry.

Part (b) Indicate whether a larger number of firms in the industry facilitates or
hinders the possibility of reaching a collusive outcome.

Answer

Part (a) Cooperation: First, we need to find the quantities that maximize joint
profits 7 = (1 — Q)0 — ¢Q. This output level coincides with that under monopoly,
ie., O =55 yielding aggregate profits of

_ 1_l—c 1—c_C1—c:(1—c)2
2 2 2 4
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for the cartel. Therefore, at the symmetric equilibrium, individual quantities are

2
¢" =10 = 11=¢and individual profits under the collusive strategy are n” = (1;;) :

Deviation: As for the deviation profits, the optimal deviation by firm i, g™, is given
by solving

q'(¢") = argmax,[1 — (n — 1)¢" — g — clq.

Intuitively, the above expression represents that firm 7 selects the output level that
maximizes its profits given that all other (n — 1) firms are still respecting the
collusive agreement, thus producing ¢”. In particular, the value of ¢ that maximizes
the above expression is obtained through the first order conditions:

l—(n—1)¢"—2g—¢c]=0

l—(n—l)(llgc>—2q—c=o

n
which, solving for ¢, yields,

(I-c¢)
4n

q' = (n+1)

The profits that a firm obtains by deviating from the collusive output are hence

nl=[1—(n—1)g" - q"(¢")] x ¢"(¢") — ¢ x ¢*(q")

_ {1_(,1_1)(%1;C> —(n+1)1;lc}(n+l)%—c(”+l)l4_n )

(1—c)*(n+1)*

. . . d _
which simplifies to n¢ = T

Incentives to collude: Given the above profits from colluding and from deviating,
every firm i chooses to collude as long as

7" > 4 0 n¢
1- - 1-90
which, solving for d, yields
m d
-7
o< —
- ¢ — T[d

and multiplying both sides by —1, we obtain

d m
T —T
o>

TCd — 7c
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Fig. 6.4 Critical threshold of Region of & for which
o°(n) 5 collusion can be sustained.
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Intuitively, the numerator represents the profit gain that a firm experiences when it
unilaterally deviates from the cartel agreement, 7¢ — 7. When such profit gain
increases, cartel becomes more difficult to sustain, i.e., it is only supported for
higher discount factors. Plugging the expressions of profits 7, 7, and ¢ we
previously found, yields a cutoff discount factor of

(1+n)2
14+ 6n+n?

For compactness, we denote this ratio as

(L+n)® _ o
1+6n+nz

Hence, under punishment strategies that involve a reversion to Cournot equilibrium
forever after a deviation takes place, tacit collusion arises if and only if firms are
sufficiently patient. Figure 6.4 depicts cutoff 6, as a function of the number of
firms, n, and shades the region of ¢ that exceeds such a cutoff.

Differentiating the critical threshold of the discount factor, §, with respect to the
number of firms, n, we find that

09 4(n* —1

on  (14+6n+n?)
Intuition: Other things being equal, as the number of firms in the agreement
increases, the more difficult it is to reach and sustain collusion in the cartel

agreement, i.e., as the market becomes less concentrated collusion becomes less
likely.
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Exercise 4—Collusion when N firms compete in prices®

Consider a homogenous industry where n firms produce at zero cost and play the

Bertrand game of price competition for an infinite number of periods. Assume that:

e When firms choose the same price, they earn a per-period profit n(p) = pu qu” )
where parameter o represents the state of demand.

e When a firm i charges a price of p; lower than the price of all of the other firms,
it earns a profit n(p;) = p;aD(p;), and all of the other firms obtain zero profits.

Imagine that in the current period demand is characterized by o = 1, but starting
from the following period demand will be characterized by o = 0 in each of the
following periods. All the players know exactly the evolution of the demand state at
the beginning of the game, and firms have the same common discount factor, J.

Assume that 0 > 1 and consider the following trigger strategies. Each firm plays
the monopoly price p,, in the first period of the game, and continues to charge such
a price until a profit equal to zero is observed. When this occurs, each firm charges a
price equal to zero forever. Under which conditions does this trigger strategy
represent a SPNE? [Hint: In particular, show how 6 and n affects such a condition,
and give an economic intuition for this result.]

Answer

Cooperation: Let us denote the collusive price by p° € (¢, p,]. At time ¢ =0,
parameter o takes the value of o« = 1, whereas at any subsequent time period
t = {1,2,...}, parameter o becomes o = . Hence, by colluding, firm i obtains a
discounted stream of profits of

@M@%ﬂwz ) (p)

+ 60
:M(1+50+529+539+~-)
n

Deviation: When deviating, firm i charges a price marginally lower than the
collusive price p¢ and captures all the market, thus obtaining a profit of 7(p°).
However, after that deviation, all firms revert to the Nash equilibrium of the
unrepeated Bertrand game, which yields a profit of zero thereafter. Therefore, the
payoff stream from deviating is 7(p°) + 0+ 50+ - - - = n(pc).

Incentives to collude: Hence, every firm i colludes as long as

”(1’)(1+59+529+539+ ) > n(po),

rearranging, we obtain

14+00+6*0+0*0+ --->n
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Fig. 6.5 Critical threshold s (d,n)-pairs for which collusion can be sustained.
3(n,0) b
v

08 5(n,1.2)

0.6
041

021

e )

10 20 30 40 50

n, number of firms

\

14+60(1+8%0+ 50+ --)>n

—_— >
l—|—501_5 n

or equlvalently, 0> For compactness, we hereafter denote the previous ratio

1 + 0
as + g = 5(n 0). Flgure 6.5 depicts this critical threshold of the discount factor,
evaluated at 0 = 1.2, i.e., demand increases 20 % after the first year.

Comparative statics: We can next examine how the critical discount factor S(n, 0)
is affected by changes in demand, 6, and in the number of firms, n. In particular,

09(n, 0) _ —(n—1) _ <0, whereas 0d(n, 0) _ 0 i
00 (n—1+0) on (n—1+0)

> 0.

In words, the higher the increments in demand, 6, the higher the present value of
the stream of profits received from ¢ = 1 onwards. That is, the opportunity cost of
deviation increases as demand becomes stronger. Graphically, the critical discount
factor 5(117 0) shifts downwards, thus expanding the region of (J, n)-pairs for which
collusion can be sustained. Figure 6.6 provides an example of this comparative
statics result, whereby 0 is evaluated at 6 = 1.2 and at 6 = 1.8. On the other hand,
when n increases, the collusion is more difficult to sustain in equilibrium. That is,
the region of (9, n)-pairs for which collusion can be sustained shrinks as n in-
creases; as depicted by rightward movements in Fig. 6.6.
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Fig. 6.6 Cutoff 5(n, 0) for 5 S(n1.2)
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Exercise 5—Repeated games with three available strategies
to each player in the stage game®

Consider the following simultaneous-move game between player 1 (in rows) and
player 2 (in columns) (Table 6.2).

This stage game is played twice, with the outcome from the first stage observed
before the second stage begins. There is no discounting i.e., the discount factor J is
0 = 1. Can payoff (4, 4) be achieved in the first stage in a pure-strategy subgame
perfect equilibrium? If so, describe a strategy profile that does so and prove that it is
a subgame perfect Nash equilibrium. If not, prove why not.

Answer

PSNE: For player 2, his set of best responses are the following: if player 1 plays
T, then player 2’s best response is BRy(T) = L if instead player 1 plays M, then
BR,(M) = C; and if player 1 plays B, BR,(B) = R. For player 1, his best responses
are the following: if player 2 plays L, then BR;(L) = T; if he plays C, then
BR,(C) = M; and if player 2 plays R, then BR;(R) = B. We can represent the
payoffs in each best response with the bold underlined numbers in the next matrix
(Table 6.3).

Thus, we can identify two pure strategy Nash equilibria (PSNE):
{(T,L),(M,C)}, with corresponding equilibrium payoffs pairs u(T,L) = (3, 1),
and u(M,C) = (1,2).

Table 6.2 Simultaneous-move game with three available actions to each player

L C R
T 3,1 0,0 5,0
M 2,1 1,2 3,1
B 1,2 0,1 4,4
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Table 6.3 Underlining best response payoffs in the unrepeated game

Player 2
Player 1 L C R
T 3,1 0,0 50
M 2,1 1,2 3,1
B 1,2 0,1 4,4

MSNE: Before starting our search of mixed strategy Nash equilibrium (MSNE)
in this game, it would be convenient to eliminate those strategies that are strictly
dominated for either player. Strictly dominated strategies do not receive any
probability weight at the MSNE, implying that we can focus on the remaining
(undominated) strategies, thus simplifying our calculations. From the above normal
form game, there does not exist any pure strictly dominated strategies. Hence, we
will analyze if there exists some mixed strategy that strictly dominates a pure
strategy.

When player 1 randomizes between strategies T and M with associated proba-
bilities % and % respectively, r; = {% T,%M ,0}, we can show that he obtains an
expected utility that exceeds that from selecting the pure strategy B.' Indeed, for
any possible strategy s, € S, chosen by his opponents (player 2), we have that
player 1’s payoffs satisfy u; (ry, s2) > u;(B, s2). In particular, when player 2 selects
L, in the left-hand column, s, = L, we find that player 1’s expected payoff from
selecting the mixed strategy r; exceeds that from selecting B,

I/ll(}"l,L) > Ml(B,L)

2 1
ie, —-3+--2>1 8>3
1en 3013 -

Similarly, when player 2 selects s, = C, we also obtain that player 1’s payoff
satisfies

ui(r1,C) > ui (B, C)
2 1 1
And finally, for the case in which player 2 selects s, = R,

u1(717R) > ul(B,R)

'"You can easily find many other probability weights on T and M that yield an expected utility
exceeding the utility from playing strategy B, for any strategy selected by player 2 (i.e., for any
column), ultimately allowing you to delete B as being strictly dominated.



Exercise 5—Repeated games with three available strategies ... 199

Table 6.4 Surviving strategies in the unrepeated game

Player 2
Player 1 L C R
T 3,1 0,0 5,0
M 2,1 1,2 3,1
2 1 13
ie,=-5+=--3>4—— >4
'3 3 3

Therefore, the payoffs obtained from the mixed strategy r; = {% T,_%M,O}
strictly dominate the payoffs obtained from the pure strategy B. Hence, we can
eliminate the pure strategy B of player 1 because of being strictly dominated by r;.
In this context, the reduced-form matrix that emerges after deleting the row cor-
responding to B is shown in Table 6.4.

Given this reduced-form matrix, let us check if, similarly as we did for player 1,
we can find a mixed strategy of player 2 that strictly dominates one of his pure
strategies. In particular, if player 2 randomizes between s, = L and s, = C with
equal probability %, his resulting expected utility is larger than that under pure
strategy R, regardless of the specific strategy selected by player 1 (either T or M). In
particular, if player 1 chooses s; = T (in the top row), player 2’s expected utility
from randomizing with strategy r, yields an expected payoff above the payoff he
would obtain from selecting R.>

1 1 1
—14+-0>0==->0

uz(l’z, T) > uz(R, T),i.e., 3 3 3

And similarly, if player 1 chooses s; = M (in the bottom row)

uy(ry, M) > up (R, M), e, L 1+ l-2 > 1 <—>§ > 1
2 2 2

Hence, we can conclude that player 2’s pure strategy s, = R is strictly domi-
nated by the randomization r, = {%L, % C, O}. Therefore, after deleting s, = R from
the payoff matrix, we end up with the following reduced-form game (Table 6.5).

At this point, however, we cannot delete any further strategies for player 1 or 2.
Hence, when developing our analysis of the MSNE of the game, we will only
consider S; = {T,M} and S, = {L,C} as the strategy sets of players 1 and 2,
respectively.

*Note that we do not analyze the case of u,(r2, B) > uy(R, B) given that strategy s, = B was
already deleted from the strategy set of player 1.
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Table 6.5 Surviving strategies in the unrepeated game (after two rounds of deletion)

Player 2
Player 1 L C
T 3,1 0,0
M 2,1 1,2

We can now start to find the MSNE of the remaining 2 x 2 matrix. Player 2
wants to randomize over L and C with a probability g that makes player 1 indif-
ferent between his pure strategies s; = {7, M}. That is,

EU\(T) = EU,(M)

1
3g+0(1 —g) =2g+1-(1 —¢q), which yields ¢ =3

And similarly, player 1 randomizes with a probability p that makes player 2
indifferent between her pure strategies S, = {L, C}. That is,

EU>(L) = EU>(C)

l-p+1-(1—p)=0-p+2(1—p), yielding p = 1. Hence, the MSNE strategy

profile is given by:
1.1 1 1
= =T, = —L,—
SGEDACED)

And the expected payoffs associated to this MSNE are:

1 1 1 1 1 1 3 3 6 3
EU1—§<3'§+0'§>+5(2'—+1'—>—Z+Z—Z——

1/ 1 1 1/ 1 1 1 1
E —_ 1._ 1._ — e 2— = — —:1
v 2( 2t 2>+2<02+ 2) 273

Hence, the expected utility pair in this MSNE is (%, 1).
Summarizing, if the game is played only once, we have three Nash-equilibria (two
PSNEs and one MSNE), with the following associated payoffs:

PSNEs : u(T,L) = (3,1) and u(M,C) = (1,2)

MSNE : EU(ry, 1) = <%, 1)
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Repeated game: But the efficient payoff (4, 4) is not attainable in these equilibria
of the unrepeated game.” However, in the two-stage game the following strategy
profile (punishment scheme) constitutes a SPNE:

e Play (B, R) in the first stage.

e If the first-stage outcome is (B, R), then play (T, L) in the second stage.

e If the first-stage outcome is not (B, R), then play the MSNE r* in the second
stage.

Proof Let’s analyze if the former punishment scheme played by every agent
induces both players to not deviate from outcome (B,R), with associated payoff
(4, 4), in the first stage of the game. To clarify our discussion, we separately
examine the incentives to deviate by players 1 and 2,

Player 1. Let’s take as given that player 2 adopts the previous punishment
scheme:

e If player 2 sticks to (B, R), then player 1 obtains u; =4 +3 =7, where 4
reflects his payoffs in the first stage of the game, when both cooperate in (B, R);
and 3 represents his payoffs in the second stage, where outcome (T, L) arises
according to the above punishment scheme.

e If, instead, player 1 deviates from (B, R), then his optimal deviation is to play
(T, R) which yields a utility level of 5 in the first period, but a payoff of % in the
second period (the punishment implies the play of the MSNE in the second
period). Therefore, player 1 does not have incentives to deviate since his payoff
from selecting the cooperative outcome (B, R), 4 + 3=7, exceed his payoff from
deviating 5+ 3 = 5.

Player 2. Taking as given that player 1 sticks to the punishment scheme:

e If player 2 plays (B, R) in the first stage, then she obtains an overall payoff of
u(B,R) =4+4+1=25. As we can see, player 2 doesn’t have incentives to
deviate, because his best response function is in fact BR,(B) = R when we take
as given that player 1 is playing B.

Therefore, no player has incentives to deviate from (B, R) in the first stage of the
game. As a consequence, the efficient payoff (4, 4) can be sustained in the first stage
of the game in a pure strategy SPNE strategy profile.

3Note that payoff pair (4, 4) is efficient since a movement to another payoff pair, while it benefit
one player, reduces the utility level of the other player.
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Exercise 6—Infinite-Horizon Bargaining Game Between
Three Players®

Consider a three-player variant of Rubinstein’s infinite-horizon bargaining game,
where players divide a surplus (pie) of size 1, and the set of possible agreements is

X = {(X],XQ,X3)|X,‘ZO for i = 1,2,3 and X1 +Xxy+x3 = 1}

Players take turns to offer agreements, starting with player 1 in round ¢ = 0, and
the game ends when both responders accept an offer. If agreement x is reached in
round ¢, player i's utility is given by #'x;, where % <0< 1. Show that, if each player
is restricted to using stationary strategies (in which she makes the same proposal
every time she is the proposer, and uses the same acceptance rule whenever she is a
responder), there is a unique subgame perfect equilibrium outcome. How much
does each player receive in equilibrium?

Answer

First, note that every proposal is voted using the unanimity rule. For instance, if
player 1 offers x, to player 2 and x5 to player 3, then players 2 and 3 independently
and simultaneously decide if they accept or reject player 1’s proposal. If they both
accept, players get x = (xy, xo, x3), while if either player rejects, player 1’s offer is
rejected (because of unanimity rule) and player 2 becomes the proposer in the
following period, making an offer to players 1 and 3, that they choose whether to
accept or reject.

Consider any player i, and let x**P denote the offer the proposer at this time
period makes to himself, x"**" the offer that he makes to the player who will become
the proposer in the next period, and x™° the offer he makes to the player who will
become the proposer two periods from now. In addition, we know that the sum of
all offers must be equal to the size of the pie, x?™P + x"*' + x™° = 1.

We know that the offer the proposer makes must satisfy two main conditions:

1. First, his offer to the player who will become the proposer in the next period,
X", must be weakly higher than the discounted value of the offer that such
player would make to himself during the next period (when he becomes the
proposer), xP™P, That is, x"*" > §xP*P. Moreover, since the proposer seeks to
minimize the offers he makes, he wants to reduce x"*' as much as possible, but
still guarantee that his offer is accepted, i.e., x"" = 6xP*P,

2. Second, the offer he makes to the player who will be making proposals two
periods from now, x""°, must be weakly higher than the discounted value of the
offer that such a player will make to himself two periods from now as a pro-
poser, 8*xP™P_ That is, x™° > §°xPP, and since the proposer seeks to minimize
the offer x"™°, he will choose a proposal that satisfies x™° = §7xP"P.
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Using the above three equations, xPP + x"*' 4+ x™° =1, x"*' = &P, and
x™° = §2xP™P, we can simultaneously solve for xP™P, x"*" and x™°. In particular,
plugging x"' = 3xPP and x™° = 8PP into the constraint xP"°P + x4+

two

x° =1, we obtain
2
XPrOP 1 §XPrOP ¢ §2xPrOP — |
and solving for xP*P yields

rop __ 1
1+0+0

Using this result into the other two equations, we obtain

2
xnexl = 5xPTP = 0 - and xrwo _ 52xprop — 0 =
1406+ 14+0+9

which constitute the equilibrium payoffs in this game. Intuitively, this implies that
player 1 offers x*"P to himself in the first round of play, i.e., in period # = 0, X"*' to
player 2, and x™° to player 3, his offers are then accepted by players 2 and 3, and
the game ends.

Comparative statics: Let us next check how these payoffs are affected by the
common discount factor, d, as depicted in Fig. 6.7. When players are very impa-
tient, i.e., J is close to zero, the player who makes the first proposal fares better than
do others, and retains most of the pie, i.e., x*™P is close to one, while x"*" and x"™°
are close to zero. However, when players become more patient, the proposer is
forced to make more equal divisions of the pie, since otherwise his proposal would
be rejected. In the extreme case of perfectly patient players, when é = 1, all players
obtain a third of the pie.

Fig. 6.7 Equilibrium payoffs Equilibrium

in the 3-player bargaining i
ame
| 1.0
08+
1
3 0.6 1
: B 2
1+8+ &
041
o &
- X -2
| \ " V;H:MW ° 1+6+06
- X %
e 14618 -
0.2 0.4 0% 't "

0, Discount factor
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Exercise 7—Representing Feasible, Individually Rational
Payoffs®

Consider an infinitely-repeated game where the stage game is depicted Table 6.6.
Player 1 chooses rows and player 2 chooses columns. Players discount the future
using a common discount factor 9.

Part (a) What outcomes in the stage-game are consistent with Nash equilibrium
play?

Part (b) Let v; and v, be the repeated game payoffs to player 1 and player 2
respectively. Draw the set of feasible payoffs from the repeated game, explaining
any normalization you use.

Part (c) Find the set of individually rational feasible set of payoffs.

Part (d) Find a Nash equilibrium in which the players obtain (9, 9) each period.
What restrictions on ¢ are necessary?

Answer

We first need to find the set of Nash equilibrium strategy profiles for the stage game
represented in Table 6.6: Let us start identifying best responses for each player. In
particular, if player 1 plays U (in the top row), player 2’s best response is
BR,(U) = R; while if player 1 plays D (in the bottom row), BR,(D) = R, thus
indicating that R is a strictly dominant strategy for player 2. Regarding player 1’s
best responses, we find that BR|(L) = D and BR(R) = D, showing that D is a
strictly dominant strategy for player 1. Hence, (D, R) is the unique Nash equilib-
rium (NE) outcome of the stage game, in which players use strictly dominant
strategies, and which yields an equilibrium payoff pair of (7, 7).

Figure 6.8 depicts the utility of player 1 and 2. For player 1, for instance,
u1 (D, q) represents his utility from selecting D, for any probability ¢ with which his
opponent selects Left, i.e., 10g+7(1 —g) =7+ 3q, and, similarly, u;(U,q)
reflects player 1’s utility from playing U, i.e., 9¢+ 1(1 — ¢) = 1+ 8¢. A similar
argument applies for player 2: when he selects L, his expected utility is
u(L,P) =9p+ 1(1 — p) = 7+ 3p. From Fig. 6.8 it becomes obvious that strategy
U is strictly dominated for player 1, since it provides a strictly lower utility than
D regardless of the precise value of g with which player 2 randomizes. Similarly,
strategy L is strictly dominated for player 2.

From previous chapters, we know that every Nash equilibrium strategy profile
must put weight only on strategies that are not strictly dominated. This explains
why in this case the unique Nash equilibrium of the stage game does not put any

Table 6.6 Simultaneous-move game

Player 2
Player 1 L R

D 10, 1 7,7
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81 8,
10 10 10 10

9 9 9 9

u,(D,q) u,(R,q)
7 7
(U, q) 0,(L.q)
1 1
q p

Fig. 6.8 Expected utilities for players 1 and 2

weight on strategy U for player 1 and strategy L for player 2, since they are both
strictly dominated.

Anticipating that player 1 will choose D, since it gives an unambiguously larger
payoff then U (as depicted in the figure), player 2 can minimize his opponent’s
payoff by selecting ¢ = 0, which entails a minimax payoff of v; = 7 for player 1.
Similarly, anticipating player 2 will choose R, since it provides an unambiguously
larger payoff than L (as illustrated in the figure), player 1 can minimize his
opponent’s payoff by selecting p = 0, which yields a minimax payoff of v, = 7 for
player 2. Therefore, the minimax payoff (vi,v,) = (7,7) is consistent with the
Nash equilibrium payoff of (7, 7).

Part (b) We know that the set of feasible payoffs V is represented by the convex
hull of all possible payoffs obtained in the stage game, as depicted in Fig. 6.9. (This
set of feasible payoffs is often referred to in the literature as FP set.)

Fig. 6.9 Set of feasible
payoffs




206 6 Repeated Games and Correlated Equilibria

Fig. 6.10 Set of feasible V2
payoff after the normalization A

(10.1)

(1.10)

But obviously the above set of feasible payoffs in the repeated game is not
convex. In order to address this non-convexity, we can convexify the set of feasible
payoffs of the game by assuming that all players observe the outcome of a public
randomization device at the start of each period. Using this normalization, the set of
feasible payoffs can be depicted as the shaded area in Fig. 6.10.

Part (c) The minimax values for player i are given by

v; = min,, [max,, u;(oy, 0;)| where o;,0; € [0,1] j # .

Player 1. She maximizes her expected payoffs by playing D, a strictly dominant
strategy, regardless of the probability used by player 2, g. Player 2 minimizes the
payoff obtained from the previous maximization problem by choosing the minimax
profile, implying that the minimax payoff for player 1 is v; = 7.

Player 2. A similar argument applies to player 2, who maximizes her expected
payoffs by playing R, a strictly dominant strategy, regardless of the probabilities
used by player 1, p. Player 2 minimizes the payoff obtained from the previous
maximization problem by choosing the minimax profile p = 0, thus entailing that
the minimax payoff for player 2 is v, = 7.

The feasible and individually rational set of payoffs (often referred to as set of
FIR payoffs) is given by all those feasible payoffs v; € V such that v; > y;, that is,
all feasible payoffs in which every player obtains strictly more than his payoffs from
playing the minimax profiles, i.e., v; > 7 for every player i in this game, as
Fig. 6.11 depicts in the shaded area.

Part (d) For a sufficiently high discount factor, i.e., d € (9, 1), we can design an
appropriate punishment scheme that introduces incentives for every player not to
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Fig. 6.11 Set of feasible, V2
individually rational payoffs A (10.1)
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deviate from payoff (9, 9). In fact, this result is just a particular application of the
Folk theorem, given that the proposed outcome (9, 9) is feasible and satisfies
individual rationality for every player; i.e., v; > v; for all i.

Proof Let’s take the payoff from outcome (U, L), 9, for every player i = 1,2.
Given symmetry, we can proceed all this proof by focusing on one of the players.
Hence, without loss of generality let’s analyze player 1’s strategies. In particular,
consider that player 1 uses the following grim-trigger strategy:

e Play U in round 7 = 0 and continue to do so as long as the realized action profile
in previous periods was (U, L).
e Play D as soon as an outcome different from (U, L) is observed.

Hence, in order to show that strategy profile (U, L) is a Nash equilibrium of the
infinitely repeated game we need to demonstrate that player 1 does not want to
deviate from selecting U at every time period. To show that, we separately evaluate
the payoff stream that player 1 obtains when cooperating and defecting.
Cooperation: If at any given time period ¢ player 1 decides to play U forever after,
his discounted stream of payoffs becomes

9

39 +69+... =——
9409+ 6°9+ -

Deviation: If, instead, player 1 deviates to D, his current payoff increases (from 9 to
10), but his deviation is observed (both by player 2 and by himself), triggering as a
consequence an infinite punishment whereby both players revert to the Nash
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equilibrium of the stage game, namely (D, R), with associated payoff pair (7, 7).
Hence, player 1 obtains the following stream of payoffs from deviating

0
10467 +6*7+ --- =10+ 5’
Incentives to cooperate: Thus, player 1 prefers to select U, i.e., cooperate, if and
only if

9 0

P
which, solving for ¢, yields 6 > % That is, player 1 cooperates as long as he assigns
a sufficiently high value to future payoffs.
Incentives to punish: In addition, note that player 2 has incentives to implement the
punishment scheme upon observing player 1’s deviation. In particular, given that
player 1 has deviated to D, player 2’s best response is BR, (D) = R, thus giving rise
to outcome (D, R), the Nash equilibrium of the stage game, as prescribed by the
punishment scheme.

Hence, for any 6 > % we can design an appropriate punishment scheme that
supports the above specified strategy for player 1 as his optimal strategy in this
infinitely repeated game. We can show the same results for player 2, given the
symmetry of their payoffs. Hence, the outcome (U, L) can be supported as a
subgame perfect equilibrium strategy profile in this infinitely repeated game.

Exercise 8—Collusion and Imperfect Monitoring®

Two firms produce a differentiated product, and every firm i = {1, 2} faces the
following linear demand:

pi = a—bg; —dg;, where a,b,d >0 and 0<d<b

Intuitively, when d — 0 firm j’s output decisions do not affect firm i’s sales (i.e.,

products are heterogeneous), while when d — b, firm j’s output decisions have a
significant impact on firm #’s sales, i.e., products are relatively homogeneous. The
firms expect to compete against each other for infinite periods, that is, there is no
entry or exit in the industry. [Hint: Assume that when a firm detects deviations from
collusive behavior, it retaliates by reverting to the non-cooperative Cournot (Ber-
trand) production level (pricing, respectively), in all subsequent periods. Prior to
detection, each firm assumes that its rival follows the collusive outcome.]
Part (a) Assume that firms compete as Cournot oligopolists. What is the minimum
discount factor necessary in order to sustain the collusive outcome assuming that (i)
Deviations are detected immediately, and (ii) Deviations are detected with a lag of
one period.
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Part (b) Repeat part (a) of the exercise under the assumption that firms compete as
Bertrand oligopolists. (You can assume immediate detection)

Answer

Part (a)

(i) Deviations are immediately detected.
Cournot outcome. Every firm i selects output level g; by solving

max z; = (a — bg; — dgj)qi

on

Taking first-order conditions with respect to ¢g;, we obtain P =4~ 2bq; —
dg; = 0, which yields the best response function ¢;(g;) = a_ziq/ for every firm

iandj # i

Note that, as products become more heterogeneous, d close to zero indicating
very differentiated products, firm i's best response function approaches the
monopoly output g; = 57.

a—dg;

55, into firm i’s best

Plugging firm j’s best response function gj(g;) =
response function yields

Solving for g; in this equality, we obtain the (interior) Cournot equilibrium
output when firms sell a differentiated product

o a
T 2b+d

C

4q;

Therefore, firm i’s equilibrium profits become (recall that production is
costless):

. a a a ba?
n=|a—b- —d- = 5
2b+d 2b+d)2b+d (2b+d)

Cooperative outcome (Monopoly). The merged firm would select the level of
aggregate output, g, that solves

max(a — bg — dq)q
q
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Taking first-order conditions with respect to g, we obtain

on

and solving for g yields

Hence, since firms are symmetric, every firm produces half of the collusive
output, i.e., g7' = q}" = 4(b“7+d).

Thus, the profits that every firm 7 obtains if the collusive agreement is respected
are

2

”;"_<“_bz(b+d) d2(b+d)>4(b+d) 8 +d)

Best deviation for firm i. Let us assume that firm j # i produces the cooperative

output level g;" = m . In order to determine the optimal deviation for firm i,

we just need to plug firm j’s output ¢;" into firm 7’s best response function, as

follows

2b ~ 8b(b+d)

() = a—d(sp%a) _aab+34)

Therefore, the profits that firm i obtains from deviating are

n 8b(b+d) “4(b+d)

;= —

b a(4b+3d) a \a(4b+3d) a*(4b+3d)
(“ ) 8b(b+d)  64b(b+d)

Incentives to collude: Thus, for firms to collude, we need that

(1 +0+8+ ) > +al(8+0"+ )

That is,

|
“ >l 4 7€
i A



Exercise 8—Collusion and Imperfect Monitoring® 211

Plugging the expression of profits 7", 7 and n¢ we found in previous steps
yields

@ 1 a®(4b + 3d)* ba* S
8(b+d) 1—-5~ 64b(b+d) ' (2b+d)* 1-0

Multiplying by (1 — d) on both sides of the inequality, we obtain

2 2(4 2 2
a 2a(b—i—?sd) (1= 6)+0 ba i
8(b+d) 64b(b+d) (2b+d)

and solving for ¢ yields the minimal discount factor that supports collusion in
this industry,

4p> +-4bd +d*
~ b2 +8bd+d2

Importantly, note that d; increases in the parameter reflecting product differ-

entiation, d, since the derivative

951 4bd(2b+d)
Od  (8b> +8bd +d?)’

is positive for all parameter values b,d > 0. Intuitively, cooperation is more
difficult to sustain when the product both firms sell is relatively homogeneous
(i.e., d increases approaching b); but becomes easier to support as firms sell
more differentiated products (i.e., d is close to zero), as if each firm operated as
an independent monopolist.

(i) Deviations are detected with a lag of one period.
In this case, collusion can be supported if
(14640 + ) >m) +on) + 7l (6 + 6+ )

where note that, if firm i deviates, it obtains the deviating profits of n'l’-) for two
consecutive periods. The above inequality can be alternatively expressed as

>om? + (14 0)m?
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Plugging the expression for profits 7", "

m 7P and n¢ we obtained in previous steps
of this exercise yields
a’ 1 a*(4b +3d)° ba* 5

. > .
8ot 15 ebpra) T prar 70

Multiplying both sides of the inequality by (1 — J) we obtain

ba?

a’ S a*(4b +3d)°
(2b +d)?

8(b+d) ~ 64b(b+d)

(1—06%)+d

since (1+0)(1 — d) = (1 — &%). Solving for , we obtain the minimal discount
factor sustained cooperation

(4b* + 4bd + d?)

> -~ 7
= (802 + 8bd + d?)

552

Note that, similarly as for cutoff d; (when deviations where immediately
observed and punished), , is also increasing in d. However, ¢, > J, implying that,
when deviations are only detected (and punished) after one-period lag, cooperation
can be sustained under more restricting conditions than when deviations are
immediately detected. Figure 6.12 depicts cutoffs d, and §; as a function of
parameter d, both of them evaluated at b = 1/2. Graphically, the region of discount
factors sustaining cooperation shrinks as firms detect deviations with a lag one one
period.

Part (b) Let us now analyze cooperative outcomes if firms compete a la Bertrand.
The inverse demand function every firm i = {1, 2} faces is

pi = a — bg; — dg;

08 .
52, one period lag
06 0 1, no lag
04+
02

02 04 06 08 w0 d

Fig. 6.12 Minimal discount factors ¢, and 0,
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Hence, solving for g; and g; we find the direct demands,

a dp; = bpi for firm i

- ;
" hrd T -

a dp; — bp; . .

qj:b+d+ g for firm j

Since p; = p; = p in the collusive outcome, firms choose a common price p that
maximizes their joint profits

max (% L PU=DN_(a P
\ord T =2 )P " \bxd b+d)?

Taking first-order conditions with respect to the common price p, we obtain

on  a 2p 0

op b+d b+d
which, solving for p, yields the monopolistic (collusive) price p™ = ¢, and entails
collusive profits of

o = a o Pm o a _ % g_ a2
“\b+d b+d)" " \btd b+d)2” 4b+ad)

Hence, the profits that every firm obtains when colluding in prices are half of this
monopoly profit
T = —

P T 8(b+d)

Bertrand outcome. In this case, every firm i independently and simultaneously
selects a price p; in order to maximize its individual profits

a d b
T \brd Tl T al)P

Taking first-order conditions with respect to p;, we find

on; a d 2b

= PR i:0
o bid 2P E_af
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and solving for p; we obtain firm i's best response function p; (p_,-) = W.
A similar argument applies for firm j’s best response function p;(p;). Plugging firm

J’s best response function,

a(b — d) +dpi
Pj(Pi) :T7

into firm i’s best response function yields

a(b—d)+d[a(b%2+dl’i}

pi= 2b
and rearranging
a(b—d)(2b+d)+d*p;
b= 452

Solving for p;, we obtain equilibrium prices

_alb-d)
pl_—Zb—d =Dj

Therefore, the equilibrium output level for firm i becomes

a d b
S R R o
_a d alb—d) b alb—d)
“btd P_—& 22-d bP-& 2-d

ba
(2b—d)(b+d)

And Bertrand equilibrium profits are thus

B ~_alb-4d) ba
PP T T b —d) (bt d)
b(b — d)a®

(b+d)(2b — d)?

Best deviation by firm i. Assuming that firm j selects the collusive price p}* = 4, firm

i can obtain its most profitable deviation by plugging the collusive price p;* = { into
its best response function, as follows

o alb—d)+d©)  a(2b—d)
p"(”f‘)_ 2b == 4b
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Therefore, the profits that firm i obtains from such a deviation are

D a_ . d a b a(2b —d)] a(2b —d)
T, = -_— .
! b+d b*—d* 2 P -d 4b 4b
a2 (2b — d)*

T 16b(b —d)(b+d)

Incentives to collude. Hence, collusion can be sustained if

(140404 ) >nl + 7l (3+0"+ )

0
m >l + b
e R
" 7P and f we found in previous steps yields

||

Plugging the expression of profits 7

@ 1 a(2b — d)* Lo b(b — d)a?
2(b+d) 1 =07 16b(b—d)(b+d) 1-05 (b+d)(2b—d)*

Multiply both sides of the inequality by (1 — ), we obtain

b(b — d)d>
(b+d)(2b — d)?

@ a®(2b — d)*

2(b+d) = 16b(b — d)(b+d) (1=0)+9

Solving for J, we find the minimal discount factor supporting cooperation when
firms sell a heterogeneous product and compete a la Bertrand,

(d — 2b)*(2b* — 2bd + d*)
= @281 —8bd+d?)




Introduction

This chapter introduces incomplete information in simultaneous-move games, by
allowing one player to be perfectly informed about some relevant characteristic, such
as the state of market demand, or its production costs; while other players cannot
observe this information. In this setting, we still identify players’ best responses, but
we need to condition them on the available information that every player observes
when formulating its optimal strategy. Once we find the (conditional) best responses
for each player, we are able to describe the Nash equilibria arising under incomplete
information (the so-called Bayesian Nash equilibria, BNE) of the game; as the vector
of strategies simultaneously satisfying all best responses. We next define BNE, but
before describe games under an incomplete information context.

Consider a game with N > 2 players, each with discrete strategy space S; and
observing information 0; € ©®;, where 6; € R. Parameter 0; describes a characteristic
that only player i can privately observe, such as its production costs, the market
demand, or its willingness to pay for a product. A strategy for player i in this setting, is
a function of 6;, i.e., 5;(6;), entailing that the strategy profile of all other N — 1 players
is also a function of 6_; = (04, 6,,...,0,_1,6,41,...,0n),1.e., s_;(0_;). We are now
ready to use this notation to define a Bayesian Nash Equilibrium (BNE).

BNE. Strategy profile (sj(01),...,sy(0y)) is a BNE if and only if

EU;(s; (0:), 5" ;(0-1)) > EUi(s:(0:), 5" ;(0,))

for every strategy s;(0;) € S;, every 0; € ®;, and every player i. In words, the
expected utility that player i obtains from selecting strategy s} (0;) is larger than
from deviating to any other strategy s;(6;); a condition that holds for all players
i € N for all realizations of parameter 0;.

The original version of the chapter was revised: The erratum to the chapter is available at:
10.1007/978-3-319-32963-5_11
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As initial motivation, we explore a simple poker game in which we study the
construction of the “Bayesian normal form representation” of incomplete informa-
tion games, which later on will allow us to solve for the set of BNEs in the same
fashion as we found Nash equilibria in Chap. 2 for complete information games, that
is, underlining best response payoffs. Afterwards, we apply this solution concept to a
Cournot game in which one of the firms (e.g., a newcomer) is uninformed about the
state of the demand, while its competitor (e.g., an incumbent with a long history in
the industry) has accurate information about such demand. In this context, we first
analyze the best response function of the privately informed firm, and afterwards
characterize the best response function of the uninformed firm. We then study
settings in which both agents are uninformed about each other’s strengths, and must
choose whether to start a fight, as if they were operating “in the dark.”

Exercise 1—Simple Poker Game®

Here is a description of the simplest poker game. There are two players and only two
cards in the deck, an Ace and a King. First, the deck is shuffled and one of the two
cards in dealt to player 1. That is, nature chooses the card for player 1: being the Ace
with probability 2/3 and the King with probability 1/3. Player 2 has previously
received a card, which both players had a chance to observe. Hence, the only
uninformed player is player 2, who does not know whether his opponent has
received a King or an Ace. Player 1 observes his card and then chooses whether to
bet (B) or fold (F). If he folds, the game ends, with player 1 obtaining a payoff of —1
and player 2 getting a payoff of 1 (that is, player 1 loses his ante to player 2). If player
1 bets, then player 2 must decide whether to respond betting or folding. When player
2 makes this decision, she knows that player 1 bets, but she has not observed player
1’s card. The game ends after player 2’s action. If player 2 folds, then the payoff
vector is (1, —1), meaning player 1 gets 1 and player 2 gets —1, regardless of player
1’s hand. If player 2 , instead, responds betting, then the payoff depends on player 1°s
card: if player 1 holds the Ace then the payoff vector is (2, —2), thus indicating that
player 1 wins; if player 1 holds the King, then the payoff vector is (—2, 2), reflecting
that player 1 looses. Represent this game in the extensive form and in the Bayesian
normal form, and find the Bayesian Nash Equilibrium (BNE) of the game.

Answer
Figure 7.1 depicts the game tree of this incomplete information game.

Player 2 has only two available strategies S, = {Bet, Fold}, but player 1 has
four available strategies S| = {Bb,Bf,Fb,Ff}. In particular, for each of his
strategies, the first component represents player 1’s action when the card he
receives is the Ace while the second component indicates his action after receiving
the King. This implies that the Bayesian normal form representation of the game is
given by the following 4 x 2 matrix (Table 7.1).

In order to find the expected payoffs for strategy profile (Bb, Bet), i.e., in the top
left-hand side cell of the matrix, we proceed as follows:
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Bet ©2,-2
F  Player1i*® B
1,1
%\o 1,-1

2,2

Ace | Prob.=2/3
O Nature

King| Prob.=1/3 Be

-1,1e .
f  Playert“™ p \'
Fold™e 1, -1

Fig. 7.1 A simple poker game

Player 2

Table 7.1 Strategies in the Player 1 Player 2
Bayesian normal form Bet Fold
representation of the poker © 0
game Bb
Bf
Fb
Ff
2 1 2 2 1 2
EUl ==—+2+ =% (-2)=—and EU, = =% (-2)+ =% (2) = — =
(=324 5 x(-2) =5 and BU =25 () + 3% (2) = =3

Similarly for strategy profile (Bf, Bet),
2 1 2 1
For strategy profile (Fb, Bet),

2 4 2 1 4
EUj==-(-1)+s(2)=—zand EUp = -1+ -%2 ==
1 =30+ 3(2) = mgand By =314 3+2 =3
For strategy profile (Ff, Bet), in the bottom left-hand side cell of the matrix, we
obtain

1 2 1
(—l)+§(—1):—1 andEngg*l‘i‘g*l:l

SSIN S

EU, =

In strategy profile (Bb, Fold), located in the top right-hand side cell of the matrix,
we have

SS IR

2 1
EU1:§*1+§*1:1andEU2= (D+z(=1)=-1
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For strategy profile (Bf, Fold),

2 1 1 2 1 1
EU =514 ~(—1)== and EUy = 2 (—1) 4 =% 1 = —~
r=gxlt g =3 ad B =3 (=1)+ 3+ 3

Similarly for (Fb, Fold),
2 1 1 2 1 1
EU =25 (-4 ~%1=—= and EUy = 2% 1+ ~(—1) = =
p=3rD g 3 d EUy =3 14 3(=1) =3

Finally, for (Ff, Fold), in the bottom right-hand side cell of the matrix

EU =24 (c1) 4 2 (c1) = 1 and EU = 25 14 201 =1
=—x(— —(—=1)=—-1an =—x —x1=
'3 3 ’73 3

We can now insert these expected payoffs into the Bayesian normal form rep-
resentation (Table 7.2).

We can now identify the best response to each player.

e For player 1, his best response when player 2 bets (in the left-hand column) is to
play Bf since it yields a higher payoff, i.e., 1, than any other strategy, i.e.,
BR|(Bet) = Bf. Similarly, when player 2 chooses to fold (in the right-hand
column), player 1’s best response is to play Bb, given that its associated payoff,
$1, exceeds that of all other strategies, i.e., BR|(Fold) = Bb. Hence, the best
responses yield an expected payoft of % and 1, respectively; as depicted in the
underlined payoffs of Table 7.3.

e Similarly, for player 2, when player 1 chooses Bb (in the top row), his best
response is to bet, since his payoff, —Tz, is larger than that from folding, —1, i.e.,
BR,(Bb) = Bet. If, instead, player 1 chooses Bf (in the second row), player 2’s
best response is to fold, BR,(Bf) = Fold, since his payoff from folding, —1/3, is
larger than from betting, —1. A similar argument applies to the case in which
player 1 chooses Fb, where player 2 responds betting, BR,(Fb) = Bet. Finally,
when player 1 chooses Ff in the bottom row, player 2 is indifferent between
responding with bet or fold since they both yield the same payoff ($1), i.e.,
BR,(Ff) = {Bet, Fold}. The payoffs that player 2 obtains from selecting these
best responses are underlined in the next matrix (Table 7.3).

Table 7.2‘ Bayesian form Player 1 Player 2
representation of the poker
. . Bet Fold
game after inserting expected
payoffs Bb _%7 *% L, -1
- 1

Bf 0.1 {-1
P 14 1
Ff -1, 1 -1, 1
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Table 7.3 Underlined best

s for the pok Player 1 Player 2
response payoffs for the poker Bet Fold
game R

Bb 573 L-1
1

Bf 0, -1 1 —é

Fb -33 —33

Ff -L1 -1,1

Hence, there is a unique BNE in pure strategies where both players are selecting
mutual best responses: (Bb, Bet).

Exercise 2—Incomplete Information Game, Allowing
for More General Parameters®

Consider the Bayesian game in Fig. 7.2. First, nature selects player 1’s type, either
high or low with probabilities p and 1 — p, respectively. Observing his type, player 1
chooses between x or y (when his type is high) and between x’ and y' (when his type
is low). Finally, player 2, neither observing player 1’s type nor player 1’s chosen
action, responds with a or b. Note that this game can be interpreted as players 1 and 2
acting simultaneously, with player 2 being uninformed about player 1’s type.

Part (a) Assume that p = 0.75. Find a Bayesian-Nash equilibrium.
Part (b) For each value of p, find all Bayesian-Nash equilibria.

Answer
In order to represent the game tree of Fig. 7.2 into its Bayesian normal form
representation, we first need to identify the available strategies for each player. In
particular, player 2 has only two strategies S, = {a, b}. In contrast, player 1 has
four available strategies §; = {xx’, xy’, yx’, yy'} where the first component of every
strategy pair denotes what player 1 chooses when his type is H and the second
component reflects what he selects when his type is L. Hence, the Bayesian normal
form representation of the game is given by the following 4 x 2 matrix (Table 7.4).
Let’s find the expected utilities that each player obtains from strategy profile
(xx', @), i.e., top left corner of the above matrix,

EU, =p*3+(1—p)*2=2+p, and
EUy=px14+(1—p)*3=3—-2xp

Similarly, strategy profile (xy’, @) yields expected utilities of

EUy =p*3+(1—p)*3=3and
EUy=px1+(l—-p)x1=1
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Nature

Probability = p Probability = 1-p

Player 1 Player 1

Pz f D

%k /\:’ 2/ \b ¥ \°
Player1 3 1 2 5

Player2 1 3 1 2 3 2 1 0

Fig. 7.2 A Bayesian game where player 2 is uninformed

Table 7.4 Bayt.:sian normal Player 1 Player 2
form representation of the b
game a
xx'
.X:y,
'
'
Table 7.5 Insert%ng Player 1 Player 2
expected payoffs in the b
Bayesian normal form a
representation of the game xx' 2+p,3-2p L2+p
xy' 3,1 4 —3p, 3p
yx' 2,3—-2p 1+4p,2
yy' 3-p,1 4+p,2p

Proceeding in this fashion for all remaining cells, we find the Bayesian normal
form representation of the game, as illustrated in the following matrix (Table 7.5):

(@) When p =0.75 (as assumed in part (a) of the exercise) the above matrix
becomes (Table 7.6):
We can now identify player 1’s best responses: when player 2 chooses a (in
the left-hand column), BR;(a) = xy', yielding a payoff of 3; while when player
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Table 7.6 Underlined best

Player 1 Player 2
response payoffs
a b
xx' 275, 1.5 1,2.75
xy' 3,1 1.75, 2.25
x' 2,15 4,2
' 225, 1 475,15

2 selects b (in the right-hand column), BR; (b) = yy', yielding a payoff of 4.75.
Similarly operating for player 2, we obtain that his best responses are
BR;(xx") = b, with a payoff of 2.75 when player 1 selects xx' the first row;
BR,(xy") = b, with a payoff of 2.25 when player 1 chooses xy' in the second
row; BR,(yx') = b, where player 2’s payoff is 2 when player 1 selects yx' in
the third row; and BR,(yy') = b, with a payoff of 1.5 when player 1 chooses
yy' in the bottom row.

Underlining the payoff associated with the best response of each player, we find
that there is a unique BNE in this incomplete information game: (yy', b).

(A) We can now approach this exercise without assuming a particular value for the
probability p. Let us first analyze player 1’s best responses. We reproduce the
Bayesian normal form representation of the game for any probability
p (Table 7.7).

Player 1’s best responses: When player 2 selects the left column (strategy a),
player 1 compares the payoff he obtains from xy’, 3, against the payoff arising in his
other strategies, i.e., 3 >2 + p, 3 > 2, and 3 > 3 — p, which hold for all values of
p. Hence, player 1’s best response to a is xy'. Similarly, when player 2 chooses the
right-hand column (strategy b), player 1 compares the payoff from yy’, 4 + p,
against that in his other available strategies, i.e., 4 +p>1,4+ p >4 —3p and
4 + p > 1 + 4p which hold for all values of p. Hence, player 1’s best response to
b is yy'. Summarizing, player 1’s best responses are BR;(a) =xy and
BR(b) = yy'.

Player 2’s best reponses: Let us know examine player 2’s to each of the four
possible strategies of player 1:

Table 7.7 Bayesian normal Player 1 Player 2
form representation of the

game, for a general a b

probability p xx' 2+p,3-2p ,2+p
xy' 3,1 4 —3p,3p
' 2,3-2p 1+4p,2

»' 3-p,1 4+p,2p
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When player 1 selects xx’, he responds with a if 3 —2p >2 + p, which
simplifies to 1 > 3p that is, if% > p.

When player 1 selects xy’, he responds with a if 1 > 3p or% > p (otherwise he
chooses b)

When player 1 selects yx', he responds with a if 3 — 2p > 2,orl > 2p that is, he
chooses a if 1 > p.

When player 1 selects yy’, he responds with a if 1 > 2p, or if % > p (otherwise
he chooses b).

Figure 7.3 summarizes player 2’s best responses (either a or b), as a function of
the probability p.

We can then divide our analysis into three different matrices, depending on the
specific value of the probability p:

e One matrix for p< §
e A second matrix for p € [§,1], and
e A third matrix for p > %

First case: p< %

In this case, player 2 responds with a regardless of the action (row) selected by
player 1 (see the range of Fig. 7.3 where p < %). This is indicated by player 2’s
payoffs in the matrix of Table 7.8, which are all underlined in the column where
player 1 selects a. Hence, strategy a becomes a strictly dominant strategy for player

p
0 1/3 1/2 1
a when xx’ b when xx’
and xy’ and xy’
a when yx’ and b when yx’
vy’ and yy’
Fig. 7.3 Player 2’s best responses as a function of p
Table 7.8 Bayesian normal Player 1 Player 2
form game with underlined b
best responses when p<1/3 a
xx' 2+p,3-2p L2+p
xy' 3,1 4 —3p, 3p
yx' 2,3-2p 1+4p,2

»' 3-p,1 4+p,2p
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Table 7.9 Bayesian normal Player 1 Player 2

form game with underlined b

best responses if a

12 <p <13 xx' 2+p,3-2p L2+p
xy' 3,1 4-3p,3p
yx' 2,3-2p 1+4p,2
W' 3-p1 4+p2p

Table 7.10 Bayesian Player 1 Player 2

normal form game with b

underlined best responses a

when p>1/2 xx' 2+p,3-2p L2+p
Xy’ 3.1 4=3p.3p
yx' 2,3—-2p 1+4p,2
' 3-p.1 4+p,2p

2 in this context, while player 1’s best responses are insensitive to p, namely,
BR;(a) = xy’ and BR;(b) = yy' (Table 7.8).

In this case, the unique BNE when p < % is (xy', a)
Second case: p € [% ,%]

When p € [%,%}, the intermediate range of p in Fig. 7.3 indicates that player 2
still responds with @ when player 1 chooses yx' and yy', but with b when player 1
selects xx" and xy'. This is indicated in player 2’s payoffs in the matrix of Table 7.9,
which are underlined in the column corresponding to a when player 1 chooses yx’'
and yy' (last two rows), but are underlined in the right-hand column (corresponding
to strategy b) otherwise (Table 7.9).

In this case there is no BNE when we restrict players to only use pure strategies.
Third case: p > 1

Finally, when p > %, Fig. 7.3 reminds us that player 2 best responds with
strategy b regardless of the action (row) selected by player 1, i.e., b becomes a
strictly dominant strategy. This result is depicted in the matrix of Table 7.10, where
player 2’s payoffs corresponding to b are all underlined (see right-hand column)
(Table 7.10).

In this case the unique BNE is (yy’, ). (Note that this BNE is consistent with
part (a) of the exercise, where p was assumed to be 0.75, and thus corresponds to
the third case analyzed here p > % Needless to say, we found the same BNE as in

the third case).

Exercise 3—More Information Might Hurt®

Show that more information may hurt a player by constructing a two-player game
with the following features: Player 1 is fully informed while player 2 is not; the
game has a unique Bayesian Nash equilibrium, in which player 2’s expected payoff
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Table 7.11 “More information might hurt” game

Player 2 Player 2
L R L R
U 0,0 -1000,50 U 100, 1 1,2
D 50, -1 25,25 D 99,4 2,1
Player 2 is low type Player 2 is high type

is higher than his payoff in the unique equilibrium of any of the related games in
which he knows player 1’s type.

Answer

Player 2 is fully informed about the types of both players, while player 1 is only
informed about his own type. The following payoff matrices describe this incom-
plete information game (Table 7.11).

Full Information: When both players know player 2’s type, we have a unique
Nash Equilibrium (NE), both when player 2’s type is low and when its type is high.
We next separately analyze each case.

Player 2 is low type. As depicted in the left-hand matrix, player 1 finds strategy U
strictly dominated by strategy D. Similarly, for player 2, strategy L is strictly
dominated by strategy R. Hence, the unique strategy pair surviving the iterative
deletion of strictly dominated strategies (IDSDS) is (D, R). In addition, we know
that when the set of strategies surviving IDSDS is a singleton, then such strategy
profile is also the unique NE in pure strategies. Hence, the equilibrium payoffs in
this case are u; = up, = 25.

Player 2 is high type. As depicted in the right-hand matrix, we cannot delete any
strategy because of being strictly dominated. In addition, there doesn’t exist any NE
in pure strategies, since BR; (L) = U and BR;(R) = D for player 1, and BR,(U) =
R and BR,(D) = L for player 2, i.e., there is no strategy profile that constitutes a
mutual best response for both players. We, hence, need to find the MSNE for this
game. Assume that player 2 randomizes between L and R with probability y and
1 — y, respectively. Thus, player 1 is indifferent between playing U and D if:

EU, (Uly) = EU(Dly)
or
y-100+(1—y)- 1=y-99+(1—y)-2

and solving for y, we find that y = J which entails that player 2 chooses L with 1
probability.

We can similarly operate for EU,. Assuming that player 1 randomizes between L
and R with probability x and 1 — x, respectively, player 2 is made indifferent
between L and R if
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EU,(L|x) = EUy(R|x)
or
x1+(1=-x)-4=2x+(1—-x)-1

and solving for x, we obtain that x = %. This is the probability of player 1 playing L
when he knows that P, is high type.
Hence, the unique MSNE for the case of player 2 being high type (right-hand
matrix) is:
SNE = 3 U : D : L : R
MNE_(Z +Z s E +§ )

And the associated expected payoffs for each player are:

3 /1 1 1 /1 1 3101 1 101 404
EU1:—-(—-100+—-1>—|——~(—-99+—-2):—-—+—-—=—

4 \2 2 4 \2 2 4 2 4 2 8
when P; plays U when P, plays D
101
=——=1505
2
1 /3 1 1 /3 1 17 17 17
when P, plays L when P, plays R

Therefore, EU; =50.5and EU, =175 in the MSNE of the

complete-information game in which player 2 is of a high type.
Imperfect Information Case: In this setting, we consider that player 1 is not
informed about player 2’s type. However, player 2 is informed about his own type,
and so he has perfect information. Let m denote the probability (exogenously
determined by nature) that player 2 is of low type i.e., that players interact in the
left-hand matrix.

Player 1. We know that player 1 will take his decision between U and D “in the
dark” since he does not observe player 2’s type. Hence, player 1 will be comparing
EU, (Uly) against EU;(Dly). In particular, if player 1 selects U, his expected payoff
becomes:

EU,(Uly) = 7 - (—1000) + (1=m) [y 1004 (1 —y)-1]
N————
because P, when P, is high—type

always plays R
when being low — type
= —1000m + (1 — m)[100y + (1 — )]
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Note that player 2 plays R when being a low-type because R is a strictly dominant
strategy in that case. When his type is high, however, player 1 cannot anticipate
whether player 2 will be playing L or R, since there is no strictly dominant strategy
for player 2 in this case. We can operate similarly in order to find the expected
utility that player 1 obtains from selecting D, as follows.

EU,(Dly) = n-25 +(1—-m)-[y-994(1—-y)-2]
because P, when P, is high—type

always plays R
when being low — type

L and therefore

For simplicity, assume that this probability is, in particular, © = 5,

l—n= %. Hence, comparing both expected utilities, we have

EU, (Uly) <EU,(Dly)

1000 24 24
T + g[99y+1]<1+ 5[97)/4-2]

and solving for y yields

—1049 48
— <= <21.85
5 250 7
which is always true, since y € [0, 1], thus implying that EU;(U) <EU; (D) holds
for all values of y when ©t = % Hence, the uninformed player 1 chooses D.
More generally, for any value of probability n, we can easily find the difference
EU,(Uly) — EU{(D|y) = 1 +2y — 2n(512 +y)

Hence, EU,(Uly) <EU,(D|y) for all n > ﬁ = 7, which holds for all
y<3, ie., cutoff 7# becomes negative for all y<1, thus implying that @ > 7 is
satisfied since m € [0, 1]. For all y > %, the condition 7 > 7 is not very restrictive
either since cutoff 7 increases from 7 =0 aty = % to 7 = 0.0009 when y = 1, thus
implying that, for most combinations of probabilities 7 and y, player 1 prefers to
choose D. Figure 7.4 depicts this area of (m,y)-pairs, namely that above the &
cutoff, thus spanning most admissible values.

Player 2. Since player 2 (the informed player) can anticipate player 1’s selection
of D (for any value of y), player 2’s best responses become:

BR;(P; always plays D|P; is low type) = R

BR, (P, always plays D, |P, is high type) = L
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Fig. 7.4 Admissible T
probability pairs A

Probability pairs for which
E(U|y) < EUi(D|y)

Cutoff 77

0.009

Therefore, the unique Bayesian Nash equilibrium (BNE) of the game is given by:
(D, RL), where R indicates that the informed player 2 plays R when he is a
low-type, and the second component (L) indicates what he plays when he is a
high-type. The associated payoff for the uninformed player 1 in this BNE is

EU, = n-EU,(D|P, islow type) + (1 — n)EU; (D|P, is high type)
1 24

SN—— SN——
when (D,R) if P,  when (D,L) if P,
is low — type is high-type

Payoff comparison: Therefore, we can show that the uninformed player’s payoff is
higher when he is uninformed (in the BNE) than perfectly informed (in the NE in
pure strategies), both when his opponent’s type is low:

EU, (P, is low type) < EU, — 25<96.04
~~

informed case uninformed case

and similarly for the case in which his opponent’s type is high:

EU, (P, is high type) < EU;  — 50<96.04

informed case uninformed case

As a consequence, “more information may hurt” player 1. Alternatively, he
would prefer to play the incomplete information game in which he does not know
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player 2’s type before selecting between U and D, than interacting with player 2 in
the complete information game in which he can observe player 2’s type before
choosing U or D.

Exercise 4—Incomplete Information in Duopoly Markets”

Consider a differentiated duopoly market in which firms compete by selecting
prices. Let p; be the price chosen by firm 1 and let p, be the price of firm 2. Let g
and ¢, denote the quantities demanded (and produced) by the two firms. Suppose
that the demand for firm 1 is given by ¢; = 22 — 2p; + p», and the demand for firm
2 is given by g, = 22 — 2p, + p;. Firm 1 produces at a constant marginal cost of
10, while firm 2’s constant marginal cost is ¢ > 0. Firms face no fixed costs.

Part (a) Complete information. Consider that firms compete in prices. Represent
the normal form by writing the firms’ payoff functions.

Part (b) Calculate the firms’ best-response functions.

Part (c) Suppose that ¢ = 10 so the firms are identical (the game is symmetric).
Calculate the Nash equilibrium prices in this complete information game.

Part (d) Incomplete information. Now suppose that firm 1 does not know firm 2’s
marginal cost c. With probability 2 nature picks ¢ = 14 and with probability 2
nature picks ¢ = 6. Firm 2 knows its own cost (that is, it observes nature’s move),
but firm 1 only knows that firm 2’s marginal cost is either 6 or 14 (with equal
probabilities). Calculate the best-response function of player 1 and those for player
2 (one for each of its two types, ¢ = 6 and ¢ = 14), and find the Bayesian Nash
equilibrium quantities.

Answer

Part (a) For firm 1, with constant marginal costs of production of ¢ = 10, we have
that its profit function is

1 (p1,p2) =p1 *q1 — 10g; = (p1 — 10)gq; = (p1 — 10)(22 — 2p; +p»)
=42p1 +pip2 — 2p; — 10p; — 220

Similarly, for firm 2, with marginal costs given by ¢ > 0, we have a profit function
of

T (p1,p2) =p2*qr —cxqp = (P2 —¢)g2 = (p2 — ¢)(22 = 2pr +p1)
= (22 +2¢)ps +pip2 — 2p5 — 22¢ — cpy

Part (b) Taking first-order conditions of firm 1’s profit with respect to p; we obtain
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42+ p, — 4p; = 0 and, solving for py, yields firm 1’s best response function p;(pz)
_42+py
4

— (BRF)

Thus, the best response function of firm 1 originates at
1

T
Similarly, taking first-order conditions of 7,(p1, p2) with respect to p, yields,

% and has a vertical slope of

22+4+2c+p1 —4p2 =0
and solving for p,, we obtain firm 2’s best response function

224 2c+
PZ(PI) = % — BRF2

which originates at % and has a vertical slope of %. (Note that if firm 2’s
marginal costs were 10, then % would reduce to % yielding a BRF, symmetric
to that of firm 1.)

Part (c) In this part, the exercise assumes a marginal cost of ¢ = 10. Plugging BRF

into BRF,, we obtain

42  [2f2
1’?2=7£t 1 }

And solving for p, yields an equilibrium price of p5 = $14. We can finally plug
p; = $14 into BRF}, to find firm 1’s equilibrium price

2414
=

pi1(14) = $14

Hence, the Nash equilibrium of this complete information game is the price pair
(i, p5) = (814, 814). Therefore, firm i’s profits in the equilibrium of this complete
information game are

i (pi,pj) = (14 — 10)(22 — 2 % 14+ 14) = $32

Part (d) Incomplete information game. Starting with the informed player (Player 2),
we have that:

e Firm 2’s best-response function evaluated at high costs, i.e., ¢ = 14, BRFY is

22+2x14+p;  50+p
4 4

Py (p1) =
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e Firm 2’s best-response function when having low costs, i.e., ¢ = 6, BRF%, is

py(p1) = y) y)

e The uninformed firm 1 chooses the price p, that maximizes its expected profits

1 1
H})?XE [42171 —|—p1p§1 — Zp% — 101751] + 3 [42171 —|—p1p§ — 217% — IOpé]

where the first term represents the case in which firm 2 has high costs, and thus sets
a price pé’ ; while the second term denotes the case in which firm 2’s costs are low,
setting a price p5. Importantly, firm 1 cannot condition its price, p;, on the pro-
duction costs of firm 2 since, as opposed to firm 2, firm 1 does not observe this
information.

Taking first order conditions with respect to p; we obtain

1 1
5 [424p) —dpi] + 5 [42+p5 —4p ]

or

1 1
42 + EPIQLI'F §p§—4p1 =0

And solving with respect to p; we obtain firm 1’s BRFy (p%, p%), which depends on
P4 and pk, as follows.

424 3p + 3%
pi(pypg) =—, 2=

Plugging p(p1) and p5(p;) into BRF,(p4, pt), we obtain

42+1M+1M
P (Pl ph) = 3 [ 4j 3 [

And solving for p;, we find firm 1’s equilibrium price, pj = $14.
Finally, plugging this equilibrium price p; = $14 into firm 2’s BRFL and BRF%
yields equilibrium prices of

50414

1
y) $16

py(14) =




Exercise 4—Incomplete Information in Duopoly Markets” 233

when firm 2’s costs are high, and

34+ 14

p5(14) = =312

when its costs are low. Thus, BNE of this Bertrand game under incomplete
information is

(php[z_lapé) = (147 167 12)

In this setting, the informed player (firm 1) makes an expected equilibrium profits of

1 (p1,p3 . p3) =% [42% 14414 % 16 — 2 % 14> — 10  16]

1
+5[42*14+14*12—2*142—1o*12]
=$252

while the uninformed player (firm 2) obtains an equilibrium profit of
™ (p1,pY . p5) = (16 — 14)(22 — 2% 16+ 16) = $12
when its costs are high, i.e., ¢ = 14; and
m (p1,py,p5) = (12— 6)(22 — 2 % 12+ 12) = $60

when its costs are low, i.e., ¢ = 6.

Exercise 5—Starting a Fight Under Incomplete
Information®

Consider two students looking for trouble on a Saturday night (hopefully, they are
not game theory students). After arguing about some silly topic, they are in the
verge of a fight. Each individual privately observes its own ability as a fighter (its
type), which is summarized as the probability of winning the fight if both attack
each other: either high, p”, or low, p*, where 0 < p* < p™ < 1, with corresponding
probabilities g and 1 — g, respectively. If a student chooses to attack and its rival
does not, then he wins with probability opX, where K = {H, L}, and « takes a value
such that pX < apX < 1. If both students attack each other, then the probability that a
student with type-k wins is pX. If a type-k fighter does not attack but the other
fighter attacks, then the probability of victory for the student who did not attack
decreases to only fBpX, where f3 takes a value such that 0 < BpX <pX. Finally, if
neither student attacks, there is no fight. A student is then more likely to win the
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fight the higher is his type. A student’s payoff when there is no fight is O, the benefit
from winning a fight is B (e.g., being the guy in the gang), and from losing a fight is
L (shame, red face). Assume that B > 0 > L.

a. Under which conditions there is a symmetric Bayesian-Nash equilibrium in this
simultaneous-move game where every student attacks regardless of his type.

b. Find the conditions to support a symmetric BNE in which every student attacks
only if his type is high.

Answer

Part (a) If one student expects the other to attack for sure (that is, both when his
type is high and low), then it is optimal to attack regardless of his type. Doing so
results in an expected payoff of pB + (1 — p)L, where p is the probability of wining
the fight when both students attack, and not doing so results in an expected payoff
of fpB+ (1 — fp)L, where fip is the probability of wining the fight when the
student does not attack but his rival does. Comparing these expected payoffs, we
obtain that every student prefers to attack if:

pB+ (1 —p)L > fpB+ (1 — fp)L

rearranging yields:

B(p — Bp) > L(p — fp)

or, further simplifying, B>L, which holds by definition since B>0>L. Therefore,
attacking regardless of one’s type is a symmetric Bayesian-Nash equilibrium (BNE).

Part (b) Consider a symmetric strategy profile in which a student attacks only if his
type is high.

High-type student. For this strategy profile to be an equilibrium, we need that
the expected utility from fighting when being a strong fighter must exceed that from
not fighting. In particular,

q[p"B+ (1 —p")L] + (1 — ¢)[op"B+ (1 — ap™)L]
>q[p"B+ (1 = Bp")L] + (1 — ¢)0

Let’s start analyzing the left-hand side of the inequality:

o The first term represents the expected payoff that a type-p” student obtains when
facing a student who is also type p*’ (which occurs with probability ). In such a
case, this equilibrium prescribes that both students attack (since they are both
p"), and the student we analyze wins the fight with probability p (and alter-
natively losses with probability 1 — p/).
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e The second term represents the expected payoff that a type p’ student obtains
when facing a student who is, instead, type p“ (which occurs with probability
1 — g@). In this case, his rival doesn’t attack in equilibrium, increasing the prob-
ability of wining the fight for the student we analyze to ap, where ap” > p/l.

Let us now examine the right-hand side of the inequality, which illustrates the
expected payoff that student p obtains when he deviates from his equilibrium
strategy, i.e., he does not attack despite having a type p/.

e The first term represents the expected payoff that a type-p*’ student obtains when
facing a student who is also p/ (which occurs with probability ¢). In such a case,
the student we analyze doesn’t attack while his rival (also of type H) attacks,
lowering the chances that the former wins the fight to fp’, where pp" <p®.

e If, in contrast, the type of his rival is pL, then no individual attacks and their
payoffs are both zero.

Rearranging the above inequality, we obtain:

q[pHB—i— (1 —pH)L] + (1 = q)[op™B+ (1 — ap™)L]
> q[Bp" B+ (1 = pp") L]+ (1 — )0

Factoring out B and L, we have

Blgp" +ap™ — qap™ — qPp"] > Ligp" + op™ — qop™ — gpp" — (1 — q)]

and solving for B, yields

_ l1—gq
BZL(l pH[q(l—ﬁ)+(1—q)a]>

Since (1 — ¢) > 0and p“[q(1 — B) + (1 — q)a] > 0, the term in parenthesis sat-

: _ (1-9)
isfies (1 PR + (1=0)7]

B > L.Forinstance, if p = 0.8, 2 = 1.3, and § = 0.8, the above inequality becomes

1+3¢q
B>L| —|.
- <22q—26>

If, for instance, losing the fight yields a payoff of L = —2, then Fig. 7.5 depicts
the (B, g)-pairs for which the high-type student starts a fight, i.e., shaded region.
Intuitively, the benefit from winning, B, must be relatively high. This is likely when
the probability of the other student being strong, ¢, is relatively low. For instance,
when g = 0, B only needs be larger than 1/13 in this numerical example for the
student to start a fight. However, when his opponent is likely strong, i.e., g ap-
proaches 1, the benefit from winning the fight must be much higher (large value of
B) for the high-type student to start a fight.

) <1, and this condition holds by the initial condition
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Fig. 7.5 (B, p)-pairs for B
which the high-type student 20}
fights (shaded region)

0.5

-
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Low-type student. Let us now examine the student of type p’. Recall that,
according to the equilibrium we analyze, this student prefers to not attack. That is,
his expected utility must be larger from not attacking than attacking, as follows.

q[Br*B+ (1 - Bp")L] + (1 — ¢)0
>q[p"B+ (1 — p")L] + (1 — q)[op"B+ (1 — ap")L].

An opposite intuition as above can be constructed for this inequality, i.e., a student
prefers not to attack when it type is p*. In this case, rearranging we obtain:

q[Bp"B+ (1 — Bp")L] + (1 — ¢)0
> qlp"B+ (1 — p") L]+ (1 — q)[p"B+ (1 — ap")L]

Factoring out B and L, and solving for B, yields

BZL(I p‘[qﬁ—oqua—q})

Since (1 — q) > 0 and p*[gB — o+ qo — q] > 0, the term in parenthesis satisfies

(1— 1-q )<1
plap — a+qo — 4

As a consequence, the above inequality is also implied by the initial condition
B> L. Following a similar numerical example as above, where
pl=04,0=1.3,5=0.8, we obtain B> 2L(18g—19) Using the same numerical

1113
example as for the high-type player, this yields a cutoff B > Z?JZ%’,

ative for all values of ¢, and thus satisfied for any positive benefit from winning the
fight, B > 0.

which is neg-



Introduction

In this chapter we examine different auction formats, such as first-, second-, third-
and all-pay auctions. Auctions are a perfect setting in which to apply the Bayesian
Nash Equilibrium (BNE) solution concept learned in Chap. 7, since competing
bidders are informed about their private valuation for the object for sale, but are
uninformed about each other’s valuations. Since, in addition, bidders are asked to
simultaneously and independently submit their bids under an incomplete infor-
mation environment; we can use BNE to identify equilibrium behavior, namely,
equilibrium bidding strategies. In order to provide numerical examples, the fol-
lowing exercises often depict equilibrium bids for the case in which valuations are
distributed according to a uniform distribution.

We start analyzing of the first-price auction (whereby the bidder submitting the
highest bid wins the auction and must pay his bid), and show how to find equi-
librium bids using two approaches (first order conditions, and the envelope theo-
rem). We also investigate the effect of a larger number of competing bidders on
players’ equilibrium bids, showing that players become more aggressive as more
bidders compete for the object. Exercise 8.2 then examines the second-price auc-
tion, where the winner of the object is still the bidder submitting the highest bid.
However, the winner does not pay his own bid, but the second highest bid.
Exercises 8.3 and 8.4 move to equilibrium bids in the so-called “all pay auction,”
whereby all bidders, irrespective of whether they win the object for sale, must pay
the bid they submitted.

We afterwards compare equilibrium bidding functions in the first-, second- and
all-pay auction. In Exercise 8.5, we explore third-price auctions, where the winner
is the bidder who submits the highest bid (as in all previous auction formats), but
he/she only pays the third highest bid. Finally, we introduce the possibility that
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bidders are risk averse, and examine how equilibrium bidding functions in the first-
and second-price auctions are affected by players’ risk aversion.

Exercise 1—First Price Auction with N Bidders®

Consider a first-price sealed-bid auction in which bidders simultaneously and
independently submit bids and the object goes to the highest bidder at a price equal
to his/her bid. Suppose that there are N >2 bidders and that their values for the
object are independently drawn from a uniform distribution over [0,1]. Player i’s
payoff is v — b; when she wins the object by bidding b; and her value is v; while her
payoff is O if she does not win the object.

Part (a) Formulate this auction as a Bayesian game.

Part (b) Let b;(v) denote the bid made by player i when his valuation for the object
is v. Show that there is a Bayesian Nash Equilibrium in which bidders submit a bid
which is a linear function of their valuation, i.e., b;(v) = a+ fv for all i and v,
where parameters o and f satisfy o, f > 0. Determine the values of « and f.

Solution
First, note that the expected payoff of every bidder i with valuation v; is given by:

vi — b; if by > maxb;
b JF#
wi(bi,b_iyvi)) ={ "5+ i bi= n]);'zllxbj
0 lf‘ b,‘ < max bj
J#i

where, in the top line, bidder i is the winner of the auction, since his bid, b;, exceeds
that of the highest competing bidder, max;.; b;. In this case, his net payoff after
paying b; for the object is v; — b;. The bottom line, bidder i loses the auction, since
his bid is lower than that of the highest competing bidder. In this case, his payoff is
zero. Finally, in the middle line, there is a tie, since bidder i’s bid coincides with
that of the highest competing bidder. In this case, the object is assigned with equal
probability among the two winning bidders.

Part (a) To formulate this first price auction (FPA) as a Bayesian game we need to
identify the following elements:

e Set of N players (bidders).

e Set of actions available to bidder i, A;, which in this case is the space of
admissible bids b; € [0, 00), i.e., a positive real number.

e Set of types of every bidder 7, T;, which in this case is just his set of valuations
for the object on sale, i.e., v; € [0, 1].

e A payoff function u;, as described above in u;(b;, b_;,v;).
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e The probability that bidder i wins the auction is, intuitively, the probability that
his bid exceeds that of the highest competing bidder, i.e., p; = prob;(win) =
prob;(b; > max;y; b;).

Hence, the Bayesian game is compactly defined as: G = <N, (A;);cy, Tl
(i) ien-Pi >

Part (b) Let b;(v;) denote the bid submitted by bidder i with type (valuation) given
by v;. First, note that bidder i will not bid above his own valuation, given that it
constitutes a strictly dominated strategy: if he wins he would obtain a negative
payoff (since he has to pay for the object a price above his own valuation), while if
he loses he would obtain the same payoff submitting a lower bid. Therefore, there
must be some “bid shading” in equilibrium, i.e., bidder i’s bid lies below his own
valuation, b; <v, or alternatively, b;(v) = a4 fv <v. Hence, we need to show that
in a FPA there exists a BNE in which the optimal bidding function is linear and
given by b;(v) = o+ fv for every bidder i, and for any valuation v.

Proof First, we will find the optimal bidding function using the Envelope Theorem.
Afterwards, we will show that the same bidding function can be found by differ-
entiating the bidder’s expected utility function with respect to his bid i.e., the
so-called first-order approach (or direct approach). For generality, the proof does
not make use of the uniform distribution U ~ [0, 1], i.e., F(v) = v, until the end.
(This would allow you to use other distribution functions different from the uniform
distribution.)

Envelope Theorem Approach

Let’s take a bidder i whose valuation is given by v; and who is considering to bid
according to another valuation z; # v; in order to obtain a higher expected payoft.
His expected payoff of participating in the auction will then be given by:

EU;(v,z) = probi(win)[v; — bi(z;)]

where the probability of winning is given by:
prob;(win) = prob, (m;.x bi(v) < bi(zi)> = prob; (m;lx vj <z,-)
J7t JF#i

given that we assume that the bidding function, b;(-), is monotonically increasing,
and all bidders use the same bidding function. [Note that this does not imply that
bidders submit the same bid, but just that they use the same function in order to
determine their optimal bid.] In addition, the probability that valuation z; lies above
of the other bidder’s valuation, v; is F(z;) = prob(v;<z;). Therefore, the proba-
bility that z; exceeds all other N — 1 competing bidders’ valuations is
F(z) - F(z)...F(z) = F(z;)"™", thus implying that the expected utility from par-
ticipating in the auction can be rewritten as
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EU(vi,z) = F(z)" ' [vi — bi(z:)).

Bidder i then chooses to bid according to a valuation z; that maximizes his expected
utility

dEU,'(V, Z)

o= N = DF@)Y S (@) [ = ba)] = Fa) B (@) = 0

For l;i(v) to be an optimal bidding function, it should be optimal for the bidder
not to pretend to have a valuation z; different from his real one, v;. Hence z; = v;

and b(z;) = b(v), implying that the above first-order condition becomes
(N = DF)"7f @) [vi = b)) = FOv)" '8 (v) = 0
And rearranging
(N = DFW)"2f)b(v) + FO0)Y 15 (v) = (N = DF ()" 2 f (v)v

Note that the left-hand side of the above expression can be alternative repre-

dF(v)"'b(v)
dv

sented as . Hence we can rewrite the above expression as

dF(v)N 'h(v)

T (V= DFO) 0y

Applying integrals to both sides of the equality, we obtain:

FOY'b) = [(N = 1)F(x)" 2 (x)xd
0

Hence, solving for the optimal bidding function l;(v), we find

v

. 1
() = ey [ (V= PG )
F(v)
0
Finally, since dF (x)" ™' = (N — 1)F(x)" ?f(x), we can more completely express

the optimal bidding function in the FPA as:

F(V)N_l

b(v) = ! /xdF(x)N_l
0
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Direct Approach

We can confirm our previous result by finding the optimal bidding function without
using the Envelope Theorem. Similarly as in our above approach, bidder i wins the
object when his bid, b;, exceeds that of the highest competing bidder that is

prob(win) = prob(B(Y) <b;)

where Y is the highest valuation among the N — 1 remaining bidders (the highest
order statistic), and f(-) is the symmetric bidding function that all bidders use. We
can, hence, invert this bidding function, to express bidder i’s probability of winning
in terms of valuations (rather than in terms of bids),

prob(B(Y1) <b;) = prob(Yi <~ (b)) = G(~' (b)) (8.1)

where in the first equality we apply the inverse of the bidding function [371 (-) on
both sides of the inequality inside the parenthesis. Intuitively, we move from
expressing the probability of winning in terms of bids to expressing it in terms of
valuations, where Y; is the valuation of the highest competing bidder and ' (b;) is
bidder i’s valuation. Figure 8.1 depicts the bidding function of bidder i: when he
has a valuation v; for the object on sale, his bid becomes f(v;). If, observing such a
bid, we seek to infer his initial valuation, we would move from the vertical to the
horizontal axes on Fig. 8.1 by inverting the bidding function, i.e., f~! (vi) = ;.

The second equality of expression (8.1) evaluates the probability that the val-
uation of all competing bidders is lower than the valuation of bidder i (given by
B (bi) = vi).

Hence, the expected payoff function for a bidder with valuation v; can be
rewritten as:

EU;(v;) = G(B~' (1)) [vi — bi]

Fig. 8.1 Bidding function b; 4

b= B(v)
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We can now take first-order conditions with respect to bidder i’s bid, b;, in order to
find which is his optimal bid,

dEU(vi) _ g(B~' (b)) - _
B = B oy O B0) =0

and rearranging,

8B (b)) [vi — bi] — BB~ (:))G(B~' (b)) =0

Given that in equilibrium we have that f/(v) = b; we can invert this function to
obtain v = ! (b;); as depicted in Fig. 8.1. As a consequence, we can rewrite the
above expression as:

g(vi)(vi — B(vi)) — B(vi)G(vi) =0,

Or more compactly as,

gi)B(vi) + B(vi)G(vi) = g(vi)vi

Similarly as in our proof using the Envelope Theorem, note that the left-hand side

can be alternatively expressed as %ﬂv’ﬂ, implying that the equality can be

rewritten as:

dp(vi)G(vi)]

dv; =8 (v,-)v,-

Integrating on both sides, yields
BOGO:) = [ eblydy-+C,
0

where C is the integration constant and it is zero given that $(0) = 0, i.e., a bidder
with a zero valuation for the object can be assumed to submit a zero bid. Hence,
solving for the optimal bid (v;) we find that the optimal bidding function in a FPA is:

v

) = g | sy

0

Equivalent Bidding Functions. Let us now check that the two optimal bidding
functions that we found (the first one with the Envelope Theorem approach, and the
second with the so-called Direct approach) are in fact equivalent.
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First note that G(x) = F(x)" ', and differentiating with respect to x yields
G'(x) = (N — 1)F(x)"?f(x). Hence, substituting into the expression of the opti-

mal bidding function that we found using the Direct approach, we obtain:

v 4

)= — 1 - )V 72 (x)xdx
B) = o / BNy = / (N~ DF()Y f(x)d

. N-2 _ dF(x)M! s g
And noting that (N — 1)F(x)" “f(x) = =—5—, we can express this bidding

function as f(v;) = W [ xdF (x)M~!, which exactly coincides with the optimal
0

bidding function we found using the Envelope Theorem. Hence, f(v;) = b(v;), and
both methods are equivalent.

Uniformly Distributed Valuation. Given that in this case we know that the val-
uations are drawn from a uniform cumulative distribution F(x) = x with density
f(x) =1 and support [0,1], we obtain that:

FON ' =W and dF(0)V ' = (N — DXV lax
Therefore, the optimal bidding function l;(vi) in this case becomes
b(vi) = — VN DY 2dy = ) VN 1)x"'d
(Vi)—v]T] xX(N —1) X—V,T] (N—-1) X
0 0

rearranging,

D BB
0 0

yN-1 % N

(N—1W N-—1
Tt N N Y

Comparative Statics: More Bidders. Hence, the optimal bidding function in a
FPA with N bidders with uniformly distributed valuations is

- N -1
b(V,‘) = N Vi

Therefore, when we only have N = 2 bidders, their symmetric bidding function
is %v. Interestingly, as N increases, bidders also increase their bid, i.e., from %v
when N = 2, to 2v when N = 3, and to {55 v when N = 100; as depicted in Fig. 8.2.
Intuitively, their bids get closer to their actual valuation for the object i.e., the
equilibrium bidding functions approach the 45°-line where b; = v;. Hence, bidders
reduce their “bid shading” as more bidders compete for the same object.
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bi
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Fig. 8.2 Equilibrium bidding function in FPA with more bidders

Hence,
the optimal bidding function corresponds to the linear function
b(v;) = a+ v, where:

e o = 0 (vertical intercept is zero) because we have assumed that the optimal bid
for a bidder with a valuation of zero is zero, b(0) = 0.

o = W [ xdF (x)N ~! which is the slope of the bidding function, e.g., under
0

uniformly distributed valuations f = ]% It represents to what extent the bidder
shades his own valuation. In the case with two bidders, every player just bids
half of his valuation, whereas with more competing bidders, bidder i would
submit bids closer to his own valuation; graphically pivoting the bidding
function towards the 45°-line where no bid shading occurs.

Exercise 2—Second Price Auction®

Consider a setting where every bidder privately observes his/her own valuation for
the object. In addition, assume that N bidders interact in an auction in which they
simultaneously and independently submit their own bids, the highest bidder wins
the object, but he/she pays the second-highest bid (this is the so-called second-price
auction, SPA). All other bidders pay zero.

a. Argue that it is a weakly dominant strategy for a bidder to bid her value in the
SPA.

b. Are optimal bids affected if the joint distribution of bidders’ values exhibits
correlation, i.e., if bidder i observes that he has a high valuation for the object he
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can infer that other bidders must also have a high valuation (in the case of
positively correlated values) or that, instead, they must have a low valuation for
the object (in the case of negatively correlated values)?

c. Are optimal bids affected by the number of bidders participating in the auction?
Are optimal bids affected by bidders’ risk aversion?

Part (a) Let r; = max;; b; be the maximum bid submitted by the other players
(different from bidder ). Suppose first that player i is considering bidding above his
own valuation, i.e., b; > v;. We have the following possibilities:

e If r; > b; > v;, bidder i does not win the object (or he does so in a tie with other
players). However, his expected payoff is zero (if he loses the auction) or
negative (if he wins in a tie), thus implying that he obtains the same (or lower)
payoff than when bids his own valuation, v;.

e If b; > r; > v, player i wins the object but gets a payoff of v; — r; < 0; he would
be strictly better off by bidding v; and not getting the object (i.e. obtaining a
payoff of zero).

e If b, > v; > r;, player i wins the object and gets a payoff of v; — r; = 0. However,
his payoff would be exactly the same if he were to bid his own valuation v;.

We can apply a similar argument to the case in which bidder i considers bidding
below his valuation, b; < v;.

e When r; > v; > b;, bidder i loses the object since the highest competing bid, r;,
is higher than his bid, b;. In this setting, bidder i’s expected payoff would be
unchanged if he were to submit a bid equal to his own valuation, b; = v;, instead
of b; < v,

e If, however, the highest competing bid, r;, lies between bidder i’s valuation and
his bid, i.e., v; > r; > b;, the bidder would be forgoing a positive payoff by
underbidding. He currently loses the object (and gets a zero payoff) whereas if he
bids b; = v;, he would win the object and obtain a positive payoff of v; — r; > 0.
Therefore, bidder i does not have incentives to submit a bid below his valuation
for the object.

This argument, hence, establishes that bidding one’s valuation is a weakly
dominant strategy, i.e., submitting bids that lie above or below his valuation will
provide him with exactly the same utility level as he obtains when submitting his
valuation, or a strictly lower utility; thus implying that the bidder does not have
strict incentives to deviate from b; = v;.

Part (b) By the definition of weak dominance, this means that bidding one’s
valuation is weakly optimal no matter what the bidding strategies of the other
players are. It is, therefore, irrelevant how the other players’ strategies are related to
their own valuations, or how their valuations are related to bidder i’s own valuation.
In other words, bidding one’s valuation is weakly optimal irrespectively of the
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presence of correlation (positive or negative) in the joint distribution of player’s
values.

Part (c) The above equilibrium bidding strategy in the SPA is, importantly, unaf-
fected by the number of bidders who participate in the auction, N, or their risk-aversion
preferences. In terms of Fig. 8.2 in Exercise 8.1, this resultimplies that the equilibrium
bidding function in the SPA, b;(v;) = v;, coincides with the 45°-line where players do
not shade their valuation for the object. Intuitively, since bidders anticipate that they
will not have to pay the bid they submitted, but that of the second-highest bidder, every
bidder becomes more aggressive in his bidding behavior. In particular, our above
discussion considered the presence of N bidders, and an increase in their number does
not emphasize or ameliorate the incentives that every bidder has to submit a bid that
coincides with his own valuation for the object, b;(v;) = v;. Furthermore, the above
results remain valid when bidders evaluate their net payoff according to a concave
utility function, such as u(w) = w*, where o € (1,0), thus, exhibiting risk aversion.
Specifically, for a given value of the highest competing bid, r;, bidder i’s expected
payoff from submitting a bid b;(v;) = v; would still be weakly larger than from
deviating to a bidding strategy strictly above his own valuation for the object,
bi(v;) > v;, or strictly below it, b;(v;) <v;.

Exercise 3—All-Pay Auction®

Modify the first-price, sealed-bid auction in Exercise 8.1 so that the loser also pays
his bid (but does not win the object). This modified auction is the so-called the
all-pay auction (APA), since all bidders must pay their bids, regardless whether
they win the object or not.

Part (a) Show that, in the case of two bidders, there is a Bayesian Nash Equilibrium
in which every bidder i’s optimal bidding function is given by b;(v) = 7+ v + ¢v?
for all i and v where y, d, ¢ >0, i.e., every bidder submits a bid which is a convex
function of his private valuation v for the object.

Part (b) Analyze how the optimal bidding function varies in the number of bidders, N.
Part (c) How do players’ bids in the APA compare to those in the first price
auction? What is the intuition behind this difference in bids?

Solution
In this case, the payoff function for bidder i with valuation v; will be:

Vi — b; lf b; > maxbj
, J#i
ui(biab—ivvi) = WT, lfbl :n]ljz'lej

—b; lf b;< fnax bj
J#i

This payoff function coincides with that of the FPA, except for the case in which
bidder i’s bid is lower than that of the highest competing bidder, i.e., b; < max;; b,
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and thus loses the auction (see bottom row), since in the APA bidder i must still pay his
bid, implying that his payoffin this event is —b;; as opposed to a payoff zero in the FPA.

We need to show that there exists a BNE in which the optimal bidding function in
the APA is given by the convex function b;(v) =y + v + ¢v?, for every bidder
i with valuation v. (Similarly as in Exercise 8.1, we only consider that bidders’
valuations are distributed according to a uniform distribution function U ~ [0, 1] after
finding the optimal bidding function for any cumulative distribution function F(x).)

Proof The expected payoff of a bidder i with a real valuation of v; but bidding
according to a different valuation of z; # v; is:

EU;(v,z) = prob;(win)(v; — bi(z;)) + (1 — prob;(win))(—b;(z;))
where, if winning, bidder i obtains a net payoff v; — b;(z;); but, if losing, which

occurs with probability 1 — prob;(win), he must pay the bid he submitted. Similarly
to the FPA, his probability of wining is also given by

prob;(win) = prob; (mﬁx bi(vy) <b[(zi)) = prob; (mjx vj<zi) =F(z)" ",
J7L JFI

since we assume a symmetric and monotonic bidding function. Hence, the expected
utility from participating in a APA can be rewritten as

EUi(v,2) = F(z)" ' (vi — biz))) + [1 - F(Zi)Nil] (=bi(z))
or, rearranging, as:
EUi(v,2) = F(z)""'vi = bi(z)
Intuitively, if winning, bidder i enjoys his valuation for the object, v;, but he
must pay the bid he submitted both when winning and losing the auction. For
completeness, we next show that bidding function b;(v) = y + dv + ¢v? is optimal

in the APA using first the Envelope Theorem approach and afterwards using the
so-called Direct approach.

Envelope Theorem Approach

Since the bidder is supposed to be utility maximizing, we can find the following
first-order condition using the Envelope Theorem:

dEU,'(V, Z)
dz;

db[(z,')

=0
dz;

= (N = D)F ()" *f(zi)vi —
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Hence, for b;(v) to be an optimal bidding function, it should not be optimal for
the bidder to pretend to have a valuation z; different from his real one, v;, Hence
z; = v;, which entails that the above first-order condition becomes

db[(v[)

(N = DF ()" f (vi)vi = v,

Given that this equality holds for every valuation, v, we can apply integrals on both
sides of the equality to obtain,

v

b(v;) = / (N — 1)F(x)N*f(x)xdx + C,

0

where C is the constant of integration, which equals O given that 13(0) = 0. Hence,
using the property that dF (x)" " = (N — 1)F(x)"*f(x), we obtain that the optimal
bidding function for this APA is:

v

b(v;) = / xdF (x)" ™!

0

Direct Approach

We can alternatively find the above bidding function by using a methodology that
does not require the Envelope Theorem. We know that bidder i wins the auction if
his bid, b;, exceeds that of the highest competing bidder, f(Y;), where Y, represents
the highest valuation among the N — 1 remaining bidders (the first order statistic).
Hence, the probability of winning is given by:

prob(win) = prob(B(Y\) <b;) = prob(Y1 < B~ (b)) = G(B~" (b:))" "

(for a discussion of this expression, see Exercise 8.1). Thus, the expected payoff
function for a bidder with valuation v; is given by:

EU;(vi) = G(B~" (b)) (vi — bi) + [1 = G(B~" (b:)) ] (—b1)
or, rearranging,

EU;i(vi) = G(B~" (b:))vi — b;
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We can now take first-order conditions with respect to the optimal bid of this
player, b;, obtaining

dEU(v) _g(B' () | _,

dbi B (B (b))

Multiplying both sides by ﬁ'(ﬁfl(bi)), and rearranging,

g(B B)vi— B (B (i) =0

Given that in equilibrium we have that f(v;) = b;, we can invert this bidding
function to obtain v; = [371 (b;), Therefore, we can rewrite the above expression as:

gvi)vi — B'(vi) =0, oras f'(vi) = g(vi)vi
Given that this equality holds for any value of v, we can integrate on both sides of
the equality, to obtain f(v) = }g(y)ydy+ C, where C is the integration constant
which is zero given that 5(0) :00. Thus, the optimal bidding function in an APA is:

vV

B(v) = /g(y)y dy

0

Equivalent Bidding Functions. Let us now check that the two optimal bidding
functions that we found (the first using the Envelope Theorem approach, and the
second with the Direct approach) are in fact equivalent. First, note that G(x) =
F(x)"™" and, hence, its derivative is g(x) = (N — 1)F(x)" ?f(x). Substituting
g(x) into the expression of the optimal bidding function that we found using the
Direct approach, yields

B = [ = P o = [ xaro™

0 0

since (N — )F(x)"2f(x) = dF(x)"". Hence, B(v;) = b(v;) and both methods
produce equivalent bidding functions.

Uniform distribution. Given that in this case we know that the valuations are
drawn from a uniform distribution F(x) = x with density f{x) = 1 and support [0,1],
F(x)"' = x¥~! and its derivate is dF(x)" "' = (N — 1)x¥"2dx, implying that the
optimal bidding function becomes

I;(vi)—7x(N—l)x’v_zdx—(N—l)ny_ldx—(N—l){x—NK N=Tn
0

0
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Therefore, in the case of N =2 bidders, the optimal bidding function for the

APA will be b(v;)

%v%, as depicted in Fig. 8.3.

Hence, this (convex) optimal bidding function corresponds to b;(v;) =
7+ 0v + ¢v? where y = 0 (vertical intercept is zero) because we have assumed that

the optimal bid for a bidder with a valuation of zero is zero, i.e., b;(0) = 0; 6 = 0
and ¢ = 1/2, which implies that the optimal bidding function is non linear.

(b) When increasing the number of bidders, N, we obtain a more convex function.
Figure 8.4 depicts the optimal bidding function in the APA with two bidders,

%, three bidders,

and ten bidders, t5v'?. Intuitively, as more bidders

compete for the object, bid shading becomes substantial when bidder i has a
relatively low valuation, but induces him to bid more aggressively when his
valuation is likely the highest among all other players, i.e., when v; — 1.
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Fig. 8.4 Comparative statics of the optimal bidding function in the APA
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Fig. 8.5 Optimal bidding functions in FPA versus APA

(c) Figure 8.5 compares the optimal bidding function (for the case of uniformly
distributed valuations and two bidders) in the FPA against that in the APA.

As we can see in Figure 8.5, every bidder in the APA bids less aggressively than
in the FPA, since he has to pay the bid he submits, i.e., the optimal bidding function
for the APA lies below that of the FPA. More formally, the optimal bidding
function in the FPA, b4 (v) = X1y, lies above that in the APA, b4 (v) = N=LyN,
since the difference

(N—1)(v =)

bFPA (V) _ bFPA(V) _ N

is positive, since N > 2 and v > vV, graphically, the 45°-line lies above any convex

function such as vV.

Exercise 4—All-Pay Auctions (Easier Version)?

Consider the following all-pay auction with two bidders privately observing their
valuation for the object. Valuations are uniformly distributed, i.e., v; ~ U[0, 1]. The
player submitting the highest bid wins the object, but all players must pay the bid
they submitted. Find the optimal bidding strategy, taking into account that it is of
the form b;(v;) =m - vl.z7 where m denotes a positive constant.

Solution

e Bidder i’s expected utility from submitting a bid of x dollars in an all-pay
auction is
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EU;(x|v;) = prob(win) - v; — x

where, if winning, bidder i gets the object (which he values at v;), but he pays his
bid, x, both when winning and losing the auction

e Let us now specify the probability of winning, prob(win). If bidder i submits a
bid $x using a bidding function x = m - v, we can recover the valuation v; that
generated such a bid, i.e., solving for v;inx = m - vf we obtain \/% = v;. Hence,
since valuations are distributed according to v; ~ U[0,1], the probability of
winning is given by

X X
prob(vj <vl~) = prob <vj < \/n:> =\

e Therefore, the above expected utility becomes

EU;(x|v;) = \/; SV — X
m

Taking first-order conditions with respect to the bid, x, we obtain

X

LA
+2x7

and solving for x, we find bidder i’s optimal bidding function in the all-pay auction

1

bi(vi) = — v}

() = 5V

e If, for instance, m = 0.5, this bidding function becomes b;(v;) =3 -v;. Fig-
ure 8.6 depicts this bidding function, comparing it with bids that coincide with
players’ valuation for the object, i.e., b; = v; in the 45°-line. (For a more general
identification of optimal bidding functions in APAs, see Exercise #3.)

Exercise 5—Third-Price Auction®

Consider a third-price auction, where the winner is the bidder who submits the
highest bid, but he/she only pays the third highest bid. Assume that you compete
against two other bidders, whose valuations you are unable to observe, and that
your valuation for the object is $10. Show that bidding above your valuation (with a
bid of, for instance, $15) can be a best response to the other bidders’ bid, while
submitting a bid that coincides with your valuation ($10) might not be a best
response to your opponents’ bids.
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Fig. 8.6 Optimal bidding function in the APA

Solution

o If you believe that the other players’ bids are $5 and $12, then submitting a bid
that coincides with your valuation, $10, will only lead you to lose the auction,
yielding a payoff of zero. If, instead, you submit a bid of $15, your bid becomes
the highest of the three, and you win the auction. Since, upon winning, you pay
the third highest bid, which in this case is only $5, your net payoff is
vi—p=10—5=35.

e Therefore, submitting a bid above your own valuation for the object can be a
best response in the third-price auction. Intuitively, this occurs if one of your
competitors submits a bid above your own valuation, while the other submits a
bid below your valuation.

Exercise 6—FPA with Risk-Averse Bidders®

In previous exercises, we assumed that both the seller and all bidders are risk neutral.
Let us next analyze how our equilibrium results would be affected if bidders are risk
averse, i.e., their utility function is concave in income, w, and given by u(w) = w?,
where 0 <o <1 denotes bidder i’s risk-aversion parameter. In particular, when o =
1 he is risk neutral, while when « decreases, he becomes risk averse.'

' An example you have probably encountered in intermediate microeconomics courses includes the
concave utility function u(x) = /x since \/x = x'/2. As a practice, note that the Arrow-Pratt

coefficient of absolute risk aversion r4(x) = — l;((;)) for this utility function yields 1% confirming

that, when o = 1, the coefficient of risk aversion becomes zero, but when 0 <o < 1, the coefficient
is positive. That is, as a approaches zero, the function becomes more concave.
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Part (a) Find the optimal bidding function, b(v;), of every bidder i in a FPA where
N = 2 bidders compete for the object and where valuations are uniformly dis-
tributed U ~ [0, 1].

Part (b) Explain how this bidding function is affected when bidders become more
risk averse.

Solution

First, note that the probability of winning the object is unaffected, since, for a
symmetric bidding function b;(v;) =a-v; for bidder i, where a € (0,1), the
probability that bidder i wins the auction against another bidder j is

prob (bi > b,) = prob(bi >a- vj) = prob <% > vj> :%

where the first equality is due to the fact that b; = a - v;, the second equality rear-
ranges the terms in the parenthesis, and the last equality makes use of the uniform
distribution of bidders’ valuations. Therefore, bidder i’s expected utility from par-
ticipating in this auction by submitting a bid b; when his valuation is v; is given by

bi
EU,'(b[‘V,‘) =—X (V,’ — b,‘)l
a

where, relative to the case of risk-neutral bidders analyzed in Exercise 8.1, the only
difference arises in the evaluation of the net payoff from winning, v; — b;, which it is
now evaluated with the concave function (v; — b;)”. Taking first-order conditions
with respect to his bid, b;, yields

b

1 o i o—1
- i_bi - i_bi :07
~ (i = b= (v~ by)

and solving for b;, we find the optimal bidding function,

Vi
1+o

b,‘(V,‘) =

Importantly, this optimal bidding function embodies as a special case the context
in which bidders are risk neutral (as in Exercise 8.1). Specifically, when o =1,
bidder i’s optimal bidding function becomes b;(v;) = %. However, when his risk
aversion increases, i.e., a decreases, bidder i’s optimal bidding function increases.
Specifically,

Ox(v;) Vi

o (1-a)’

which is negative for all parameter values. In the extreme case in which a decreases
to a — 0, the optimal bidding function becomes x(v;) = v;, and players do not
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Fig. 8.7 Risk aversion and optimal bidding strategies in the FPA

practice bid shading. Figure 8.7 illustrates the increasing pattern in players’ bidding
function, starting from 3 when bidders are risk neutral, « = 1, and approaching the
45-degree line (no bid shading) as players become more risk averse.

Intuitively, a risk-averse bidder submits more aggressive bids than a risk-neutral
bidder in order to minimize the probability of losing the auction. In particular,
consider that bidder i reduces his bid from b; to b; — ¢. In this context, if he wins the
auction, he obtains an additional profit of ¢, since he has to pay a lower price for the
object he acquires. However, by lowering his bid, he increases the probability of
losing the auction. Importantly, for a risk-averse bidder, the positive effect of
slightly lowering his bid, arising from getting the object at a cheaper price, is offset
by the negative effect of increasing the probability that he loses the auction. In other
words, since the possible loss from losing the auction dominates the benefit from
acquiring the object at a cheaper price, the risk-averse bidder does not have
incentives to reduce his bid, but rather to increase it, relative to risk-neutral bidders.



Introduction

This chapter examines again contexts of incomplete information but in sequential
move games. Unlike simultaneous-move settings, sequential moves allow for
players’ actions to convey or conceal the information they privately observe to
players acting in subsequent of the game and who did not have access to such
information (uninformed players). That is, we explore the possibility that players’
actions may signal certain information to other players acting latter on in the game.

In order to analyze this possibility, we first examine how uninformed players
form beliefs upon observing certain actions, by the use of the so-called Bayes’ rule
of conditional probability. Once uninformed players update their beliefs, they
optimally respond to other players’ actions. If all players’ actions are in equilibrium,
then such strategy profile constitutes a Perfect Bayesian Equilibrium (PBE) of the
sequential-move game under incomplete information; as we next define.

PBE. A strategy profile for N players (s{(0:),...,sy(0y)) and a system of
beliefs (y;, ty, - .., fty) are a PBE if:
(a) the strategy of every player i, si(0;), is optimal given the strategy profile

selected by other players s*;(0_;) and given player i’s beliefs, y;; and
(b) the beliefs of every player i, y;, are consistent with Bayes’ rule (i.e., they
follow Bayesian updating) wherever possible.

In particular, if the first-mover’s actions differ depending on the (private) infor-
mation he observes, then his actions “speak louder than words,” thus giving rise to a
separating PBE. If, instead, the first-mover behaves in the same manner regardless
of the information he observes, we say that such strategy profile forms a pooling
PBE.

The original version of the chapter was revised: The erratum to the chapter is available at:
10.1007/978-3-319-32963-5_11
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We first study games in which both first and second movers have only two
available actions at their disposal, thus allowing for a straightforward specification of
the second mover’s beliefs. To facilitate our presentation, we accompany each of the
possible strategy profiles (two separating and two pooling) with their corresponding
graphical representation, which helps focus the reader’s attention on specific nodes of
the game tree. We then examine a simplified version of Spence’s (1974) job market
signaling game where workers can only choose two education levels and firms can
only respond with two possible actions: hiring the worker as a manager or as a cashier.

Afterwards, we study more elaborate signaling games in which the uninformed
agent can respond with more than two actions, and then we move to more general
settings in which both the informed and the uninformed player can choose among a
continuum of strategies. In particular, we consider an industry where the incumbent
firm observes its production costs, while the potential entrant does not, but uses the
incumbent’s pricing decision as a signal to infer this incumbent’s competitiveness.

We finally examine signaling games where the privately informed player has
three possible types, and three possible messages, and investigate under which
conditions a fully separating strategy profile can be sustained as a PBE of the game
(where every type of informed player chooses a different message), and under
which circumstances only a partially separating profile can be supported (where two
types choose the same message and the third type selects a different message).

We end the chapter with an exercise that studies equilibrium refinements in
incomplete information games, applying the Cho and Kreps’ (1987) Intuitive Cri-
terion to a standard signaling game where the informed player has only two types
and two available messages. In this context, we make extensive use of figures
illustrating equilibrium and off-the-equilibrium behavior, in order to facilitate the
presentation of off-the-equilibrium beliefs, and its subsequent restriction as speci-
fied by the Intuitive Criterion.

Exercise 1—Finding Separating and Pooling Equilibria®

Consider the following game of incomplete information: nature first determines
player I’s type, either high or low, with equal probabilities. Then player 1,
observing his own type, decides whether to choose left (L) or Right (R). If he
chooses left, the game ends and players’ payoffs become (u;, up) = (2, 0),
regardless of player 1’s type. Figure 9.1 depicts these payoffs in the left-hand side
of the tree. If, instead, player 1 chooses Right, player 2 is called on to move. In
particular, without observing whether player 1°s type is high or low, player 2 must
respond by either selecting Up (U) or Down (D). As indicated by the payoffs in the
right-hand side of the tree, when player 1’s type is high, player 2 prefers to play Up.
The opposite preference ranking applies when player 1’s type is low.

Part (a) Does this game have a Separating Perfect Bayesian Equilibrium (PBE)?
Part (b) Does this game have a Pooling PBE?
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U 3,2
L 1 R 2
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H 1/2 a
D 1,0
1,0
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(1-q)
2,0 <« .
U 1 R 2
D 1,1

Fig. 9.1 Game tree where player 2 is uninformed

Answer

Part (a) Separating PBE

First type of separating equilibrium: RL'

Figure 9.2 shades the branches corresponding to the separating strategy profile
RL’, whereby player 1 chooses R when his type is high (in the upper part of the
game tree), but selects L' when his type is Low (see lower part of the game tree).

First step (use Bayes’ rule to specify the second mover’s beliefs):

After observing that player 1 chose right, the second-mover’s beliefs of dealing
with a high-type player 1 (upper node of his information set) are

U 3,2
L 1 R 2
2,0 <« i
H 1/2 a
D 1,0
1,0
L| 12 U
(1-q)
2,0 -
L 1 R’ 2
b 1,1

Fig. 9.2 Separating strategy profile RL’
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U 3,2
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Fig. 9.3 Optimal response by player 2 (U) in strategy profile RL’
1
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Intuitively, this implies that the second mover, after observing that player 1 chose
Right, assigns full probability to such a message originating from an H-type of first
mover. In other words, only a H-type would be selecting Right in this separating
strategy profile.

Second step (focus on the second mover):

After observing that player 1 chose Right, and given the second-mover’s beliefs
specified above, the second mover is essentially convinced on being on the upper
node of the information set. At this point, he obtains a higher payoff responding
with U, which provides him a payoff of 2, than with D, which only yields a payoff
of 0. Hence, the second mover responds with U. To keep track of player 2’s optimal
response in this strategy profile, Fig. 9.3 shades the branches corresponding to U."

Third step (we now analyze the first mover):

When the first mover is H-type (in the upper part of Fig. 9.3), he prefers to select
R (as prescribed in this separating strategy profile) than deviate towards L, given
that he anticipates that player 2 will respond with U. Indeed, player 1’s payoff from
choosing R, 3, is larger than that from deviating to L', 2.

When the first mover is L-type (in the lower part of Fig. 9.3), he prefers to select
L' (as prescribed in this separating strategy profile) than deviate towards R’, since he

"Note that player 2 responds with U after observing that player 1 chooses Right, and that such
response cannot be made conditional on player 1’s type (since player 2 does not observe his
opponent’s type). In other words, player 2 responds with U both when player 1’s type is high and
when it is low (for this reason, both arrows labeled with U are shaded in Fig. 9.3 in the upper and
lower part of the game tree).
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can also anticipate that player 2 will respond with U. Indeed, player 1's payoff from
choosing L', 2, is larger than that from his deviation towards R’, 1.

Then, this separating strategy profile can be sustained as a PBE where (RL', U)
and beliefs are g = 1.

Second type of separating equilibrium, LR'

Figure 9.4 depicts this separating strategy profile, in which the high-type of
player 1 now chooses L while the low-type selects R’, as indicated by the thick
shaded arrows of the figure.

First step (use Bayes’ rule to determine the second mover’s beliefs):

After observing that the first mover chose Right, the second-mover’s beliefs of
dealing with a high-type of player 1 are

P pRE) _ bx0
p(R) Ix14+4x0

Intuitively, this implies that the second mover, after observing that the first mover
chose Right, assigns full probability to such a message originating from a low-type.
Alternatively, a message of “Right” can never originate from an H-type in this
separating strategy profile, i.e., g = 0.

Second step (examine the second mover):

After observing that the first mover chose Right, and given that the
second-mover’s beliefs specify that he is convinced of being in the lower node of
his information set, he responds with D, which provides him a payoff of 1, rather
than with U, which provides him a payoff of 0 (conditional on being in the lower
node); see the lower right-hand corner of Fig. 9.4 for a visual reference. To keep

U 3,2
L 1 R 2
2,0 <« >
H 1/2 a
D 1,0
1,0
L| 12 U
(1-q)
2,0 - P
L 1 R 2
D 1,1

Fig. 9.4 Separating strategy profile LR’
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Fig. 9.5 Optimal response of player 2 (D) in strategy profile LR’

track of the optimal response of D from player 2, Fig. 9.5 shades the D branches in
blue color.

Third step (analyze the first mover):

When the first mover is H-type (upper part of the game tree in Fig. 9.5), he
prefers to select L (as prescribed in this separating strategy profile) since L yields
him a payoff of 2 while deviating towards R would only provide a payoff of 1, as he
anticipates player 2 will respond with D.

When the first mover is L-type (lower part of the game tree), however, he prefers
to deviate towards L' than selecting R’ (the strategy prescribed for him in this
separating strategy profile) since his payoff from R’ is only 1 whereas that of
deviating towards L' is 2. Then, this separating strategy profile cannot be sustained
as a PBE, since one of the players (namely, the low type) has incentives to deviate.

Part (b) Does this game have a pooling PBE?

First type of pooling equilibrium: LL'

Figure 9.6 depicts this pooling strategy profile in which both types of player 1
choose Left, i.e., L for the high type in the upper part of the game tree and L' for the
low type in the lower part of the tree.

First step (use Bayes’ rule to determine the second mover’s beliefs):

Upon observing that the first mover chose Right (which occurs
off-the-equilibrium, as indicated in the figure), the second-mover’s beliefs are

. 05%0 0
1=0540405%0 0
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U 3,2
L 1 R 2
2,0 <«
H 1/2 4
D 1,0
1,0
L| e u
(1-q)
2,0 <€
L 1 R 2
D 11

Fig. 9.6 Pooling strategy profile LL’

Thus, beliefs cannot be updated using Bayes’ rule, and must be left undefined in
the entire range of probabilities, g € [0, 1].

Second step (examine the second mover):

Let us analyze the second-mover’s optimal response. Note that the second mover
is only called on to move if the first mover chooses Right, which occurs
off-the-equilibrium path. In such an event, the second mover must compare his
expected utility from responding with U versus that of selecting D, as follows

EU,(UR) =2xqg+0x (1—-¢q)=2q
EU;(DR)=0xqg+1x(1-¢q)=1—¢
Hence, EU,(U|R) > EU,(D|R) holds if 2¢ > 1 — g, or simply ¢ > 1.

Third step (analyze the first mover):

Let us next divide our following analysis of the first mover (since we have already
examined the second mover) into two cases depending on the optimal response of the
second mover: Case 1: ¢ > 1 which implies that the second mover responds
selecting U; and Case 2: g < %, leading the second mover to respond with D.

CASE I: g > 1.

Figure 9.7 depicts the optimal response of the second mover (U) in this case
where g > %, where we shaded the arrows corresponding ot U.

When the first mover is H-type (in the upper part of the tree), he prefers to
deviate towards R rather than selecting L (as prescribed in this strategy profile)
since his payoff from deviating to R, 3, is larger than that from L, 2, given that he
anticipates that the second mover will respond with U since g > % This is already
sufficient to conclude that the pooling strategy profile LL' cannot be sustained as a
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Fig. 9.7 Optimal response of player 2 (U) in strategy profile LL’

PBE of the game. When off-the-equilibrium beliefs are relatively high, i.e., g > %
(As a practice, you can check that the L-type of first mover does not have incentives
to deviate, since his payoff from L', 2, is larger than that from R’, 1. However, since
we have found a type of player with incentives to deviate, we conclude that the
pooling strategy profile LL' cannot be supported as a PBE).

CASE 2: g< 1.

In this setting the second mover responds with D, as depicted in Fig. 9.8, where
the arrows corresponding to D are thick and shaded in blue color.

When the first mover is H-type, he prefers to select L (as prescribed in this
strategy profile), which provides him with a payoff of 2, rather than deviating
towards R, which only yields a payoff of 1, as indicated in the upper part of the
figure (given that player 1 anticipates that player 2 will respond with D).

Similarly, when the first mover is L-type, he prefers to select L' (as prescribed in
this strategy profile), which yields a payoff of 2, rather than deviating towards R,
which only yields a payoff of 1, as indicated in the lower part of the figure.

U 3,2
L 1 R 2
2,0 <€
H 1/2 d
D 1,0
1,0
L] 12 U
(1-9)
2,0 <€
L 1 R 2
b 1,1

Fig. 9.8 Optimal response of player 2(D) in strategy profile LL'
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Hence, the pooling strategy profile LL' can be sustained as a PBE of the game
when off-the-equilibrium beliefs are relatively low, i.e., g < %

Second type of pooling equilibrium: RR'

Figure 9.9 illustrates that pooling strategy profile in which both types of player 1
choose to move Right; as indicated by the thick arrows.

First step (use Bayes’ rule to define he second mover’s beliefs) :

After observing that the first mover chose Right (which occurs in-equilibrium, as
indicated in the shaded branches of the figure), the second-mover’s beliefs are

;o
BEEEEE
Therefore, the second-mover’s updated beliefs after observing Right coincide with the
prior probability distribution over types. Intuitively, this indicates that, as both types
of player 1 choose to play Right, then the fact of observing Right does not provide
player 2 more precise information about player 1’s type than the probability with
which each type occurs in nature, i.e., % In this case, we formally say that the prior
probability of types (due to nature) coincides with the posterior probability of types
(after applying Bayes' rule) or, more compactly, that priors and posteriors coincide.

Second step (examine the second mover):

Let us analyze the second-mover’s optimal response after observing that the first
mover chose Right. The second mover must compare his expected utility from
responding with U versus that of selecting D, as follows

U 3,2
L 1 R 2
2,0 < >
H 1/2 q
D 1,0
C
1,0
L| 12 u
(1-q)
2,0 <« ¢
L 1 R 2
D 1,1

Fig. 9.9 Pooling strategy profile RR’
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Fig. 9.10 Optimal response for player 2 (U) in strategy profile RR'

1 1
EU2(U|R):2><§+O>< (1—2) =1

EU(D|R)—O><1+1>< 1 =
: ) 2)

Hence EU,(U|R) > EU,(D|R) since 1 > 1, and the second mover responds with U.

Third step (analyze the first mover):

Given that the first mover can anticipate that the second mover will respond with
U (as analyzed in our previous step), we can shade this branch for player 2, as
depicted in Fig. 9.10.

When the first mover is H-type, he prefers to select R (as prescribed in this
pooling strategy profile), which provides him a payoff of 3, rather than deviating
towards L, which only yields a payoff of 2. However, when the first mover is L-type,
he prefers to deviate towards L', which yields a payoff of 2, rather than selecting R’
(as prescribed in this strategy profile), which only provides a payoff of 1.2

Hence, the pooling strategy profile in which both types of player 1 choose Right
cannot be sustained as a PBE of the game since the L-type of first mover has
incentives to deviate (from R’ to L’).

“Importantly, the low-type of player 1 finds R’ to be strictly dominated by L', since R’ yields a
lower payoff than L' regardless of player 2’s response. This is an important result, since it allows
us to discard all strategy profiles in which R’ is involved, thus leaving us with only two potential
candidates for PBE: the separating strategy profile RL' and the pooling strategy profile LL'.
Nonetheless, and as a practice, this exercise examined each of the four possible strategy profiles in
this game.
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Exercise 2—Job-Market Signaling Game®

Let us consider the sequential game with incomplete information depicted in
Fig. 9.11. A worker privately observes whether he has a High productivity or a
Low productivity, and then decides whether to acquire some education, such as a
college degree, which he will subsequently be able to use as a signal about his
innate productivity to potential employers. For simplicity, assume that education is
not productivity enhancing. A firm that considers hiring the candidate, however,
does not observe the real productivity of the worker, but only knows whether the
worker decided to acquire a college education or not (the firm can observe whether
the candidate has a valid degree). In this setting, the firm must respond hiring the
worker as a manager (M) or as a cashier (C).3

Part (a) Consider the separating strategy profile [NE']

Figure 9.12 depicts the separating strategy profile in which only the low pro-
ductivity worker chooses to acquire education. (We know it's a rather crazy strategy
profile, but we have to check for all possible profiles!)

1. Responder’s beliefs:
Firm’s updated beliefs about the worker’s type are p = 1 after observing No
education, since such a message must only originate from a high-productivity
worker in this strategy profile; and g = 0 after observing Education, given that
such a message is only sent by low-productivity workers in this strategy profile.
Graphically, p = 1 implies that the firm is convinced to be in the upper node

10,10 M M 6,10
Firm N Worker_H E Firm
P H 12 d
4,4 c c 0,4
10,0 , 3,0
M L| 1 M
(1-p) (1-9)
Firm N Worker_L E Firm
4,4 ¢ -3,4

Fig. 9.11 The job-market signaling game

3This game presents a simplified version of Spence’s (1974) labor market signaling game, where
the worker can be of only two types (either high or low productivity), and the firm manager can
only respond with two possible actions (either hiring the candidates as a manager, thus offering
him a high salary, or as a cashier, at a lower salary). A richer version of this model, with a
continuum of education levels and a continuum of salaries, is presented in the next chapter.
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Fig. 9.12 Separating strategy profile NE'

after observing no education (in the left-hand side of the tree); whereas ¢ = 0
entails that the firm believes to be in the lower node upon observing an educated
worker (in the right-hand side of the tree).

. Firms’ optimal response given their updated beliefs:
After observing “No Education” the firm responds with M’ since, conditional on
being in the upper left-hand node of Fig. 9.13, the firm’s profit from M’, 10,
exceeds that from C’, 4; while after observing “Education” the firm chooses C,
receiving 4, instead of M, which yields a zero payoff. Figure 9.13 summarizes
the optimal responses of the firm, M’ and C.

. Given steps 1 and 2, the worker’s optimal actions are:
When the worker is a high-productivity type, he does not deviate from “No
Education” (behaving as prescribed) since his payoff from no education and be
recognized as a high productivity worker by the firm (thus being hired as a
manager), 10, exceeds that from acquiring education and be identified as a
low-productivity worker (and thus be hired as a cashier), 0; as indicated in the
upper part of Fig. 9.13.

10,10 M M 6,10
Firm N Worker_H E Firm
<
/ P H| 12 !
4,4 c C 0,4
10,0 3,0
M L| 1 M
(1-p) ( q%
Firm N Worker_L E Firm
4,4 c c 3,4

Fig. 9.13 Optimal responses of the firm in strategy profile NE'
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Fig. 9.14 Separating strategy profile EN’

When the worker is of low type, he deviates from “Education”, which would only
provide him a payoff of —3, to “No Education”, which gives him a larger payoff of
10; as indicated in the lower part of Fig. 9.13. Intuitively, by acquiring education, the
low-productivity worker is only identifying himself as a low-productivity candidate,
which induces the firm to hire him as a cashier. By, instead, deviating towards No
Education this worker “mimics” the high-productivity worker.

Therefore, this separating strategy profile cannot be supported as a PBE, since
we found that at least one type of worker had incentives to deviate.

Part (b) Consider now the opposite separating strategy profile [EN']

Figure 9.14 depicts this (more natural!) separating strategy profile, whereby only
the high productivity worker acquires education, as indicated in the thick arrows E
and N'.

1. Responder’s beliefs:
Firm’s beliefs about the worker’s type can be updated using Bayes’ rule, as
follows:

_ _p(H)xpEH) _ 5x1 -
q=p(H|E) = p(E) _%Xl_:(]—%)xo_l

Intuitively, upon observing that the worker acquires education, the firm infers
that the worker must be of high productivity, i.e., g = 1, since only this type of
worker acquires education in this separating strategy profile; while No education
conveys the opposite information, i.e., p = 0, thus implying that the worker is
not of high productivity but instead of low productivity. Graphically, the firm
restricts its attention to the upper right-hand corner, i.e., ¢ = 1, and to the lower
left-hand corner, i.e., p = 0.
2. Firms’ optimal response given the firm’s updated beliefs:

After observing “Education” the firm responds with M. Graphically, the firm is
convinced to be located in the upper right-hand corner of the game tree since
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Fig. 9.15 Optimal responses of the firm in strategy profile EN'

q = 1. In this corner, the best response of the firm is M, which provides a payoff
of 10, rather than C, which only yields a payoff of 4.

After observing “No Education” the firm responds with C'. In this case the firm
is convinced to be located in the lower left-hand corner of the game tree given
that p = 0. In such a corner, the firm’s best response is C’, providing a payoft of
4, rather than M', which yields a zero payoff. Figure 9.15 illustrates these
optimal responses for the firm.

3. Given the previous steps 1 and 2, let us now find the worker’s optimal actions:
When he is a high-productivity worker, he acquires education (as prescribed in
this strategy profile) since his payoff from E (6) is higher than that from devi-
ating to N (4); as indicated in the upper part of Fig. 9.15.

When he is a low-productivity worker, he does not deviate from “No Educa-
tion”, i.e., N, since his payoff from No Education, 4, is larger than that from
deviating to Education, 3; as indicated in the lower part of the game tree. Intu-
itively, even if acquiring no education reveals his low productivity to the firm, and
ultimately leads him to be hired as a cashier, his payoff is larger than what he would
receive when acquiring education (even if such education helped him be hired as a
manager). In short, the low-productivity worker finds too costly to acquire
education.

Then, the separating strategy profile [N'E, C'M] can be supported as a PBE of
this signaling game, where firm’s beliefs are ¢ = 1 and p = 0.

Part (¢) Pooling strategy profile [EE'] in which both types of workers acquire
education.

Figure 9.16 describes the pooling strategy profile in which all types of workers
acquire education by graphically shading branches E and E' of the tree.

1. Responder’s beliefs:
Upon observing the equilibrium message of Education, the firm cannot further
update its beliefs about the worker’s type. That is, its beliefs are
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Fig. 9.16 Pooling strategy profile EE'
1
p(E) Ixl4+4x1 2

which coincide with the prior probability of the worker being of high produc-
tivity, i.e., g = % Intuitively, since both types of workers are acquiring education,
observing a worker with education does not help the firm to further restrict its
beliefs. After observing the off-the-equilibrium message of No Education, the
firm’s beliefs are

p(H) x p(NE|H Ly
p = p(ing) = L PR 20
p(NE) 7%0+5%0

and must then be left unrestricted, i.e., p € [0, 1].

. Firms’ optimal response given its updated beliefs:
Given the previous beliefs, after observing “Education” (in equilibrium): if the
firm responds hiring the worker as a manager (M), it obtains an expected payoff of

1 1
EUp(M) =35 x 10+ 5% 0=5

if, instead, the firm hires him as a cashier (C), its expected payoff is only

1 1
EUF(C) =z x4+ 5 x4=4

Thus inducing the firm to hire the worker as a Manager (M).
After observing ‘“No Education” (off-the-equilibrium): the firm obtains a
expected payoffs of

EUr(M') =p x 10+ (1 —p) x 0 = 10p, and
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Fig. 9.17 Optimal responses to strategy profile EE'—Case 1

when it hires the worker as a manager (M’), and
EUr(C)=px4+(1—p)x4=4

when it hires him as a cashier (C"). (Note that, since firm’s beliefs upon observing
the off-the-equilibrium message of No Education, p, had to be left unrestricted,
we must express the above expected utilities as a function of p.) Hence, the firm
prefers to hire him as a manager (M') after observing no education if and only if
10p > 4, or p > 2/5. Otherwise, the firm hires the worker as a cashier (C').

3. Given the previous steps 1 and 2, the worker’s optimal actions must be divided
into two cases (one where the firm’s off-the-equilibrium beliefs satisfy p > 2/5,
thus implying that the firm responds hiring the worker as a manager when he
does not acquire education, and another case in which p <2/5 entailing that the
firm hires the worker as a cashier upon observing that he did not acquire
education):

Case 1: When p > 2/5 the firm responds hiring him as a manager when he does
not acquire education (M"), as a depicted in Fig. 9.17 (see left-hand side of the
figure).

In this setting, if the worker is a high-productivity type, he deviates from
“Education,” where he only obtains a payoff of 6, to “No Education,” where his
payoff increases to 10; as indicated in the upper part of the game tree. As a
consequence, the pooling strategy profile in which both workers acquire edu-
cation (EE’) cannot be sustained as a PBE when off-the-equilibrium beliefs
satisfy p > 2/5.

Case 2: When p <2/5 the firm responds hiring the worker as a cashier (C') after
observing the off-the-equilibrium message of No education, as a depicted in the
shaded branches on the left-hand side of Fig. 9.18.

In this context, if the worker is a low-productivity type, he deviates from
“Education,” where his payoff is only 3, to “No Education,” where his payoff
increases to 4; as indicated in the lower part of the game tree. Therefore, the
pooling strategy profile in which both types of workers acquire education (EE’)
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Fig. 9.18 Optimal responses in strategy profile EE'—Case 2
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Fig. 9.19 Pooling strategy profile NN’

cannot be sustained when off-the-equilibrium beliefs satisfy p <2/5. In sum-
mary, this strategy profile cannot be sustained as a PBE for any off-the-
equilibrium beliefs that the firm sustains about the worker’s type.

Part (d) Let us finally consider the pooling strategy profile [NN'], in which neither
type of worker acquires education.

Figure 9.19 depicts the pooling strategy profile in which both types of worker
choose No Education by shading branches N and N’ (see thick arrows).

1. Responder’s beliefs:
Analogously to the previous pooling strategy profile, the firm’s equilibrium
beliefs (after observing No Education) coincide with the prior probability of a
high type, p = %; while its off-the-equilibrium beliefs (after observing Educa-
tion) are left unrestricted, i.e., ¢ € [0, 1].
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Firms’ optimal response given its updated beliefs:
Given the previous beliefs, after observing “No Education” (in equilibrium): if
the firm hires the worker as a manager (M’), it obtains an expected payoff of

1 1
EUr(M)==-x10+-x0=35
2 2
and if it hires him as a cashier (C') its expected payoff is only

1 1
EUF(C’):§x4+§><4:4,
leading the firm to hire the worker as a manager (M’) after observing the
equilibrium message of No Education.
After observing “Education” (off-the-equilibrium): the expected payoff the firm
obtains from hiring the worker as a manager (M) or cashier (C) are, respectively,

EUr(M) =g x 104 (1 — ¢g) x 0 = 10q, and
EUr(C)=gx44+(1—q)x4=4
Hence, the firm responds hiring the worker as a manager (M) after observing the

off-the-equilibrium message of Education if and only if 10g > 4, or ¢ > %
Otherwise, the firm hires the worker as a cashier.

. Given the previous steps 1 and 2, let us find the worker’s optimal actions. In this

case, we will also need to split our analysis into two cases (one in which g > %
and thus the firm hires the worker as a manager upon observing the
off-the-equilibrium message of Education, and the case in which g < %, in which
the firm responds hiring him as a cashier):

Case 1: When ¢q > %, the firm responds hiring the worker as a manager
(M) when he acquires education, as depicted in Fig. 9.20 (see thick shaded
arrows on the right-hand side of the figure).

If the worker is a high-productivity type, he plays “No Education” (as prescribed
in this strategy profile) since his payoff from doing so, 10, exceeds that from
deviating to E, 6; as indicated in the shaded branches of upper part of the game
tree. Similarly, if he is a low-productivity type, he plays “No Education” (as
prescribed) since his payoff from this strategy, 10, is higher than from deviating
towards E’, 3; as indicated in the lower part of the game tree.

Hence, the pooling strategy profile in which no worker acquires education,
[NN', M'M], can be supported as a PBE when off-the-equilibrium beliefs satisfy
q>%

Case 2: When g < %, the firm responds hiring the worker as a cashier (C) upon
observing the off-the-equilibrium message of Education, as depicted in the thick
shaded branches at the right-hand side of Fig. 9.21.
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Fig. 9.20 Optimal responses in strategy profile NN'—Case 1
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Fig. 9.21 Optimal responses in strategy profile NN'—Case 2

If the worker is a high-productivity type, he does not deviate from No Education
since his payoff from N, 10, exceeds the zero payoff he would obtain by
deviating to E; as indicated in the shaded branches at the upper part of the game
tree. Similarly, if he is a low-productivity worker, he does not deviate from No
Education since his (positive) payoff from N’ (10) is larger than the negative
payoff he would obtain by deviating to E’, —3; as indicated in the lower part of
the game tree.

Therefore, the pooling strategy profile in with no type of worker acquires
education, [NN’, M'C], can also be supported when off-the-equilibrium beliefs
satisfy g < %
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Exercise 3—Cheap Talk Game€

Figure 9.22 depicts a cheap talk game. In particular, the sender’s payoff coincides
when he sends message m; or m,, and only depends on the receiver’s response
(either a, b or ¢) and the nature’s type. You can interpret this strategic setting as a
lobbyist (Sender) informing a Congressman (Receiver) about the situation of the
industry he represents: messages “good situation” or “bad situation” are equally
costly for him, but the reaction of the politician to these message (and the actual
state of the industry) determine the lobbyist payoff. A similar argument applies for
the payoffs of the receiver (Congressman), which do not depend on the particular
message he receives in his conversation with the lobbyist, but are only a function of
the specific state of the industry (something he cannot observe) and the action he
chooses (e.g., the policy that he designs for the industry after his conversation with
the lobbyist). For instance, when the sender is type ¢, in the left-hand side of the
tree, payoff pairs only depend on the receiver’s response (a, b or c¢) but do not
depend on the sender’s message, e.g., when the receiver responds with a players
obtain (4,3), both when the original message was m; and m,. This cheap talk game
can be alternatively represented with Fig. 9.23.

Part (a) Check if a separating strategy profile in which only the sender with type ¢,
sends message m; can be sustained as a PBE.

Part (b) Check if a pooling strategy profile in which both types of the sender
choose message m; can be supported as a PBE.

Part (¢) Assume now that the probability that the sender is type #; is p and, hence,
the probability that the sender is type #, is 1 — p. Find the values of p such that the

Nature

Probability = 0.6 Probability = 0.4

Receiver Q

Receiver |

a b [ a b [}
c a b c
A \
Sender 4 2 1 4 1 2 1 3 2 3
Receiver 3 4 0 3 4 0 4 0 5 4 0 5

Fig. 9.22 Cheap talk game
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Fig. 9.23 An alternative representation of the cheap talk game

pooling PBE you found in part (b) of the exercise can be sustained and predict that
the receiver responds using action b.

Answer

Part (a) Separating strategy profile (my,m;’):

Figure 9.24 depicts the separating strategy profile (m,, m',), where message m,
only originates from a sender of type #, (see shaded branch in the upper part of the
tree) while message m, only stems from a sender with type 7, (see lower part of the
tree).

Receiver’s beliefs:

Let u(ti|mj) represent the conditional probability that the receiver assigns to the
sender being of type #; given that message m; is observed, where i,j € {1,2}. Thus,
after observing message m, the receiver assigns full probability to such a message
originating only from #,-type of sender,

4,3 4,3

Sender_t1
< > 2,4

t1 0.6

2,4

1,0 1,0

c
2,4 2,4
t2 0.4 /
1,0 b > b 5 1,0
c

JanIB08Y
Receiver

A
® ;\%
A
3
3
o

my Sender_t2 ms

3,5 ¢ 3,5

Fig. 9.24 Separating strategy profile
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p(hlm) =1, and p(tlm) =0

while after observing message m,, the receiver infers that it must originate from #,-
type of sender,

u(tilmy) =0, and p(t|my) =1

Receiver’s optimal response:

e After observing m, the receiver believes that such a message can only originate
from a f,-type of sender. Graphically, the receiver is convinced to be in the
upper left-hand corner of Fig. 9.24. In this setting, the receiver’s optimal
response is b given that it yields a payoff of 4 (higher than what he gets from a,
3, and from c, 0.)

e After observing message my, the receiver believes that such a message can only
originate from a #,-type of sender. That is, he is convinced to be located in the
lower right-hand corner of Fig. 9.24. Hence, his optimal response is ¢, which
yields a payoff of 5, which exceeds his payoff from a, 4; or b, which entails a
zero payoff.

Figure 9.25 summarizes these optimal responses of the receiver, by shading
branch b upon observing message m; in the left-hand side of the tree, and ¢ upon

observing m; in the right-hand side of the tree.

Sender’s optimal messages:

e Ifhistypeis#, by sending m; he obtains a payoff of 2 (since m;, is responded with
b), but a lower payoff of 1 if he deviates towards message m, (since such a
message is responded with c). Hence, the sender doesn’t want to deviate from m; .

4,3 a . 4,3

)4 < b P my Sender_t1 mo b > 24
/ t1| o6 A

1,0 c - 1,0

2 5

2,4 2 2,4
\ o /

1,0 €2 ’ — b, 4,0
/ ms Sender_t2 ms

3,5 ¢ ¢ 3,5

Fig. 9.25 Optimal responses in the separating strategy profile
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Fig. 9.26 Pooling strategy profile

e If his type is ,, he obtains a payoff of 3 by sending message m, (which is
responded with ¢) and a payoff of 1 if he deviates to message m; (which is
responded with b). Hence, he doesn’t have incentives to deviate from m,.

Hence, the initially prescribed separating strategy profile can be supported as a
PBE. As a curiosity, note that the opposite separating strategy profile (m, m/l) can
also sustained as a PBE (you can check that as a practice).

Part (b) Pooling strategy profile (m,,m).
Figure 9.26 depicts the pooling strategy profile (m;, m’l) in which both types of
senders choose the same message m;.

Receiver’s beliefs:

After observing message m; (which occurs in equilibrium), beliefs coincide with
the prior probability distribution over types. Indeed, applying Bayes’ rule we find
that

p(t) * p(my|t;) 0.6%1
film ) = = =06
Harjm) p(my) 0.6%1+0.4x1
p(r2) * p(m|ty) 0.4 %1
¢ = = =04
Hlizim) p(my) 0.6%1+0.4x1

After receiving message my (what happens off-the-equilibrium path), beliefs
cannot be updated using Bayes’ rule since

t1) x p(malt 0.6x0 0
ﬂ(tl|m2):p(l) p(ma|t) _ _0
p(my) 06%04+04x0 0

and hence off-the-equilibrium beliefs must be arbitrarily specified, i.e.
p= u(tilmy) € [0,1].
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Receiver’s optimal response:

e After receiving message m; (in equilibrium), the receiver’s expected utility from
responding with actions a, b, and c is, respectively

Actiona: 0.6 x34+04 x4 =34
Actionb:0.6 x 4+0.4 x 0 =2.4, and
Actionc:0.6 x04+04 x5=2.0

Hence, the receiver’s optimal strategy is to choose action a in response to the
equilibrium message of m;.

e After receiving message m;, (off-the-equilibrium), the receiver’s expected utility
from each of his three possible responses are

EUReceiver(a|m2) = U* 34 (1 - ,U) x4 =4 — M,
EUReceiver(b|m2) = U* 44 (1 — ,Ll) *0 = 4/1, and
EUReceiver(C‘mZ) = H* 0+ (1 - ,U) *5=5— S,u

where the receiver’s response critically depends on the particular value of his
4

off-the-equilibrium belief x, ie., 4u>4 —u if and only if u>3 4 -
i >5— Suifand only if u > %, and 4u > 5 — Spif and only if u > % Hence, if
off-the-equilibrium beliefs lie within the interval u € [0, ﬂ , 5 —5u is the
highest expected payoff, thus inducing the receiver to respond with c; if they lie
on the interval® u € (i , ‘5—‘], 4 — u becomes the highest expected payoff and the
receiver chooses a; finally, if off-the-equilibrium beliefs lie on the interval
ne (‘5‘, 1], 4u is the highest expected payoff and the receiver responds with
b. For simplicity, we only focus on the case in which off-the-equilibrium beliefs

satisfy u = 1 (and thus the responder chooses b upon observing message m5).

Figure 9.27 summarizes the optimal responses of the receiver (a after m;, and
b after m,) in this pooling strategy profile.

Sender’s optimal message:

e If his type is t;, the sender obtains a payoff of 4 from sending m; (since it is
responded with a), but a payoff of only 2 when deviating towards m;, (since it is
responded with b). Hence, he doesn’t have incentives to deviate from m;.

*To graphically understand this result, you can plot lines 4-u, 4y, and 5-5u on the same figure,
with u lying between 0 and 1 on the horizontal axis. You will see that the line corresponding to
payoff 5-5u is the highest when p is sufficiently low (left part of the figure). If we increase u
(moving rightward), line 4-1 becomes the highest, and if we further increase y, line 4y corresponds
to the highest expected payoff.
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Fig. 9.27 Optimal responses in the pooling strategy profile

e If his type is t,, the sender obtains a payoff of 2 by sending m; (since it is
responded with a), but a payoff of only 1 by deviating towards m;, (since it is
responded with b). Hence, he doesn’t have incentives to deviate from m;.

Therefore, the initially prescribed pooling strategy profile where both types of
sender select m; can be sustained as a PBE of the game. As a practice, check that
this equilibrium can be supported for any off-the-equilibrium beliefs, u(#|m;), the
receiver sustains upon observing message ;.

You can easily check that the opposite pooling strategy profile (m;, m;) can also
be sustained as a PBE. However, this PBE is only supported for a precise set of
off-the-equilibrium beliefs, and the receiver does not respond with action b in
equilibrium.

Part (c) Fig. 9.28 depicts the pooling strategy profile (m;, m’l ), where note that the
prior probability of type #; is now, for generality, p, rather than 0.6 in the previous
parts of the exercise.

43 'a\ : -
m Sender_t1 mo
25 4 :‘b/< b > 2; 4
Hl p
1,0 c - ¢ 1,0
[0 P
B 2
5 3
2,4 A & 2,4
a t2 1_p a
1,0 «—2 < , b, 1,0
my Sender_t2 ma
c (o]
3,5 3,5

Fig. 9.28 Pooling strategy profile
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Receiver’s beliefs:
After observing message m; (which occurs in equilibrium), his beliefs coincide
with the prior probabilities over types,

px1
t = = d
wnlm) = Ay P
1—p)x1
p(talmy) = 1=p) -p

prl+(I—p)*1

After receiving message my (off-the-equilibrium path), his beliefs cannot be
updated using Bayes’ rule since

p*0
p*x0+(1—p)=0

0
u(t1|ma) = =3

Hence, off-the-equilibrium beliefs must be left arbitrarily specified, i.e.,
1= u(tilmo) €0, 1].

Receiver’s optimal response:

e After receiving a message m; (in equilibrium), the receiver’s expected utility
from responding with actions a, b, and c is, respectively,

Actiona: px3+(1—p)xd4=4—p
Actionb:p x 44+ (1 — p) x0 = 4p, and
Actionc:p x 0+ (1 —p)x5=5—-5p

For the receiver to be optimal to respond choosing action b (as required in the
exercise) it must be the case that

4
4p >4 —p,ie.,p > g,and

5
4p>5—5p,i.e.,p>§

Thus, since p > ‘5—‘ is more restrictive than p > %, we can claim that if p > ;.—‘ the
receiver’s optimal strategy is to choose b in response to the equilibrium message
nm.

e After receiving message m;, (off-the-equilibrium), the receiver’s expected utility
from each of his three possible responses is, respectively,



Exercise 3—Cheap Talk Game® 283

43 'a\ : -
my Sender_t1 mo
A</1 : > 2,4
| p
1,0 ¢ - ¢ 1,0
[0} —
3, 2
3 3
2,4 a ) 2 5 2,4
2| 1-p
1,0 —2—>« , 2 1,0
/ mi Sender_t2 ma
3,5 c c 3,5

Fig. 9.29 Optimal responses in the pooling strategy profile

EUReceiver(a|m2) =u*x3+ (1 — 'u) x4 =4 — yu,
EUReceiver(b|m2) = U* 4+ (1 — l[) *(0) = 4,”5 and
EUReceiver(C‘mZ) = ux* 0+ (1 — ,Lt) *5=5— 5/1

which coincides with the receiver’s expected payoffs in part (b). From our dis-
cussion in part (b), the receiver’s response depends on his off-the-equilibrium belief
u. However, for simplicity, we consider that 4 = 1, which implies that the receiver
responds with b after observing the off-the-equilibrium message m,.
Figure 9.29 summarizes the optimal responses of the receiver in this pooling
strategy profile.

Sender’s optimal message:

e If his type is #; (in the upper part of Fig. 9.29), the sender obtains a payoff of 2
from sending m; (since it is responded with b), and the same exact payoff when
deviating towards m; (since it is responded with b). Hence, he does not have
strict incentives to deviate from m;.

e If his type is #, (in the lower part of Fig. 9.29), the sender obtains a payoff of 1
by sending m,; (since it is responded with b), and the same payoff by deviating
towards my (since it is responded with b). Hence, he does not have strict
incentives to deviate from m;.

Therefore, the initially prescribed pooling strategy profile, where both types of
sender select m; and the receiver responds with b, can be sustained as a PBE of the
game when p > %.
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Exercise 4—Firm Competition Under Cost Uncertainty®
Consider two firms competing in prices. Each firm faces a direct demand function of:
gi=1—p;+p; foreveryfirmi,j=1,2, wherei #j

The firms compete as Bertrand oligopolists over two periods of production.
Assume that, while the unit cost of firm 2 is deterministically set at zero, i.e.,
¢ = 0, the unit cost of firm 1, ¢y, is stochastically determined at the beginning of
the first period. The distribution function of ¢, is defined over the support [—cg, co)
with expected value E(c;) = 0.

At the beginning of period 1, firm 1 can observe the realization of its unit cost,
c1, while its rival cannot. Firms simultaneously and independently select
first-period prices after firm 1’s unit cost has been realized. At the beginning of
period 2, both firms can observe the prices set in the first period of production. In
particular, firm 2 observes the price selected by firm 1 in period 1 and draw some
conclusions about firm 1’s unit cost, c;. After observing first-period prices, the
firms simultaneously select second-period prices.

Find equilibrium prices in each of the two periods. [Hint: Assume that firm 1’s
first period price is linear in its private information, cq, i.e., p} =f(c1) =
Ap+AC,, where Ay and A; are positive constants. ]

Answer
Let us start with a summary of the time structure of the game:

t = 0: Firm 1 privately observes ¢,
t = 1: Both firms i and j simultaneously select their own price (le , p} ), where the

superscript indicates the first period.
t = 2: Observing first-period prices (p}, p]l) firms i and j simultaneously choose

second-period prices (P%7 p]2> :
We start analyzing the second-period game

Firm 1. Let us first examine the informed Firm 1. This, firm chooses the
second-period price, p%, that solves

max (1 — p7 +p3)(p} — 1)
P
Taking first order conditions with respect to p%, yields

1—2pi+p3+c =0

and solving for pj we obtain firm 1’s best response function in the second-period
game (which is positively sloped in its rival’s price, p3),
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1 2
P R

Firm 2. Let us now analyze the uninformed Firm 2. This firm chooses price p3 that
solves

ma (1 +p1 = p3)(3)
2

We recall that ¢, = 0, i.e., this firm faces no unit costs. Taking first order conditions
with respect to p%, we obtain

1-2p34+p2=0

and solving for p5 we find firm 2’s best response function in the second-period
game

1 2
FERET o
(which is also positively sloped in its rival’s price). Plugging one best response
function into another, we can find the price that the informed Firm 1 sets:

2
»_lt+a+ HTPI
Py = )
which solving for p? yields a price of
2
pi=1+ 30 (A)

Therefore, the uninformed Firm 2 sets a price

1.
p;= I+ 5f '(p1)
which, rearranging, yields

1,1
p§:2(3+1 9f (Pl)) (B)

Explanation: The price that firm 1 sets is a function of its privately observed
cost, p} = f(c1). Then, upon observing a price from firm 1 in the first period, the
uninformed firm 2 can infer firm 1’s costs by inverting the above function, as
follows: f~!(p}) = c;. This helps firm 2 set a second-period price p3.
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Let’s now analyze the first period:
Firm 2. The uninformed Firm 2 chooses a price p} that maximizes

max (1 —p;+p})p
123

Taking first order conditions with respect to p} yields:
1—2py+p; =0

and solving for pl, we obtain firm 2’s best response function in the first-period
game

« BRF)

1_1"‘19}
Pz_T

Firm 1. The informed Firm 1 solves

H;?X(P% —c1) - (1=pi+p3) +(pi — ) - (1= pi+p3)

where the first term indicates first-period profits, while the second term reflects
second-period profits. Note that this firm takes into account the effect of its
first-period price on its second-period profits because a lower price today could lead
firm 2 to believe that firm 1’s costs are low (that is, firm 1 would be seen as a
“tougher” competitor); ultimately improving firm 1’s competitiveness in the
second-period game. Firm 2’s profit-maximization problem, in contrast, does not
consider the effect of first-period prices on second-period profits since firm 1 is
perfectly informed about firm 2’s costs.

Firm 1 anticipates second-period prices, pf = 14 3¢; for firm 1 and p3 =

2(3+1— —1 (1 . . . . 1
% for firm 2. Hence, his maximization problem can be rewritten as

2 2 2B+1—f(p!
m?X(p}—m)'(1—p}+p§)+(1+§cl—c|)-<1—1+§c1+ ( 9f (p‘))>
Py

Taking first order condition with respect to p{, we obtain
1, 1 1 Lo
1—2p1+[72+C1+2 1—§C] §f<f (pl))ZO

Simplifying and solving for p%, we find firm 1’s best response function in the
first period game

1 _ ! (-1 1
pi(pD:l—;Cl +%+(3 Cl)fg(f ([71))
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. . . . 14p!
Inserting this expression of p] into p) z%

second-period price for Firm 1

, we obtain the optimal

l4+e; 2 2B —=c)f (F ' (p!
péz 261+ 4 ( 1)];7(f (Pl)).

W

Plugging this result into the best response function pl(pl), yields the optimal
first-period price for Firm 1

i 40— af ()
Py = 3 + 27

As suggested in the exercise, let us now assume that there exists a linear function
pl = f(c1) that generates the previous strategy profile. That is,

pi =Ao+A;-cr =f(cr)

where Ay and A; are positive constants. Intuitively, a firm with zero unit costs,
c; = 0, would charge a first-period price of A, while a marginal increase in its unit
costs, ¢;, would entail a corresponding increase in prices of A;. Figure 9.30 illus-
trates this pricing function for firm 1. (Note that this is a separating strategy profile,
as firm 1 charges a different first-period price depending on its unit cost as long as
A; > 0. A pooling strategy profile would exist if A; = 0.)

Fig. 9.30 Firm 1’s pricing P% A
function

A() + A1C1

Ao | A

a
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Setting it equal to the expression for p! found above, we obtain

3+2¢ 43 —-¢
Ap+Aic) = 3 LA (27 )

since A; measures the slope of the pricing function (see Fig. 9.30), thus implying
Ay =f (f"'(p!)). Rearranging the above expression, we find

A1(3lc| — 12) =27 + 186‘] — 27A0
which, solving for A;, yields

27(1 — Ag) + 18¢;

A =
! 3le; — 12

In addition, when firm 1’s costs are nil, ¢; = 0, the above expression becomes

27A) =27+ 124,

or, after solving for A,

4
Ag=1+ §A1
Inserting this result into A = W, yields

27(1 = (1+ 3A1)) +18¢

A =
31c; — 12

Solving for A, we obtain A} = % ~ 0.58. Therefore, the intercept of the pricing

function, Ajy, becomes

418 39

Ap =1+ -—— =22~ 1.26.
0= 1+531 73]

Hence, the pricing function p! of firm 1, p} = Ag+Ajc;, becomes
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Nature

Low costs
Prob=1/4

High costs
Prob=1/4

Prob=1/2

Firm 2

Firm1 7 2 4
Firm2 1 0 1

- w \_\9/
| —

Fig. 9.31 Signaling game with 3 types, each with 3 possible messages

. 18 39

ST TR

Exercise 5—Signa|mg Game with Three Possible Types
and Three Messages

Consider the signaling game depicted in Fig. 9.31. Nature first determines the
production costs of firm 1. Observing this information, firm 1 decides whether to set
low (L), medium (M) or High (H) prices. Afterwards, observing firm 1’s prices, but
not observing its costs, firm 2 responds with either high () or low (I) prices. Find a
PBE in which firm 1 chooses intermediate prices both when its costs are low and
medium, but selects high prices when its costs are high.

Answer

Figure 9.32 shades the branches in which firm 1 chooses intermediate prices both
when its costs are low and medium, M and M’ respectively, but a high price
otherwise (H"). This type of strategy profile is often referred to as “semi-separating”
since it has two types of sender pooling into the same message (medium prices in
this example), but has another type of sender choosing a different (“separating”)
message (i.e., H” by the high-cost firm in our example).

Receiver beliefs:
After observing medium prices, the probability that such action originates from a
firm 1 with low costs can be computed using Bayes’ rule, as follows



290 9 Perfect Bayesian Equilibrium and Signaling Games

Nature

Low costs
Prob=1/4

High costs

Prob=1/4
Prob=1/2

Firm 1

L M H . L M
/ N ~
/ ~
Firm 2 @h w
] h I h /] h” ! b I
Fm1 7 2 4 2 2 3 4 1 6 13 5 2 43 1 5 5
Frm2 1 0 1 0 1 0 1 1 1 0 1 o o 10 1 0 1

Fig. 9.32 Semi-separating strategy profile (M, M’, H")

prob(low costs|M) — prob(low costs) * prob(M|low costs)
prob(M)

*
=)
ENTSENES

W] =

*

B [— [ —

x 1
1

1
Z*1+ +

S

Intuitively, since low- and medium-cost firms choose medium prices in this
strategy profile, the conditional probability that, upon observing medium prices,
firm 1’s costs are low is just the relative frequency of low cost firms within the
subsample of low- and medium-cost firms. A similar argument applies to
medium-cost firms. Specifically, upon observing a medium price, the probability
that such price originates from a firm with medium costs is

, 71 3 2
prob(medium costs|M) = 1 T a0 3
grlgrl4g+0 3

which is the relative frequency of medium-cost firms within the subsample of low-
and medium-costs firms. Finally, high-cost firms should never select a medium
price in this strategy profile, implying that firm 2 assigns no probability to the fact
that the medium price originates from this type of firm, that is

prob(high costs|M) = 0
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Similarly, after observing a high price, the probability that such a price originates
from a firm 1 with low costs can be computed using Bayes’ rule, as follows

prob(low costs|H) =
1
since a high price should never originate from a low-cost firm in this strategy

profile,

1
5%0

I W W
3¥0+ 3x04 g%

prob(medium costs|H) =

since a high price should not originate from a medium-cost firm either, and

1
4*1

[ O SR R Sl
4 2 4

prob(high costs|H) =

FNTFNT

given that only high-cost firms choose high prices in this strategy profile.

Finally regarding low prices, we know that these can only occur
off-the-equilibrium path, since no type of firm 1 selects this price level in the
strategy profile we are testing. Hence, firm 2’s off-the-equilibrium beliefs are

prob(low costs|L) =y, € [0, 1]

(Recall that, as shown in previous exercises, the use of Bayes’ rule doesn’t provide
a precise value for off-the-equilibrium beliefs such as y;, and we must leave the
receiver’s beliefs unrestricted, i.e., y, € [0,1]). Similarly, the conditional proba-
bility that such low prices originate from a medium-cost firm is

prob(medium costs|L) = y, € [0, 1],

And, as a consequence, the conditional probability that such low price originates
from a high-cost firm is

prob(High|L) = 1 —y; — 7,

Receiver (firm 2):

Given the above beliefs, after observing a medium price (M), firm 2 responds
with either low (/) or high (h) prices depending on which action yields the highest
expected utility. In particular, these expected utilities are

1 2
EU,(I|M) :§*1+§*1: 1, and
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1 2
EU(h|M) :§*0+ §*0=O

Therefore, after observing a medium price, firm 2 responds selecting a low price, [.

After observing high prices (H), firm 2 similarly compares its payoff from
selecting / and h. (Note that in this case, the receiver does not need to compute
expected utilities, since it is convinced to be dealing with a high-cost firm, i.e., firm
2 is convinced of being at the right-most node of the game tree.) In particular,
responding with /" at this node yields a payoff of zero, while responding with A"
entails a payoff of 1.Thus, firm 2 responds with high prices (k) after observing that
firm 1 sets high prices.

Finally, after observing low prices (L) (off-the-equilibrium path), firm 2 com-
pares its expected payoff from responding with [ and £, as follows

EU,(IIL) = yp; * 1+, x L+ (1479, —p,) *0 =y, +7,, and
EUy(RIL) =y %0+, % 1+ (149, — 1) x 1 = 1+,

Hence, after observing low prices (L), firm 2 responds choosing low prices (I) if
and only if y, +7, > 1 +7v,, or y, > 1 —2y,. In our following discussion of the
sender’s optimal messages, we will have to consider two cases: one in which
¥, > 1 — 27y, holds, thus implying that firm 2 responds with low prices after
observing the off-the-equilibrium message of low prices from firm 1; and that in

Nature

Low costs
Prob=1/4

High costs

Medium Prob=1/4

costs

Prob=1/2

Firm 1

Firm 2

T

Fig. 9.33 Optimal responses in the semi-separating strategy profile

Firm1 7 2 4 2
Firm2 1 0 1 0

o w

1 1 1
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which y, <1 —2y,, whereby firm 2 responds with high prices to such an
off-the-equilibrium message.
Figure 9.33 summarizes the optimal responses of firm 2 by shading /' and h".

Sender

Low costs. If its costs are low (left-hand side of the game tree) and firm 1 selects
medium prices (as prescribed in this strategy profile), it obtains a payoft of 4, since
firm 1 can anticipate that its message will be responded with 1’ (see shaded branches
in Fig. 9.33). If instead, it deviates towards a high price, it is responded with h"”
yielding a payoff of only 3. If instead, it deviates towards a low price, firm 1 obtains
a payoff of 7 if firm 2’s off-the-equilibrium beliefs satisfy y, > 1 — 2y, (which lead
firm 2 to respond with 1), but a payoff of only 2 if y, <1 — 2y, (case in which firm 2
responds with h). Hence, in order for firm 1 to prefer medium prices (obtaining a
payoff of 4) we need that off-the-equilibrium beliefs satisfy y, <1 — 2y, (otherwise
firm 1 would have incentives to deviate towards a low price).

Medium costs. If firm 1’s costs are medium and it sets a medium price (as
prescribed), firm 1 obtains a payoff of 6 (see shaded arrows at the center of
Fig. 9.33). Deviating towards a high price would only provide a payoff of 5.
Similarly, deviating towards a low price gives firm 1 a payoff of 4 (when
¥, > 1 —2v,, and firm 2 responds with /) or a payoff of 1 (when y, <1 —2y,, and
firm 2 responds with ). Hence, regardless of firm 2’s off-the-equilibrium beliefs,
firm 1 does not have incentives to deviate from setting a medium price, as pre-
scribed in this semi-separating strategy profile.

High costs. A similar argument applies to firm 1 when its costs are high (see
right-hand side of Fig. 9.33). If it sets a high price, as prescribed, its profit is 5.
Deviating towards a medium price would reduce its profits to 3, and so would a
deviation to low prices (where firm 1 obtains a payoff of 2 if firm 2 responds with [ or

7

“, Not supported

7, =1-2y,

Suppotted

i/2 7/1

Fig. 9.34 Off-the-equilibrium beliefs of firm 2
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a payoff of 4 if firm 2 responds with %). Thus, independently on firm 2’s off-the-
equilibrium beliefs, firm 1 does not have incentives to deviate from high prices.

Summarizing, the only condition that we found for this separating strategy
profile to be sustained as a PBE is that off-the-equilibrium beliefs must satisfy
7, <1 —2y,. Figure 9.34 represents all combinations of 7y, and 7, for which the
above strategy profile can be sustained as a PBE of this game.’

Exercise 6—Second-Degree Price Discrimination®

Assume that Alaska Airlines is the only airline flying between the Seattle and
Pullman. There are two types of passengers, tourist and businessmen, with the latter
being willing to pay more than tourists. The airline, however, cannot directly tell
whether a ticket purchaser is a tourist or a business traveler. Nevertheless, the two
types differ in how much they are willing to pay to avoid having to purchase their
tickets in advance. (Passengers do not like to commit themselves in advance to
traveling at a particular time.)

More specifically, the utility functions of each traveler net of the price of the
ticket, p, are:

Business traveler: v — Ogp — w

Tourist traveler: v — Orp — w

where w is the disutility of buying the ticket w days prior to the flight and the price
coefficients are such that 0 < 05 < 07. The proportion of travelers who are tourists is 4.
Assume that the cost that the airline incurs when transporting a passenger is ¢ > 0,
regardless of the passenger's type.

Part (a) Describe the profit-maximizing price discrimination scheme (second
degree price discrimination) under the assumption that Alaska Airlines sells tickets
to both types of travelers. How does it depend on the underlying parameters 4, 05,
67, and c.

Part (b) Under what circumstances does Alaska Airlines choose to serve only
business travelers?

Answer

Part (a) In order to find the profit-maximizing discrimination scheme, we must find
pairs of prices and waiting time, (pp,wg) and (pr,wr), that solve the following
constrained maximization problem

SThis condition allows for different combinations of off-the-equilibrium beliefs. For instance, when
y1 < 1/2 but y, > 1/2, the uninformed firm is essentially placing a large probability weight on the
off-the-equilibrium message of low price originating from a medium-cost firm, and not from a low-
or high-cost firm. If, instead, y, = 1/2 but y, =0, the uninformed firm believes that the
off-the-equilibrium message of low price is equally likely to originate from a low- or a high-cost
firm.
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max Apr + (1 — A)pp — 2¢

subject to

v — Ogpp —wp >v — Ogpr —wr  (ICg)
Vv — GTPT — Wr Z Vv — eTpB — Wp (ICT)
v —0Oppp —wp>0 (IRp)
v—Orpr —wr >0 (IRt)
PB,WB,P1T,WT, 20

Intuitively, incentive compatibility condition ICg (ICt) represents that business
(tourist, respectively) travelers prefer the pair of price and waiting time offered to
their type then that of the other type. Individual rationality constraint IRg (IRt)
describe that business (tourist) travelers obtain a positive utility level from
accepting the pair of ticket price and waiting time from Alaska Airlines (we nor-
malize the utility from not traveling, in the right-hand side of the individual
rationality constraints, to be zero).

In addition, constraints ICg and IRt must be binding. Otherwise, the firm could
extract more surplus from either type of traveler, thus increasing profits. Therefore,
IRt can be expressed as

V—@TPT—WTZO@WT:V—QTPT
while ICg can be written as
v — OBPB —Wp =V — 03[77" — V—|—()Tp7' S wp=vV— 03]73 — (07‘ — 03)[77"

Hence, the firm’s maximization problem becomes selecting ticket prices pp and
pr (which reduces our number of choice variables from four in the previous
problem to only two now) as follows

max Apr + (1 — A)pp — 2¢
Pr1:PB

subjectto  (pr,wr) = (pr, v — Orpr)
(ps,ws) = (pg,v — Oppp — (07 — 0p)pr)

Before continuing any further, let us show that the waiting time for business
travelers, wg, does not affect Alaska Airlines profits.

Proof Assume, by contradiction, that wg > 0. Then wp can be reduced by ¢ > 0
units, and increase the price charged to this type of passengers, pp, by &, so that

business travelers’ utility level does not change, and the firm earns higher profits.
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We now need to check that tourists will not choose this new package offered to
business travelers. That is,

v — Orpr —wr >v — Ogpp — wg
rearranging, Orpr + wr < 0ppp + wp, which implies,

& &

Or <PB + 9T> +(wp — &) <0r (PB+ 03) + (wg — &)

This result, however, contradicts that wg > 0 can be part of an optimal contract.
Hence, only wg = 0 can be part of an optimal incentive contract. (Q.E.D.)
Hence, from the above claim wg = 0, which yields

v —Ogpp — (07 — Op)pr =0

and solving for price pg, we obtain

1
PB = On [v — (0r — 0p)pr]
B

Plugging this price into the firm’s maximization problem, we further reduce the set

of choice variables to only one price, pr, as follows:

1
max Apr+ (1 — 2)—[v — (07 — 0p)pr] — 2¢
pPr (93

which can be alternatively expressed as

OTG_OB +(1 —)»)lv—Zc

max pr|A— (1 —2)
pr B 63

Taking first-order conditions with respect to pr, we find

Or — 05

- (1=pTy

0

and rearranging

)
1—1 0O

At this point we can identify three solutions: one interior and two corners, as we
next separately describe.
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(1) If 4= OTQ*BUB, any contract (pg,wg) and (pr,wr) satisfying the following
conditions is optimal:

1
Prices: pr >0and pp = o [v—(0r — 0p)pr] >0

Waiting times: wg = Oand wr = 0

2 If ﬁ > %, the willingness to pay of tourist travelers is relatively high

(recall that a low value of parameter 07 indicates that a higher price does not
reduce the traveler’s utility significantly. Since 07 is relatively low, a marginal
increase in prices does not substantially reduce the tourists’ utility.) Then, it is
optimal to raise price pr (which reduces the waiting time of this type of
traveler wr). In fact, it is optimal to do it until wy is reduced to wyr = 0. Hence,

WT:V—QTPTZO7

which yields a price of pr = 7 and

v
WB:V_GBPB_(GT_GB)?T:()»

which entails a price of pp = j-. Therefore, the optimal contract in this case

coincides for both type of travelers, (p7,wr) = (pg,wp) = (0%,0), ie., a

pooling scheme.
3) ﬁ < HT(:’”. In this case, tourists’ willingness to pay is relatively low, i.e., the

disutility they experience from a higher price, 07, is very high. It is, hence,
optimal to reduce the price pr as much as possible (pr = 0), which implies
that its corresponding waiting time wr becomes wr = v — 0,p7 = v (because
0,pr = 0). For business travelers, this implies a waiting time of

wWp =V — HBpB — (QT - HB)pT =0,

which entails a price of pp = (;—B Therefore, in case 3 optimal contracts satisfy

(pr,wr) = (0,v) and (o, we) = (:,0)

Intuitively, case 3 (in which only business travelers are serviced) is more likely
to emerge when a) the proportion of business travelers is large enough (small 1);
and/or b) business travelers suffer less from higher prices (small 0p). Case 2
(serving both types of travelers) is more likely to arise when: a) the proportion of
business travelers is small (large 1); and/or b) tourists suffer less from higher prices
(small O7). Figure 9.35 summarizes under which conditions of the unit cost, ¢, the
discriminating monopolist chooses to serve all types of travelers, only business
travelers, or no traveler at all.



298 9 Perfect Bayesian Equilibrium and Signaling Games

> c

| |
Serving everyone v Only Business Travelers v

0, 0,

Fig. 9.35 Summary of price discrimination results

Serving everyone: The (pooling) price of serving every type of traveler described in
case 2 is pr = pg = QV—T. Hence, when costs are below this price, the firm serves all
types of travelers.

Only Business travelers: When ¢ > - the above pooling pricing scheme would

imply a sure loss of money for the firm. In this case, the firm chooses to serve only
business travelers since pg = é > ¢ (as in case 3 above).

No operation: When pg = 9; <¢, COsts are so high that it is not profitable to serve
business travelers. Hence the firm decides to not operate at all.

Exercise 7—Applying the Cho and Kreps’ (1987) Intuitive
Criterion in the Far West®

Consider the signaling game depicted in Fig. 9.36, usually referred as “Breakfast in
the Far West” or “Beer-Quiche game.” The game describes a saloon in the Far
West, in which a newcomer (player 1) enters. His shooting ability (he is either a
wimpy or a surely type) is his private information. Observing his own type, he
orders breakfast: either quiche or beer (no more options today; this is a saloon in the
Far West!). The troublemaker in this town (player 2) shows up who, observing the
choice for breakfast of the newcomer but not observing the newcomer's type,
decides whether to duel or not duel him. Despite being a troublemaker, he would

(1 ,1) Duel Duel (0’1)
Player 2 Quiche Player 1 Beer Player 2
v Wi 0.1 .
impy .
(3,0) oot Not (2,0)
Duel
Nature
(0,-1) Duel Duel (1,-1)
Surely| 0.9
1-v) (1-n)
Player 2 Quiche Player 1 Beer Player 2
Not Not
(2,0) Duel Duel (3,0)

Fig. 9.36 Breakfast in the Far West (“Beer-Quicke” game)
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(1,1) Duel
Not
(3’ 0) Duel
(05 '1) Duel
Not
(2,0 Duel

Player 2 Quiche Player 1 Beer Player 2
L 4
Y K
Wimpy | 0.1
Nature
Surely| 0.9
1-y) (1-u)
- &
Player 2 Quiche Player 1 Beer Player 2

Duel

Not
Duel

Duel

Not
Duel
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(0, 1)

(2,0

(1!'1)

(3,0

Fig. 9.37 Pooling equilibrium (Beer, Beer)

prefer a duel with a wimpy type and avoid the duel otherwise. This signaling game
has several PBEs but, importantly, it has two pooling equilibria: one in which both
types of player 1 choose to have quiche for breakfast, and another in which both
types have beer for breakfast. (At this point of the chapter you should be able to
confirm this result. You can do it as practice.)

Part (a) Check if the pooling equilibrium in which both types of player 1 have beer
for breakfast survives the Cho and Kreps’ (1987) Intuitive Criterion. Figure 9.37
depicts the pooling PBE where both types of player 1 have beer for breakfast,
shading the branches that each player selects.
Part (b) Check if the pooling equilibrium in which both types of player 1 have
quiche for breakfast survives the Cho and Kreps’ (1987) Intuitive Criterion.
Figure 9.38 illustrates the pooling PBE in which both types of player 1 have
quiche for breakfast.

(1,1) Duel Duel 0,1)
Player 2 Quiche Player 1 Beer Player 2
.
Y K
Wimpy | 0.1
(3, 0) Dot Not S (2, 0)
Duel
Nature
(0,-1) Duel Duel (1,-1)
Surely| 0.9
1-v) (1-w)
Player 2 Quiche Player 1 Beer Player 2
Not Not
(2,0 Duel pel &0
Fig. 9.38 Pooling equilibrium (Quiche, Quiche)
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Answer

Part (a) First step:

In the first step of Cho and Kreps’ (1987) Intuitive Criterion, we want to
eliminate those off-the-equilibrium messages that are equilibrium dominated. For
the case of a wimpy player 1, we need to check if having quiche can improve his
equilibrium utility level (from having beer). That is, if

uy(Beer|Wimpy) < Maxu, (Quiche|Wimpy)
—— — a

Equil. Payoff , 2 . ..
Highest payoff from deviating

towards Quiche, 3

This condition can be indeed satisfied if player 2 responds to the
off-the-equilibrium message of quiche not dueling: the wimpy player 1 would
obtain a payoff of 3 instead of 2 in this pooling equilibrium. Hence, the wimpy
player 1 has incentives to deviate from this separating PBE. Intuitively, this would
occur if, by deviating towards quiche, the wimpy type of player 1 can still convince
player 2 not to duel, i.e., player 1 would be having his preferred breakfast while still
avoiding the duel.

Let us now check the surely type of player 1. We need to check if an
(off-the-equilibrium) message of quiche could ever be convenient for the surely
type. That is, if

ui(Beer|Surely) < M?x u1 (Quiche|Surely)
S——— a

Equil. Payoff,3 . ..
Highest payoff from deviating

towards Quiche, 2

But this condition is not satisfied: the surely player 1 obtains in equilibrium a
payoff of 3 (from having beer for breakfast), and the highest payoff he could obtain
from deviating to quiche is only 2 (as a surely type, he dislikes quiche but loves to
have a beer for breakfast). Hence, the surely type would never deviate from beer.

Therefore, Player 2’s beliefs, after observing the (off-the-equilibrium) message
of quiche, can be restricted to ®"*(Quiche) = {Wimpy}. That is, if player 2 were to
observe player 1 choosing quiche, he would believe that player 1 must be wimpy,
since this is the only type of player 1 who could benefit from deviating from the
pooling equilibrium of beer.

Second step:

After restricting the receiver’s beliefs to @™ (Quiche) = {Wimpy}, player 2 plays
duel every time that he observes the (off-the-equilibrium) message of quiche, since
he is sure that player 1 must be wimpy. The second step of the Intuitive Criterion
analyzes if there is any type of sender (wimpy or surely) and any type of message
he would send that satisfies:
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min ui(m,a,0) > u: (0
acA*[©** (m),m] ( ) ( )

In this context, this condition does not hold for the wimpy type: the minimal

payoff he can obtain by deviating (having quiche for breakfast) once the receiver’s
beliefs have been restricted to @™ (Quiche) = {Wimpy}, is 1 (given that when
observing that player 1 had quiche for breakfast, player 2 infers that he must be
wimpy, and responds dueling). In contrast, his equilibrium payoff from having beer
for breakfast in this pooling equilibrium is 2. A similar argument is applicable to the
surely type: in equilibrium he obtains a payoff of 3, and by deviating towards
quiche he will be dueled by player 2, obtaining a payoff of O (since he does not like
quiche, and in addition, he has to fight). As a consequence, no type of player
deviates towards quiche, and the pooling equilibrium in which both types of player
1 have beer for breakfast survives the Cho and Kreps’ (1987) Intuitive Criterion.
Part (b) First step:
Let us now analyze the pooling PBE in which both types of player 1 choose quiche
for breakfast. In the first step of the Intuitive Criterion, we seek to eliminate those
off-the-equilibrium messages that are equilibrium dominated. For the case of a
wimpy player 1, we need to check if having beer can improve his equilibrium utility
level (of having quiche in this pooling PBE). That is, if

uy (Quiche|Wimpy) < max u; (Beer|Wimpy)
a

Equil. Payoff, 3 . .
Highest payoff from deviating

towards Beer, 2

This condition is not satisfied: the wimpy player 1 obtains a payoff of 3 in this
equilibrium (look at the lower left-hand corner of Fig. 9.38: the wimpy type loves
to have quiche for breakfast and avoid the duel!). By deviating towards beer, the
highest payoff that he could obtain is only 2 (if he were to still avoid the duel). Let
us now check if the equivalent condition holds for the surely type of player 1,

uy (Quiche|Surely) < max u; (Beer|Surely)
—_—————— a

Equil. Payoff , 2 . ..
Highest payoff from deviating

towards Beer, 3

This condition is satisfied in this case: the surely player 1 obtains in equilibrium
a payoff of 2 (from having quiche for breakfast, which he dislikes), and the highest
payoff he could obtain from deviating towards beer is 3. Notice that this would
happen if, upon observing the off-the-equilibrium message of beer, player 2 infers
that such a message can only originate from a surely type, and thus refrains from
dueling. In summary, the surely type is the only type of player 1 who has incentives
to deviate towards beer.
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Player 2’s beliefs, after observing the (off-the-equilibrium) message of beer, can
then be restricted to @ (Beer) = {Surely}.

Second step:

After restricting the receiver’s beliefs to @ (Beer) = {Surely}, player 2 responds
by not dueling player 1 as he assigns full probability to player 1 being a surely type.
The second step of the Intuitive Criterion analyzes if there is any type of sender
(wimpy or surely) and any type of message he would send that satisfies:

min  u;(m,a,0) > u; (0
acA*[©®™" (m),m] ( ) ( )

This condition holds for the surely type: the minimal payoff he can obtain by
deviating (having beer for breakfast) after the receiver’s beliefs have been restricted
to ®™(Beer) = {Surely}, is 3 (given that player 2 responds by not dueling any
player who drinks beer). In contrast, his equilibrium payoff from having quiche for
breakfast in this pooling equilibrium is only 2. As a consequence, the surely type
has incentives to deviate to beer, and the pooling equilibrium in which both types of
player 1 have quiche for breakfast does not survive the Cho and Kreps’ (1987)
Intuitive Criterion.”

> For applications of the Cho and Kreps® (1987) Intuitive Criterion to games in which the sender
has a continuum of possible messages and the receiver a continuum of available responses, see the
Exercise 9.4 about the labor market signaling game in this Chapter.



Introduction

The final chapter presents extensions and variations of signaling games, thus pro-
viding more practice about how to find the set of PBEs in incomplete information
settings. We first study a poker game where, rather than having only one player
being privately informed about his cards (as in Chap. 8), both players are privately
informed. In this context, the first mover’s actions can reveal information about his
cards to the second mover, thus affecting the latter’s incentives to bet or fold
relative to a context of complete information.

We then explore a game in which one player is privately informed about his
benefits from participating in a project, and evaluate his incentives to acquire a
costly certificate that publicly discloses such benefit to other players. In the same
vein, we then examine an entry game where firms are privately informed about their
own type (e.g., production costs) before choosing to simultaneously and indepen-
dently enter a certain industry. In this setting, firms can spend on advertising in
order to convey their benefits from entering the industry to other potential entrants,
where we identify symmetric and asymmetric PBEs.

We extend the Spence’s (1974) job market signaling game examined in Chap. 9
to a context in which workers can choose an education level from a continuum
(rather than only two education levels), and the firm can respond with a continuum
of salaries. We first study under which conditions separating and pooling PBEs can
be sustained in this version of the game when the worker has only two types, and
then extend it to contexts in which the worker might have three or an infinite
number of types. In order to provide further practice of the application of Cho and
Kreps’ (1987) Intuitive Criterion in games where players have a continuum of
available strategies, we offer a step-by-step explanation of this criterion.

The original version of the chapter was revised: The erratum to the chapter is available at:
10.1007/978-3-319-32963-5_11
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Afterwards we consider two types of entry-deterrence games. In the first game,
the incumbent might be of a “sane” type (if he prefers to avoid price wars when entry
occurs) or a “crazy” type (if he enjoys such price wars); following an incomplete
information setting similar to that in Kreps et al. (1982). After simplifying the game,
we systematically describe how to test for the presence of separating and pooling
equilibria. In the second game, which follows Kreps and Wilson (1982), an
incumbent faces entry threats from a sequence of potential entrants, and must choose
whether to start a price war with the first entrant in order to build a reputation that
would protect him from further entry. While this game seems at first glance more
complicated than standard signaling games with a single potential entrant, we show
that it can be simplified to a point where we easily apply a similar methodology to
that developed in most games of Chap. 9.

Exercise 1—Poker Game with Two Uninformed Players®

Consider a simple poker game in which each player receives a card which only he
can observe.

1. There is an ante of $A in the pot. Player 1 has either a good hand (G) or a bad hand
(B) chosen by Nature with probability p and 1 — p, respectively. The hand is observed
by player 1 but not by player 2. Player 1 then chooses whether to bet or resign: If player 1
resigns, player 2 wins the ante. If player 1 bets, he puts $B in the pot.

2. If player 1 bets then player 2, observing his own card (either good or bad), must
decide whether to call or fold: if player 2 responds folding, player 1 gets the pot,
winning the ante. If, instead, player 2 responds calling, he puts $1 in the pot. Player 1
wins the pot if he has a high hand; player 2 wins the pot if player 1’s hand is low.
Part (a) Draw the extensive form game.

Part (b) Fully characterize the set of equilibria for all sets of parameter values p, B,
and A.

Answer

Part (a) Figure 10.1 depicts the game tree of this poker game:

Nature determines whether both players receive a good hand (GG), only player 1
does (GB), etc. Only observing his good hand (left-hand side of the tree), player 1
decides whether to bet (B) or fold (F). Note that player 1’s lack of information
about player 2’s hand is graphically represented by the fact that player 1 chooses to
bet or fold on an information set. For instance, when player 1 receives a good hand,
he does not observe player 2’s hand, i.e., is uncertain about being located in node
GG or GB. If player 1 bets, player 2 observes such an action and must respond
betting or folding when his own hand is good (but without knowing whether player
1’s hand is good, in y, or bad, in 1 — ), and similarly when his own hand is bad
(and he does not know whether his rival’s hand is good, in ps, or bad, in 1 — pu3).
A similar argument applies to the case in which player 2 observes player 1 folding,
leaving player 2 in information set (¢,, 1 — i,) when his own hand is good, and
(tt4> 1 — py) when his hand is bad.
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Nature
(1-p)(1-p)

P1 (1-p)p P(P)

0 A2

o

A2 0 Al2
A A2 A A2 A A2

Fig. 10.1 A poker game with two uninformed players

First, note that betting is a strictly dominant strategy for every player who
receives a good hand, irrespective of the strategy his opponent selects. You can see
this result by starting, for instance, to examine player 1’s decision to fold or bet
when he receives a good card (in the GG and GB nodes). In particular, betting
would yield an expected payoff of p(A/2)+ (1 — p)(A+ B), but a lower expected
payoff of p(A/2)+ (1 —p)(A/2) from folding. A similar argument applies to
player 2 when his cards are good. However, when players receive a bad hand, they
do not have a strictly dominant strategy. For compactness, let o denote the prob-
ability that player 1 bets when he receives a bad hand, and B the probability that
player 2 bets when he receives a bad hand, as indicated in Fig. 10.1.

Part (b) Fully characterize the set of equilibrium for all parameter values p, B, and A.

As a roadmap, note that we need to first examine player 2’s optimal responses in
all four information sets in which he is called on to move: those in which he
observes player 1 betting, (y;,1 — ;) and (u5,1 — u3), and those in which he
responds to player 1 folding, (py, 1 — 1tp) and (py, 1 — py).

Player 1 bets. After observing that player 1 bets, player 2 will respond betting
when he receives a bad hand, as depicted in information set (s, 1 — p3), if

EU,(Bet|Bad hand, P,Bets) > EU, (Fold|Bad hand, P, Bets),

that is

A
(—B) - prob(p Bets|p; has a good hand) + 5 " Prob(p: Bets|p; has abad hand) > 0
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where, graphically, note that player 2 obtains a payoff of —B when he responds
betting and player 1’s hand is good, but a higher payoff of % when player 1’s hand is
bad. Using conditional probabilities, we can rewrite the above inequality as

p A a(l —p)
B i = 2t (d-pa=

Note that the two large ratios use Bayes’ rule in order to determine the proba-
bility that, upon observing player 1 betting, such a player received a good hand,

m, or a bad hand, B f(llipp))a. Intuitively, player 1 bets with probability 1 when

he has a good had (which occurs with probability p), but with probability oo when he
has a bad hand (which happens with probability 1 — p).

Solving for probability o in the above inequality, we obtain that player 2 bets
when having a bad hand and observing player 1 betting if and only if o> %.

213" <l,ie.,

Note that, in order for this ratio to be a probability we need that: 0 < Ai—p)

A
2B+A"

In contrast, when player 2 observes that player 1 bets but player 2’s hand is
good, he responds betting (as indicated in information set (¢;, 1 — 1)), since

the prior probability p must be relatively low, p <

EU,(Bet|Good hand, Bet) > EU,(Fold|Good hand, Bet)

or

A
7t +(A+B)(1 — ;) >0y +0(1 — py)

which reduces to

@)= (548 )

which holds since A, B > 0, and u; < 1. Thus, player 2 responds to player 1’s bet
with a bet when his hand is good, under all parameter values.

Player 1 folds. Let us now move to the case in which, upon receiving a good
hand, player 2 observes that player 1 folded; as depicted in information set
(4,1 — w,). In this case, player 2 responds betting if

EU,(Bet|Good hand, Fold) > EU,(Fold|Good hand, Fold)

or

A A
Ay +A(1 — 1p) > 5#2"’ 5(1 — )

which simplifies to A > 4, a condition which is always true. Hence, player 2 bets
when having a good hand, both after observing that player 1 bets and that he folds.
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Let us finally analyze the case in which player 2 receives a bad hand and
observes that player 1 folds; as depicted in information set (g4, 1 — py). In this
setting, player 2 responds betting if

EU,(Bet|Bad hand, Folds) > EU,(Fold|Bad hand, Folds)
which implies

o (1-2)(1-p)
At —p opra-0i-p

5 orr ) 2 @ra )

which simplifies to 2A > A. Hence, player 2 will respond betting if, despite having a
bad hand, he observes that player 1 folded.

Player 1. Let us now move to the first mover, player 1. When having a good
hand, betting is strictly dominant, as discussed above. However, when his hand is
bad (as indicated in the two branches in the right-hand side of the tree), he finds
profitable to bet if

EU| (Bet|Bad hand) > EU| (Fold|Bad hand)

that is,

pli B0 AL+ (1= p) 85+ (1= Ba| = p|1-040- 5 4 (1= [0+ (1=

if P2/s hand is good
he responds betting if Py's hand is bad if Py's hand is good if Po's hand is bad
he bets with prob 8 he responds betting he bets with prob f§

and solving for probability p we find that player 1 bets after receiving a bad hand if
and only if

A
2B+A

p< =p

(Note that this condition only depends on the prior probability of nature, p, and on
the size of the payoffs A and B). Therefore, player 1 bets, despite receiving a bad
hand, when the chances that player 2 has a better hand are relatively low, i.e., p < 13.1
(For a numerical example, note that if the ante contains $1 and the amount of money

'Importantly, this condition holds both when o satisfies o > %, which implies that player 2
2

responds betting when his hand is bad, thus implying f = 1, and when o > ﬁ, implying that
player 2 responds folding when his hand is bad, i.e., f = 0, since the cutoff strategy p<p is
independent on alpha.
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that each player must add to the ante when betting is also $1, i.e., A = B=$1, then we
obtain that the cutoff probability is p = 1/3.)
Hence, we can summarize the PBE of this game as follows:

Player 1: Bet after receiving a good hand for all p, but bet after receiving a bad
hand if and only if p <p. Player 1’s posterior beliefs coincide with his prior p.
Player 2: Bet after receiving a good hand for all p. After receiving a bad hand, and
observing that player 1 bets, player 2 responds betting if and only if o > /%;
while after observing that player 1 folds, player 2 responds betting under all
parameter values. Player 2’s beliefs are given by Bayesian updating, as follows:

w=—o> = oo =0

Yp+(=p)’ T Lop+(I=p)(1—0)
p 0-p

Uy =——————,and i, = =

T p+(1-pa Y0 p+(1—p)(1—a)

As a remark, note that u; =0 (u, = 0) means that player 2, in equilibrium,
anticipates that the bet (fold, respectively) decision from player 1 he observes must
indicate that player 1’s cards are bad, both when player 2’s hand is good (in p3) and
bad (in py).

Exercise 2—Incomplete Information and Certificates®

Consider the following game with complete information. Two agents, A and B,
simultaneously and independently decide whether to join, J, or not join, NJ, a
common enterprise. The following matrix represents the payoffs accruing to agents
A and B under each strategy profile:

Player B
J NJ
J 1,1 -1,0
Player A
NJ 0, -1 0,0

Note that every agenti = { A, B} obtains a payoff of 1 if the other agentj # i joins,
but a payoff of —1 if the other agent does not join (while the agent who did not join
obtains a payoff of zero). Finally, if no agent joins, both agents obtain a payoff of zero.
Part (a) Find the set of pure and mixed Nash equilibria.

Part (b) Let us now consider the following extension of the previous game in which we
introduce incomplete information: before players are called to move (deciding whether
they join or not join), nature selects a type 7 € [0, 1], uniformly distributed between
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Oand 1,i.e., t ~ U[0, 1], which only affects player B’s payoff when both players join.
Intuitively, the benefit of player B from having both players joining the common
enterprise is larger than that of player A, $1, but such additional benefit  is player B’s
private information. Thus, after such choice by nature, the payoff matrix becomes

Player B
J NJ
J 1, 1+t -1,0
Player A
NJ 0, -1 0,0

Find the set of Bayesian Nash equilibria (BNE) of this game.

Part (c) Consider now a variation of the above incomplete information game: First,
nature determines the specific value of ¢, either # = O or = 1, which only player B
observes. Player B proposes to the uninformed player A that the latter will make a
transfer p to the former. If player A accepts the offer, the transfer is automatically
implemented. Upon observing the value of ¢, player B chooses whether or not to
acquire a certificate at a cost ¢ > 0. Player A can only observe whether player B
acquired a certificate, and knows that both types (# = 0 and 7 = 1) are equally likely.
Find under which conditions can a pooling equilibrium be sustained in which player
B acquires a certificate, both when his type is = 0 and when it is 7 = 1.

Part (d) In the version of the game described in part (c), identify under which
conditions can a separating PBE be sustained, in which player B acquires a cer-
tificate only when his type is ¢ = 1.

Answer

Part (a) Complete information version of the game:

Player B

Player A

NJ 0,-1

(=)
=)

PSNE. Let us first examine each player’s best response function. If player A
joins (top row), then player B’s best response, BRg, is to join; while if player A
does not join (bottom row), then BRjp is not join. By symmetry, if player B joins,
then player A’s best response, BR, is to join; while if player B does not join, then
BR, is not join. Intuitively, both players have incentives to mimic the action
selected by the other player, as in similar coordination games we analyzed in
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previous chapters. Thus, the game has the following two pure (and symmetric)
strategy Nash equilibrium:

PSNE: {(1,]), (NJ,NJ)}

Hence, the game reflects the same strategic incentives as in a Pareto coordination
game with two PSNE, where one equilibrium yields unambiguously larger payoffs
to both players than the other equilibrium, i.e., (J, J) Pareto dominates (NJ, NJ).

MSNE. Let us now find the MSNE of this game, denoting p (g) the probability
with which player A (player B, respectively) joins. Making player A indifferent
between joining and not joining, we obtain

EU*(J) = EU*(NJ), thatis
1

g 1+(1-g)(-1)=0cg=7

Similarly p = % given that agents are symmetric. Hence, the mixed strategy Nash
equilibrium of the game is

MSNE : 1J 1NJ 1J 1NJ
' 2772 "\2772
Part (b) Let us now consider the incomplete information extension of the previous

game, where ¢~ U|[0, 1], as depicted in the next payoff matrix.

Player B

Player A

NJ 0, -1

=)
o

Let us first examine the informed player (player B). Denoting by u the proba-
bility with which player A joins, then player B’s expected utility from joining and
not joining are

EUP(J) = p(1+ 1)+ (1 = @) (=1) = pu4-put — 1 +
= u(2+1t) —1,and EUB(NJ) = 0

where u denotes the probability with which his opponent joins the enterprise.
Hence, player B will decide to join if and only if:
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Nature

Player B’s type
t=0
Prob=1/2

Player B’s type
t=1
Prob=1/2

Player B Player B

C NC
Player A Player A
d H 1- ,le
Player A
A A Player A
A
uB 1+p-c -Cc 2+p
UA - 1-p 0 2-p
A R
1+p 0 2+p
1-p 0 2-p 0

Fig. 10.2 Pooling strategy profile—certificates

1
EUP(J)>EUP(NJ) = p(2+1) —1>0 < pu> 5

This implies the existence of two BNEs, as we next describe:
1st BNE

fu> 5
2nd BNE
Ifu<

then both players join, and the BNE is (¢4, 6%, u) = {J,J; u> %ﬂ}

then no player joins, and the BNE is (¢4, 6%, u) = {NJ NJ;u< 2+t}

Note that both of these BNEs involve structurally consistent beliefs: first, when

both players join, u = 1, which satisfies u > 2—+t since t ~ U0, 1]; second, when no

> + .. Intuitively, if every player believes that
his opponent will likely join, he responds joining; thus giving rise to the first type of
BNE where both players join the enterprise. Otherwise, neither of them joins, and
the second type of BNE emerges.

2+t

player joins, u = 0, which satisfies u <

Part (c) Pooling PBE
Figure 10.2 depicts the pooling strategy profile in which the privately informed
player, player B, acquires a certificate, both when his type is # =0 and 7 = 1.
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After observing that player B acquired a certificate. When player A is called on
to move on information set (u;, 1 — p), he accepts the transfer p after observing
that player B acquired a certificate (in equilibrium) if and only if*:

ml=p)+(1=p)2-p)>20=2—-p>y

Since we are in a pooling strategy profile in which both types of player B acquire
a certificate, then p; = u(t = O|cert) = 1/2 (i.e., posterior = prior). This allows us
to further reduce the above inequality to

2—-p>1/2 - p<3/2.

that is, any transfer p in the range p € [0, 3/2] will be accepted by the uninformed
player A after observing that player B acquired a certificate.

After observing that player B does not acquire a certificate. When player A is
called on to move on information set (uy,1 — ), i.e., he observes the
off-the-equilibrium action of no certificate from player B, he rejects the transfer p if
and only if

EU*(Accept|NC, 11,) < EU* (Reject|NC, p,), that is
m(l=p)+(1—)2-p)<0=2-p<p,

At this point, note that any transfer p satisfying 2 — p < y,,or2 — p, <p, will be
rejected. Several off-the-equilibrium beliefs p, support such a behavior. For
instance, if u, = 1, we obtain that 2 — 1 <p, or 1 <p, leading player A to reject the
transfer proposed by player B if no certificate is offered and the transfer A needs to
give to B is weakly larger than $1. Intuitively, note that y, = 1 implies that the
uninformed player A assigns the worst possible beliefs about player B’s type upon
observing no certificate, i.e., player B’s type must be low (¢ = 0). If, instead, his
beliefs assign full probability to agent B’s type being good, i.e., u, = 0, then the
above incentive compatibility condition becomes 2 — 0 < p, or 2 < p, thus implying
that player A is willing to make transfers to player B as long as the transfer does not
exceed $2).

Informed player B. Let us now move to the informed player B (the first mover in
this sequential move game with incomplete information). In order to keep track of
player A’s optimal responses in this game, i.e., accepting after observing that player
B acquired a certificate but rejecting otherwise, Fig. 10.3 shades the acceptance
(rejection) branch of player A after observing that player B acquires (does not
acquire, respectively) a certificate.

e Player B’s type is t = 0. In this case, player B anticipates that a certificate will be
responded with acceptance, yielding for him a payoff of 1 + p — ¢; but not

*Notice that here p represents a monetary transfer or payment not necessarily contained in the
unitary range, different to the probability p used in part (a) of this exercise.
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Nature

Player B'’s type
t=0
Prob=1/2

Player B'’s type
t=1
Prob=1/2

Player B Player B

C NC NC
Player A 1- H, Player A
I \ =
,Uz
A Player A Player A

UB 1+p-c 2+p
UA 1-p 2-p

1+p 2+p

1-p 0 2-p 0

Fig. 10.3 Pooling strategy profile (including responses)

acquiring a certificate will be rejected, entailing a payoff of 0. Hence, he offers
the certificate if 1 +p — ¢ >0 and since the transfer enters positively, he will
choose the highest offer p that guarantees acceptance, i.e., p = 3/2, implying that
he will acquire a certificate as long as its cost is sufficiently low, i.e.,
14+3/2—¢>0<c<5/2.

e Player B’s type is t = 1. Similarly, when his type is t = 1, player B offers the
certificate if 2 + p > 0. By the same argument as above, any transfer p <1 is
accepted upon offering no certificate (note that this occurs off-the-equilibrium
path), leading player B to select the highest offer that guarantees rejection, i.e.,
p = 1. This inequality thus becomes 2 + 1 > 0, which holds for all parameter
conditions.

Hence, a Pooling strategy profile can be sustained as a PBE, and it can be
summarized as follows:

e Player B acquires a certificate, both when his type is # = 0 and when ¢ = 1, as
long as the certificate costs are sufficiently low, i.e., ¢ <5/2, and asks for a
transfer of p = % after acquiring a certificate (in equilibrium), and a transfer of
p = 1 after not acquiring a certificate (off-the-equilibrium).
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Nature

Player B’s type
t=0
Prob=1/2

Player B’s type
t=1
Prob=1/2

Player B Player B

Cc NC
Player A(K ‘ul
/\ 0
o [\ 1-m
2
A Player A Player A
ARL
uB 1+p-c -C 24p 0
UA~ " 1p 0 2.p 0
A R A R
1+p 0 2+p 0
1-p 0 2-p 0

Fig. 10.4 Separating strategy profile

e Player A responds accepting to make any transfer p§% to player B after
observing a certificate, and any transfer p <1 after observing no certificate. His
equilibrium beliefs are u; = % (after observing a certificate, since both types of
player B acquire such a certificate in equilibrium and both types are equally
likely), while his off-the-equilibrium beliefs are u, = 1.

Part (d) Separating PBE
Let us now check if the separating strategy profile in which only ¢ = 1 acquires

certificate (while 7 = 0 does not) can be sustained as a PBE. In order to facilitate our
visual presentation, Fig. 10.4 shades the arrow corresponding to certificate by
player B when his type is # = 1, and that corresponding to no certificate when ¢ = 0.

Beliefs. In a separating equilibrium, we must have that, upon observing the
certificate, player A’s posterior beliefs are,

*Note that if, instead, off-the-equilibrium beliefs are x, = 0, then the highest transfer that player B
can request from player A increases from p = 1 to p = 2 when he does not acquire a certificate. All
other results of the pooling PBE would remain unaffected.
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u; = u(t=0|C) =0,and
iy = ult = OINC) = 1,

since player B does not acquire a certificate in this strategy profile when his type is
t = 0. Let us next examine player A’s optimal responses after observing a certificate
or no certificate from player B.

Player A after observing that player B acquired a certificate. Given the above
beliefs, if player A observes a certificate (in y;) he rejects if and only if

EU*(Accept|NC, i;) = 1 — p < EU*(Reject|NC, y1;) = 0,

that is, if p > 1. Intuitively, player A is convinced to be in the leftmost node
(marked with u,; in Fig. 10.4), thus making his optimal response straightforward.

Player A after observing that player B did not acquire a certificate. If, instead,
player A observes that player B did not acquire a certificate (in y,), he responds
accepting if and only if

EU*(Accept|NC, 1,) = 2 — p > EU*(Reject|Nc, 1i,) = 0

that is, if p <2.

Player B. Let us now analyze player B, who anticipates under which conditions
a certificate will be accepted and rejected by player A as described in our above
decisions.

e Player B’s type is t = 1. In particular, when his type is ¢ = 1, player B offers a
certificate (as prescribed in this separating equilibrium) if and only if

EUB(Certlt =1)=2+p—c>EUB(NC|t=1)=0

Hence, since the transfer p enters positively into player B’s utility, he will
acquire a certificate and select the highest value of p that still guarantees
acceptance, i.e., p = 2. In this case, the cost of acquiring the certificate must
satisfy 242 — ¢ >0, i.e.,, c <4.

e Player B’s type is t = 0. In contrast, when player B’s type is r = 0, he doesn’t
offer a certificate (as prescribed) if and only if

EUB(Cert,p>1|t=0)=1+p—c<EUB(NC,p>1|t=0)=0

where for a certificate to be accepted (entailing a payoffof 1 + p — c for player B),
the transfer p must satisfy p > 1, as described in our analysis of player A.
Therefore, when player B’s type is t = 0, his best response is to not acquire a



316 10 More Advanced Signaling Games

I+p<c

>/ 14p

\ 4

1 2 P

Fig. 10.5 (p, ¢)-pairs for which a separating PBE can be sustained

certificate (as prescribed in this separating strategy profile) if and only if
I+p—c<0,orl+p<c.

Given that p must satisfy p> 1, and p <2, i.e., 1 <p <2, we can graphically
represent the region of (p, ¢)-pairs for which the separating equilibrium can be
sustained in the shaded area of Fig. 10.5, where | +p <c¢, 1 <p <2, and ¢ <4.
Intuitively, the certificate must be sufficiently costly for player B to not have
incentives to acquire it when his type is t = 0, i.e., 1 +p <c, but sufficiently
inexpensive for player B to have incentives to acquire it when 7 = 1, i.e., ¢ <4.
In addition, the transfer that player B requests from player A, p, cannot be too
high, since otherwise player A would not be induced to accept the proposal (and,
as a consequence, the common enterprise will not be started), i.e., | <p <2.
We can, hence, summarize this separating PBE as follows:

e Player B acquires a certificate when his type is # = 1 if and only if the certificate
is not too costly ¢ <4, but does not acquire the certificate when his type is t = 0
if and only if it is sufficiently costly, i.e., ¢ > 1 4+ p. Regarding the transfers that
he requests from the uninformed player A, player B asks a transfer p = 2 when
he acquires a certificate (which guarantees acceptance), but asks for a transfer
p > 1 when he does not acquire a certificate (which entails a rejection).

e Player A accepts player B’s offer if and only if the transfer he must give to
player B is sufficiently low, i.e., p <2 after observing a certificate, but p <1
after observing no certificate.

e Player A’s beliefs are y; = u(t = 0|C) = 0 after observing a certificate and
W = p(t = O|NC) = 1 after observing no certificate.



Exercise 3—Entry Game with Two Uninformed Firms® 317

Exercise 3—Entry Game with Two Uninformed Firms®

Suppose there are two symmetric firms, A and B, each privately observing its type
(), either g (good) or b (bad) with probabilities p and 1 — p, respectively, where
0<p<1. For instance, “good” can represent that a firm is cost efficient, while
“bad” can indicate that the firm is cost inefficient. They play an entry game in which
the two firms simultaneous choose to enter or stay out of the industry. Denote the
outcome of the entry game by the set of types that entered, i.e., (g, g) means two
good firms entered, (b) means only one bad firm entered, and so on. If a firm does
not enter, its payoff is 0. When it enters, its payoff is determined by its own type and
the set of types that entered, with the following properties:

us(g) > ut(g,b) > us(g,g) > u’(b) > 0> u’(b,b) > u’(g,b)

where the superscript is the firm’s type and the argument is the outcome (profile of
firms that entered the industry).

Find a symmetric separating Perfect Bayesian equilibrium (PBE) in which every
firm 7 enters only when its type is good assuming that the following condition holds:
pu’(g,b) + (1 — p)u’ (b) <0.

Answer

Since this is a simultaneous-move game of incomplete information (both firms are
uninformed about each other’s types), and firms are ex-ante symmetric (before each
observes its type), we next analyze the entry decision of every firm i. First for the
case in which its own type is good, and then when its type is bad.

Firm i’s type is good. When firm i’s type is good, t; = g, the expected utility that
firm i obtains from entering is

EUi(Enter|; = g) = plr'uf(g, ) + (1 —1)uf(g)]
if firmjis good, j can decide either to enter or not
+ (1 —p)[ru®(g, b) + (1 — r)ué(g)]

if firmjis bad, j can decide either to enter or not

where r' denotes the probability that firm j enters when its type is good, t; = g;
while r represents the probability that firm j enters when its type is bad, t; = b.
But we know that when a firm’s type is good it always enters given that its
payoff is strictly positive by definition, i.e., entering is a strictly dominant strategy
for a good firm since staying out yields a payoff of zero. That is, a good firm i is
better off entering when firm j does not enter, u8(g) > 0, and when firm j enters,
both when firm j’s type is good, u8(g, g) > 0, and bad u#(g, b) > 0. This implies
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that firm j when its type is good, t; = g, will decide to enter, i.e., 7’ = 1. Therefore
the above EU; can be simplified to:

EU;(Enter|t; = g) = pu®(g,8) + (1 — p) [ru®(g,b) + (1 — r)u*(g)]

On the other hand, firm i obtains a payoff of zero from staying out regardless of
firm j’s type and irrespective of whether firm j enters or not. Indeed,

EU;(NotEnter|t; =g) =p[r' -0+ (1 —7#)- 0]+ (1 =p)[r-0+(1 —r)-0] =0

Therefore, when deciding whether to join or not, a good firm i will compare
these two expected utilities, inducing it to enter if and only if

EU;(Enter|t; = g) > EU;(Not Enter|t; = g)

p-ub(gg) +(1—p)|r-ub(g,b) +(1—rjuf(g)| >0

which holds for all values of p and r, since u8(g,g),u(g,b), and ué(g) are all
positive by definition. Hence, a good firm i will enter, i.e., we don’t have to impose
additional conditions in order to guarantee that this type of firm enters.

Firm i’s type is bad. Let us now consider the case in which firm i’s type is bad,
i.e., t; = b. The expected utility that this firm obtains from entering is

EU;(Enter|t; = b)
if firmjis good if firmjis bad

:p[r'ub(g,b) +(1- r')ub(b)] + (1-p) [ruh(b,b) +(1 - r)ub(b)]

But given that firm j enters when its type is good, then r' = 1, and the previous
expression reduces to:

EU;(Enter|t; = b) = pu®(g,b) + (1 — p) [rub(b, b)+(1— r)ub(b)}

This firm’s expected utility from not entering is =zero, i.e,
EU;(Not Enter|t; = b) = 0, since firm i attains a zero payoff from staying out
regardless of firm j’s decision and type. Hence, for firm i to stay out when its type is
bad (as prescribed in the separating strategy profile) we need that

pu’(g,b) + (1 = p)[ru” (b, b) + (1 — r)u”(b)] <0

But, since the strategy profile we are testing requires firms to enter when their
type is good, we have that r = 1, which further simplifies the above inequality to
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pu’(g,b) +(1=p)u’(b,b) <0
~—— N——

which holds since u”(g, b) <0 and u® (b, b) <0 by definition. Hence, firm i will not
enter when being of bad type.

Therefore, we have found a symmetric PBE in which, every firm i = {A, B}
enters (stays out) when its type is good (bad, respectively), and each firm believes
the other firm will only enter when its type is good.

Exercise 4—Labor Market Signaling Game and Equilibrium
Refinements®

Consider the following labor market signaling model. A worker with privately
known productivity 6 chooses an education level e. Upon observing e, each firm
responds with a wage offer that corresponds to the worker’s expected productivity.
(That is, we assume that the labor market is perfectly competitive, so firms pay the
value of the expected marginal productivity to every worker. Otherwise, competing
firms would have incentives to increase their salaries in order to attract workers with
higher productivities.) The worker’s payoff from receiving a wage w and acquiring
an education level e, given an innate productivity 0, is u(w,e|0) =w — %, i.e., the

cost of acquiring education, % is convex, and decreases in the worker’s innate

productivity, 6. (Note that, for simplicity, we assume that the worker’s innate
productivity, 6, is unaffected by the education level he acquires.)

Part (a) Assuming that there are two equally likely types 0; =1 and 0, = 2,
characterize the set of all separating equilibria.

Part (b) Which of these equilibria survive the Cho and Kreps’ (1987) Intuitive
Criterion?

Answer

Part (a) Separating PBE when 0, =1 and 0, = 2. Figure 10.6 depicts (w,e)-
pairs, and two indifference curves: one for the high-productivity worker, ICy, i.e.,
Uu=w— § since 0, = 2, in which this type of worker reaches the same utility level
at all points of /Cy; and other for the low-productivity worker, IC;, whereby this
worker reaches the same utility level among all points satisfying w = u+ ¢°.
Intuitively, note that an increase in education must be associated with an increase in
wages in order to guarantee that the worker’s utility level is unaffected, which
explains why the worker’s indifference curve is increasing in education. Further-
more, an increase in education must be accompanied be a more-than-proportional
increase in wages in order to guarantee that the worker’s utility level remains
unaltered, which explains why indifference curves are convex in e. In addition, note
that indifference curves closer to the northeast of the figure represent a higher utility
level, since they are associated to a higher wage.
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Fig. 10.6 Separating PBE in w Ic ICy
the labor market signaling L
game L

fr

e =0

The set of all separating PBE satisfies:

e low productivity worker chooses no education, i.e., e} (0.) =0

e high productivity worker chooses an education level in the range
e (0n) € [ell, e8], where the lower bound e¥ solves u;, = wy — €, i.e., wy =
ur + e as represented in the figure. A similar argument applies for the upper
bound € but, for compactness, its exact expression is presented below.

e Firms, after observing equilibrium education levels, ¢;(0,) =0 and
e (0n) € [etl, €], offer wages:

w* (QZ(HL)) = 0L = 1, and
W* (E;I(GH)) = 0[-1 =2

while for any off-the-equilibrium education level e # e} (0L) # e};(0n) firms offer a
wage schedule w*(e) which lies weakly below the indifference curve of both types
of workers (as represented in the thick black line in the Fig. 10.6).*

In order to determine the exact value of eff and X/, we need that the following
incentive compatibility conditions are satisfied:

EU(e;,w*(e)|0L) > EU(ej;, w*(e)|01)

so the low-productivity worker does not have incentive to deviate from his education
level, e, to that of the high-productivity worker, ej;. Similarly,

“The wage schedule then lies below ICy; for all off-the-equilibrium education levels, i.e., for all
e<e11'1 and e > eé’ . When the firm observes, instead, an equilibrium education level of zero, the
firm manager offers a wage of w(0) = 0, as depicted in the vertical intercept of wage schedule
w(e). Similarly, upon receiving an equilibrium education level of e € [e’l" el ] the firm manager
offers salary w(e) = 2, as depicted in Fig. 10.6 for all ¢ € [ef, eﬂ.
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EU (e}, w*(€)|0y) = EU (e, w*(e)|0r)
implying that the high-productivity worker does not have incentives to reduce his

education level from e}, to e;. For the utility functions and parameters given in the
exercise, the above two incentive compatibility conditions reduce to,

O'i H\3
1_722_(61) which implies e > 1
H\3
0 ;
2_(e2) >1 -7 whichimplies V2>l

Therefore, the education level that the high-productivity worker selects in
equilibrium, e};(0y) € [ef,e/] must lie in the interval e} (0y) € [1,V2],
where v/2 ~ 1.26

Note that the above strategy profile is indeed a PBE:

e firms are optimizing given their benefits about workers’ types and given the
equilibrium strategies for the workers.

e workers are optimizing given firms’ equilibrium strategies (wages) and given
firms’ beliefs about the workers’ types.

e firms’ beliefs are computed by Bayes’ rule when possible.

Note that the 0;-worker will never acquire more education than ¢} (0,) = 0: by
acquiring more education, such as any e/ satisfying e’ <1, he is still identified as a
low-productivity worker and offered a wage of 6, and he is incurring a large costs
in acquiring this additional education. Furthermore, even if he acquires el = 1 (or
higher) and he is identified as a high-productivity worker (fooling the firm), the
increase in his wage will not offset the increase in his education costs (which are
especially high for him), ultimately indicating that he does not have incentives to
deviate from his equilibrium education level e; = 0. A similar argument applies to
the high-productivity worker: he is already identified as such by the firm manager,
who offers him a salary of $2. Acquiring an even larger education level would only
reduce his utility (since acquiring education is costly) without increasing his salary.
Lowering his education level is not profitable either, since any education level
below e’ would imply that he is identified as a low-productivity worker, and thus
receives a wage of $1. Since the savings in education costs he experiences from
lowering his education level do not offset the reduction in wages, the
high-productivity worker does not have incentives to deviate from his equilibrium
education level.

Part (b) Intuitive criterion

Figure 10.7 depicts indifference curve IC; which crosses the (w, e) equilibrium
pair the low-productivity worker, i.e., an education level of e; *(6,) = 0 responded
with a wage of wp=1. Similarly, ICy crosses the (w, e) equilibrium pair for the
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Fig. 10.7 Applying the w
intuitive criterion IC, 4 IC,
0,=2
//
6,=1
€ =0 el =1 ¢ ef:%/ie

high-productivity worker, namely, an education level of ¢};(0y) = v/2 responded
with a wage of wy=3$2. This education level is the upper bound of the equilibrium
interval e},(0) € [1, \72] of admissible education levels in equilibrium. We next
seek to show that all education levels in this interval, other than the least-costly
education level in lower bound of the interval, e},(0y) = 1, violate the Cho and
Kreps’ (1987) Intuitive Criterion.

First Step
Firms’ beliefs after observing off-the-equilibrium messages, such as e’ in

Fig. 10.7 need to be restricted to @ (¢') € ®, which represents all those types of
workers for whom sending e’ is never equilibrium dominated:

O™ (¢) = {6 € 0O|U*(H;) < max Uls, e',@i)}, where s € §°(0, ¢')

In words, upon observing effort e', the firm restricts its beliefs to those types
of workers 0 € ® for whom their maximal deviating payoff exceeds their
equilibrium payoff we can see this inequality is only satisfied for the Oy-type, but is
never satisfied for the low type. That is, even if firms believe that 6, is in fact a
Oy-worker and pay w(e’) = 2, it is not convenient for a 6, -worker to send such
a message because of the high education costs that he would need to incur, i.e.,
1—- % >2— # < ¢ > 1. Hence, we say that message e'is equilibrium dominated
for the 0 -worker. Graphically, this argument can be checked by noticing that the
indifference curve of the low-productivity worker that passes through point A
(guaranteeing a salary of 2 after acquiring an education level of ¢’) would lie to the
southeast of the indifference curve that this worker reaches in equilibrium (crossing
the vertical axis when he acquires a zero education and is offered a wage of 1).
Hence, this type of worker does not have incentives to deviate from his equilibrium
education level of zero, even if by doing so he could alter the firm’s equilibrium
beliefs, i.e., even if he could “fool” the firm into believing his type is high.

However, sending message e’ is not equilibrium dominated for the 0g-worker.
That is, if firms believe that he is a Oy-worker when he sends an education level e’
rather than the (higher) eé’ , his salary would be unaffected while his education costs
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would go down. This is graphically illustrated by the fact that the indifference curve
of the Oy-worker passing through point A in the figure (corresponding to wage
0y = 2 and education level e’) would lie to the northwest of the indifference curve
that he reaches when acquiring the education level eé’ , ICy, thus indicating that this
worker would be able to reach a higher utility level by deviating to e.

Therefore, the only type of worker for whom sending e’ is never equilibrium
dominated is ®(e’) = {0y}, i.e., only the Oy-worker could benefit by deviating
from his equilibrium message.

Second Step
Once we have restricted firms’ beliefs to @ (¢') = {0y} we need to find

whether there exists a message that can be sent by 0y that implies a higher level of
utility than sending his equilibrium message. That is, we need to find a pair (0, €)
for which the following inequality holds:

U*(04) < min U* (s, e, 0p1), s € S* (O™ (e), ¢)

As we can see, once we have restricted firms’ beliefs to @ (¢’) = {0y} firms
will simply offer wages of w(e) = 0y for all those education levels that the
0-worker finds unprofitable, i.e., any e > e’l" .

As a consequence, the Og-worker will be better-off by acquiring an education
level lower than the one he acquires in any of the separating PBEs where e > /.
Indeed,

0y — c(e};, OH) <Oy —c(e,0y) < c(e;, OH) > c(e, Oy)

which is true given that ey > e and that costs are increasing in education.

Therefore, all the inefficient separating PBEs can be eliminated by the Intuitive
Criterion. However, the so-called “Riley outcome” (the efficient separating PBE
where the high-productivity worker only needs to acquire the lowest possible
amount of education that separates him from the low-productivity worker, i.e.,
e = ef) cannot be eliminated by the Intuitive Criterion. Intuitively, lowering his
education level below e would identify him as a low-productivity worker,
receiving a wage offer of 0, = 1, which is not profitable for the high-productivity
worker. Hence, e = ¢! is the so-called least-costly separating equilibrium, since the
0y-worker acquires the minimum amount of education that helps him convey his
type to the firms, separating himself from the low-productivity worker.

SFor more details on the application of the Cho and Kreps’ (1987) Intuitive Criterion and other
equilibrium requirements, see Espinola-Arredondo and Munoz-Garcia (2010) “The Intuitive and
Divinity Criterion: Interpretation and Step-by-Step examples,” Journal of Industrial Organization
Education, vol. 5(1), article 7.
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Exercise 5—Entry Deterrence Through Price Wars”

Consider two firms competing in an industry, an incumbent and an entrant. The
entrant has already entered the market, and in period 1 the incumbent must decide
whether to fight or accommodate; if she fights, the entrant loses fr > 0 (i.e.,
profit = —fg) and if she accommodates the entrant makes a profit of ag > 0. The
incumbent may be either “sane”, in which case he loses f; > 0 from fighting, and
gains a; > 0 from accommodating; or “crazy”, in which case his only available
action is to fight. In period 2, the entrant must choose whether to stay in the market
or exit; if she exits, the incumbent makes a profit of m; if she stays, the incumbent
gets to fight or accommodate again and the payoffs are as described before. Assume
that there is no discounting, and that the prior probability of a “sane” incumbent is
0 < p < 1 (the actual type of the incumbent is private knowledge to the incumbent).

Nature

sane crazy

Prob=(1-p)

Incumbent Incumbent

Fight
1gni, Fight

Entrant
Entrant

Exits

m=f,

Incumbent

Fights

Fight2

-2f, a,—f —2J

-2f, a,— f, a-f, 2q

Fig. 10.8 Entry deterrence game—I
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Part (a) Draw the game in its extensive form.

Part (b) Show that if payoffs satisfy m — f; <2a;, then there is a separating
equilibrium.

Part (¢) Show that if m — f; <2a; does not hold there is a pooling equilibrium

fe
+ag’

when p < .

Answer

Part (a) Figure 10.8 depicts the game tree. Here is a summary of the entrant’s
payoff: —fg are his losses from fighting, while ag is his benefit from accommo-
dating. For the incumbent we have that —f; represents the cost of fighting for the
sane incumbent, and a; is the benefit of accommodating for the sane incumbent.
This game tree can be alternatively represented as in Fig. 10.9.

We can apply backwards induction in the proper subgames of the above game
tree. In particular, after Fight; (in the right-hand side of the tree) and the entrant
responding with Stay, we encounter a proper subgame in which the sane incumbent
operates under complete information. In particular, the sane incumbent prefers to
choose Accy, which yields a payoft of a; — f;, than Fight,, which entails a lower
payoff of —2f;. In addition, after Acc; (in the left-hand side of the tree) and the
entrant responding with Stay, we also find a proper subgame in which the sane
incumbent is called on to move under complete information. In this case, the sane
incumbent prefers Acc,, which yields a payoff of 2a;, than Fight,, which only
entails a; — f;. Anticipating this response from the sane incumbent after Acc;, the
entrant chooses Stay, since its payoff from doing so, 2ag, exceed that from exiting,
ag. These optimal responses help us reduce the game tree as depicted in Fig. 10.10.

Part (b) Once we have reduced the game tree, we can apply our standard approach
to search for PBEs, first to check for the existence of separating PBEs, and then for
pooling PBEs.

Separating PBE. Figure 10.11 shades the branches corresponding to separating
strategy profile in which only the sane incumbent accommodates can be sustained
(note that the crazy incumbent can only fight by definition).

a-f), ag-fe

Fight; o -2f;, -2f¢

Sane
inc.
Sane : Stay
2a, 2as Accy inc. Fight, Acc, a,-fi, ag-fe
Sane| o b H
Exit i o Exit -, -
ma, a inc. m-f;, -f¢
g
£ Crazy
Crazy| Y stay e 0, -2f,
inc. | Prob-=1P Y Figt ° -'F
(1-4)
Crazy Fight
inc. Exit m, -fe

Fig. 10.9 Entry deterrence game—II
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Sane Stay a-f), ag-fe
ACC1 inc. Flght1
2a,, 2ar ® \ 4
Sane | o _ H
inc. | PP Exit m-f,, -fg
=
g
g
Crazy
inc prob.=1-p Stay 0, -2f¢
' (1-4)
Crazy Fight
inc. Exit m, f¢

Fig. 10.10 Reduced Entry deterrence game

Stay a,— f,a; = f
Acc, Sane inc. Fight, H
2a,,2a, @ _
Sane inc. .
prob.=p . Exit m _f —f
. 1~ JE
Nature Entrant .
Crazy inc. . Stay 0, _sz
prob.=(1-p) :
Crazyinc.  Fight 1— ,U\
Exit m.— f
s JE

Fig. 10.11 Separating strategy profile

In this strategy profile, the entrant’s beliefs are | = 0, thus considering that a
decision to fight can never originate from a sane incumbent. Given these beliefs, the
entrant focuses on the node at the lower right-hand corner of the game tree, and
responds exiting, since —fg < — 2fg. We depict this response of the entrant in
Fig. 10.12, with the blue shaded branch corresponding to exit. (Note that the entrant
chooses exit irrespective of the incumbent’s type, since the entrant cannot condition
its response on the unobserved incumbent’s type.)

Once we found such a response from the uninformed entrant, we can show that
the sane incumbent prefers Acc; (as prescribed), obtaining 2a;, rather than deviate
towards Fight,, where he would only obtain a payoff of m — f;, where 2a; > m — f{;
holds by definition. Hence, the sane incumbent sticks to the prescribed strategy of
accommodation, and this separating strategy profile can be sustained as a PBE.°

“Note that this is the only separating equilibrium of the game, since the crazy incumbent cannot
choose to accommodate (his only available action is to fight), as depicted in the lower part of
Fig. 10.12.
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Stay al_f‘lsaE_fE
Acc, Sane inc. Fight,
2a,,2a, @ ;
Sane inc. \
b.= : E .t
prob.=p : Xi m—f,,—f,
Nature Entrant .
Crazy inc. . Stay 0,-2f;
prob.=(1-p) :
Crazy inc. Fight \
Exit m,— fF

Fig. 10.12 Separating strategy profile (with responses)

a, 7.’}9“5 7fE
Acc, Sane inc. Fight,
2a,,2a,
Sane inc.
prob=p m=f,,~1;
Nature Entrant
Crazy inc. 0, _sz
prob.=(1-p)
Crazyinc.  Fight 1—

m, _fE

Fig. 10.13 Pooling strategy profile

Part (c) Pooling PBE. Let us now examine if a pooling strategy profile, where both
types of incumbent fight, can be supported as a PBE. Fig. 10.13 illustrates this
strategy profile.

First, in this strategy profile the entrant’s beliefs cannot be updated using Bayes’
rule, and must coincide with his priors, i.e., L = p. Intuitively, since both types of
incumbent are choosing to fight, the entrant cannot refine its beliefs about the
incumbent’s type upon observing that the incumbent fought. In this case, the entrant
chooses to stay if and only if

p(ag — )+ (1 — p)(=2fg) > p(—fg) + (1 — p)(—fE) = —f¢

or alternatively, if p > F f+Ea = p. We separately consider the case in which the
E E

entrant responds staying (p > p) and the case in which it responds exiting (p <p).
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a,—fr.a;— [z
Acc, Sane inc. Fight,
2a,,2a, e
Sane inc.
prob.=p : m _f1 ’_fE
Nature Entrant -
Crazy inc. Oa _2fE
prob.=(1-p)

Crazyinc.  Fight

ma_fE

Fig. 10.14 Pooling strategy profile (with responses)—Case 1

a,—fr,a;— [z
Acc Saneinc.  Fioht
2. 2a. 1 gni,
a,,za,
Sane inc.
rob.=
p p : m— f] ,— fE
Nature Entrant .

Crazy inc. Oa _ZfE
prob.=(1-p)

Crazy inc. Fight

Fig. 10.15 Pooling strategy profile (with responses)—Case 2

Case 1 p>p. Figure 10.14 depicts the case in which the entrant responds
staying (blue shaded arrows). In this setting, the sane incumbent would choose to
Fight, (as prescribed) if a; — f; > 2ay, or alternatively —f; > a;, which cannot hold,
since a; > 0 and — f; <0 by definition. Hence, the pooling strategy profile in which
both types of incumbent fight cannot be sustained as a PBE when p > p.

Case 2, p<p. Let us next check the case in which p <p, which indicates that the
uninformed entrant responds exiting, as Fig. 10.15 depicts (see blue shaded bran-
ches). In this context, the sane incumbent chooses Fight, (as prescribed) if and only
if m — f; > 2a;. Hence, as long as this condition holds, the pooling strategy profile
in which both types of incumbents fight can be sustained as a PBE if the prior
probability of the incumbent being sane, p, is sufficiently low, i.e., p <p.
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Nature

Monopolist
is Tough

Monopolist
is Normal

Prob=p Prob=1-p

Entrant

NE

Monop,,

Acc

Fig. 10.16 Entry deterrence with only one entrant

Exercise 6—Entry Deterrence with a Sequence of Potential
Entrants©

The following entry model is inspired on the original paper of Kreps and Wilson
(1982)". Consider an incumbent monopolist building a reputation as a tough com-
petitor who does not allow entry without a fight. The entrant first decides whether to
enter the market, and, if he does, the monopolist chooses whether to fight or
acquiesce. If the entrant stays out, the monopolist obtains a profit of a > 1, and the
entrant gets 0. If the entrant enters, the monopolist gets O from fighting and —1 from
acquiescing if he is a “tough” monopolist, and —1 from fighting and 0 from
acquiescing if he is a “normal” monopolist. The entrant obtains a profit of b if the
monopolist acquiesces and b — 1 if he fights, where 0 <b < 1. Suppose the entrant

"Kreps, David and Robert Wilson (1982) “Reputation and Imperfect Information," Journal of
Economic Theory, 27, pp. 253-279.
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Nature

Entrant,

P 1-p
NE E
NE E
a
Monop
U Monop, 0 N
v g 0 ,
U Fight
5 30 Fight Acc Acc
U 0 .
E q (% Entrant, after Fight
nf/ e r Entrant., after Acc 1-r
ne
ba1 MT ° ne e
6 -1 l-:a
Fight Acc 0 MT
a
0 -1 b
b-1 b Fight Acc 0
b-1 b Fight Acc
0 -1
b1 b -1 0
bt b b-1 b
b-1 b

Fig. 10.17 Entry deterrence with two entrants in sequence

believes the monopolist to be tough (normal) with probability p (1 — p, respec-
tively), while the monopolist observes his own type.

Part (a) Depict a game tree representing this incomplete information game.

Part (b) Solve for the PBEs game tree, and solve for the PBE of this game.
Part (c¢) Suppose the monopolist faces two entrants in sequence, and the second
entrant observes the outcome of the first game (there is no discounting). Depict the
game tree, and solve for the PBE. [Hint: You can use backward induction to reduce
the game tree as much as possible before checking for the existence of separating or
pooling PBEs. For simplicity, focus on the case in which prior beliefs satisfy p <b.]

Answer

Part (a) See Fig. 10.16.
Part (b) The tough monopolist fights with probability 1, since fight is a dominant
strategy for him; while the normal monopolist accommodates with probability 1,
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Nature

Monop
Fight
U, o .
t q (/1 Entrant, after Fight
. ne e
Entrant, after Acc........ 1-r. /
-1+a
b-1 0
e 0 b
b

b-1 0 b-1

o T o

Fig. 10.18 Reduced-form game

since accommodation constitutes a dominant strategy for this type of incumbent.
Indeed, at the node labeled with Monop on the left-hand side of the game tree in
Fig. 10.16, the monopolist’s payoff from fighting, 0, is larger than from accom-
modating, —1. In contrast, at the node labeled with Monopy for the normal
monopolist (see right-hand side of Fig. 10.16), the monopolist’s payoff from
fighting, —1, is strictly lower than from accommodating, 0. Hence, the entrant’s
decision on whether or not to enter will be based on:

EUg(Enter|p) = p(b — 1)+ (1 — p)b = b — p,and EUg(Not Enter|p) = 0

Therefore, the entrant enters if and only if b — p > 0, or alternately, b > p. We
can, hence, summarize the equilibrium as follows:

The entrant enters if b > p, but doesn’t enter if b <p.

The incumbent fights if tough, but accommodates if normal.
Part (c) The following game tree depicts an entry game in which the incumbent
faces two entrants in sequence (see Fig. 10.17).

Hence, applying backward induction on the proper subgames (those labeled with
M7 and My in the last stages of the game tree) we can reduce the previous game tree
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Nature

Entrant,

1-q

Entrant, after Fight

,,,,,,,,,,, Entrant, after Acc
e
-1+a
b-1 0
e 0 b
b
0
b
b
Fig. 10.19 Entry of the first potential entrant
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0,b,b o % Monop, § e 0,b,b
S (prob.=1-p) S
1-r Ace Monop, Fight 1-q
a,b,0 ne ne -1+a,b-1,0

Fig. 10.20 A further reduction of the game

to that in Fig. 10.18. For instance, after the second entrant chooses to enter despite
observing a fight with the first entrant (left side of game tree), the tough monopolist
chooses between fighting and accommodating in the node labeled M7. In this case,
the tough monopolist prefers to fight, which yields a payoff of zero, rather than



Exercise 6—Entry Deterrence with a Sequence of Potential Entrants® 333

0,b-1,b-1 e 0,b-1,b-1
Monop.
Acc r Fight q
S S
-1+a,b,0 3 Monop, € ne a,b-1,0
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0,b,b ‘;‘; Monop, § e 0,b,b
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Fig. 10.21 Pooling strategy profile—Acc
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a,b,0 -1+a,b-1,0

Fig. 10.22 Pooling strategy profile—Acc (with responses)

accommodate, which entails a payoff of —1. A similar analysis applies to the other
node labeled with M (where the second entrant has entered after observing that the
incumbent accommodated the first entrant). However, an opposite argument applies
for the nodes marked with M in the right-hand side of the tree, where the normal
monopolist prefers to accommodate the second entrant, regardless of whether he
fought or accommodated the first entrant, since his payoff from accommodating
(zero) is larger than from fighting (—1).

In addition, note that the first entrant behaves in exactly the same way as in
exercise (a): entering if and only if b > p. Hence, when p <b, the first entrant
enters, as shown in exercise (a). Figure 10.19 shades this choice of the first entrant
(green shaded branches).

Therefore, upon entry, the first entrant gives rise to a beer-quiche type of sig-
naling game, which can be more compactly represented as the game tree in
Fig. 10.20. Intuitively, all elements before Monop; and Monopy can be predicted
(i.e., the first entrant enters as long as p <b), while the subsequent stages charac-
terize a signaling game between the monopolist (privately informed about its type)
and the second entrant. In this context, the monopolist uses his decision to fight or
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0,b-1,b-1 0,b-1,b-1
Monop.
Acc r Fight q
o S
-1+a,b,0 g Monop, < ab-1,0
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= Nature S
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Fig. 10.23 Pooling strategy profile—Acc (with responses)

accommodate the first entrant as a message to the second entrant, in order to convey
or conceal his type.

(For every triplet of payoffs, the first corresponds to the monopolist, the second
to the first entrant, and the third to the second entrant.) Let us now check if a
pooling strategy profile in which both types of monopolists accommodate can be
sustained as a PBE.

Pooling PBE with Acc. Figure 10.21 shades the braches corresponding to such a
pooling strategy.

In this setting, posterior beliefs cannot be updated using Bayes’ rule, which
entails » = p. As in similar exercises, the observation of accommodation by the
uninformed entrant does not allow him to further refine his beliefs about the
monopolist’s type. Hence, the second entrant responds entering (e) after observing
that the monopolist accommodates (in equilibrium), since

pb—=1)+(1=pb>p-0+(1=p)-0=b>p

which holds in this case.
If, in contrast, the second entrant observes the off-the-equilibrium message of
fight, then this player also enters if

0,b-1,b-1 e 0,b-1,b-1
r Acc Monop T Fight
T " s
-1+a,b,0 ne 3 onopy i a,b-1,0
RS (prob.=p) 3
g Nature E:
Q =
0,b,b o N Monop, S | 0,b,b
o S
° (prob.=1-p) q
T Acc ManopN Fight 1-
a,b,0 ne -1+a,b-1,0

Fig. 10.24 Pooling strategy profile—Fight
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gqb-1)+(1—-qb>q-0+(1—q)-0=b>gq

Hence, the second entrant enters regardless of the incumbent’s action if
off-the-equilibrium beliefs, g, satisfy g<b, as depicted in Fig. 10.22 (see blue
shaded branches in the right-hand side of the figure). Otherwise, the entrant only
enters after observing the equilibrium message of Acc.

The tough monopolist, M7, is hence indifferent between Acc (as prescribed)
which yields a payoff of 0, and deviate to Fight, which also yields a payoff of zero.
A similar argument applies to the normal monopolist, My, in the lower part of the
game tree. Hence, the pooling strategy profile where both types of incumbents
accommodate can be sustained as a PBE.

A remark on the Intuitive Criterion. Let us next show that the above pooling
equilibrium, despite constituting a PBE, violates the Cho and Kreps’ (1987) Intu-
itive Criterion. In particular, the tough monopolist has incentives to deviate towards
Fight if, by doing so, he is identified as a tough player, ¢ = 1, which induces the
entrant to respond not entering. In this case, the tough monopolist obtains a payoff
of a, which exceeds his equilibrium payoff of 0. In contrast, the normal monopolist
doesn’t have incentives to deviate since, even if his deviation to Fight deters entry,
his payoff from doing so, —1 + a, would still be lower than his equilibrium payoff
of 0, given that —1 + @ <0 or a < 1. Hence, only the tough monopolist has
incentives to deviate, and the entrant’s off-the-equilibrium beliefs can thus be
restricted to ¢ = 1 upon observing that the monopolist fights. Intuitively, the entrant
infers that the observation of Fight can only originate from the tough monopolist. In
this case, the tough incumbent indeed prefers to select Fight, thus implying that the
above pooling PBE violates Cho Kreps’ (1983) Intuitive Criterion.(Q.E.D)

Let us finally check if this pooling strategy profile can be sustained when
off-the-equilibrium beliefs satisfy, instead, g > b, thus inducing the entrant to
respond not entering upon observing the off-the-equilibrium message of Fight, as
illustrated in the game tree of Fig. 10.23 (see blue shaded branches in the right-hand
side of the tree). In this case, the M7 has incentives to deviate from Acc, and thus
the pooling strategy profile where both M7 and My select to Acc cannot be sus-
tained as a PBE.

Pooling PBE with Fight. Let us now examine the opposite pooling strategy
profile (Fight, Fight), in which both types of monopolists fight, as depicted in
Fig. 10.24.

Hence, equilibrium beliefs after observing Fight cannot be updated, and thus
satisfy g = p; while off-the-equilibrium beliefs are arbitrary r € [0,1] after
observing the off-the-equilibrium message of accommodation. Given these beliefs,
upon observing the equilibrium message of Fight, the entrant responds entering
since

pb—1)+p-b>p-0+(1—p)-0=b>p
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0,b,b i Monop, § 0,b,b
S (prob.=1-p) q
Acc M()m)pN Fight 1-
a,b,0 -1+a,b-1,0

Fig. 10.25 Pooling strategy profile—Fight (with responses)

which holds by definition. If, in contrast, the entrant observes the
off-the-equilibrium message of Acc, then it responds entering if

rb—1)+r-b>p-0+(1=r)-0=b>r

Hence, if b > r, the entrant enters both after observing Fight (in equilibrium) and
Acc (off-the-equilibrium path). If, instead, b <r, then the entrant only responds
entering after observing Fight, but is deterred from the industry otherwise. We next
separately analyze each case.

Case 1. Figure 10.25 illustrates the entrant’s responses when b>r, and thus the
second entrant enters after Acc. In this context, the tough monopolist is indifferent
between Fight, obtaining zero profits, and accommodating, which also yields zero
profits. A similar argument applies to the normal monopolist in the lower part of the
game tree. Hence, in this case the pooling strategy profile (Fight, Fight) can be
supported as a PBE if off-the-equilibrium beliefs, r, satisfy r < b.

Case 2. If, instead, r > b, then the entrant is deterred upon observing the
off-the-equilibrium message of Acc, as Fig. 10.26 depicts. The pooling strategy
profile cannot be sustained in this context, since My has incentives to deviate
towards Acc, obtaining a payoff of a, which exceeds its payoff of zero when he

0,b-1,b-1 0,b-1,b-1
Mono,
Acc Pr Fight q
-1+a,b,0 § Monop, £ a,b-1,0
3 (prob.=p) S
= Nature T
S S
0,b,b S Monop,, § 0,b,b
b g
] (prob.=1-p) g i
1-r Ace Monop, Fight 1-q
a,b,0 -1+a,b-1,0

Fig. 10.26 Pooling strategy profile—Fight (with responses)



Exercise 6—Entry Deterrence with a Sequence of Potential Entrants® 337
0,b-1,b-1 0,b-1,b-1
Monop,
Acc r Fight q
T N s
-1+a,b,0 3 ooy £ a,b-1,0
S (prob.=p) S i
& Nature T
] <
0,b,b ::? Monop, § 0,b,b
K (prob.=1-p) g
1t Acc Monop, Fight 1.
a,b,0 -1+a,b-1,0
Fig. 10.27 Separating strategy profile (Fight, Acc)
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Fig. 10.28 Separating strategy profile (Fight, Acc), with responses
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Fig. 10.29 Separating strategy profile (Acc, Fight)

Fights. Hence, the pooling strategy profile (Fight, Fight) cannot be supported as a
PBE when off-the-equilibrium beliefs satisfy r > b.

Separating PBE (Fight, Acc). Let us next examine if the separating strategy
profile in which only the tough monopolist fights can be sustained as a PBE.
Figure 10.27 depicts this strategy profile.
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Fig. 10.30 Separating strategy profile (Acc, Fight), with responses

In this case, entrant’s beliefs are updated to g = 1 and » = 0 using Bayes’ rule,
implying that, upon observing Fight, the entrant is deterred from the market since
b -1<0, given that b < 1 by definition. Upon observing Acc, the entrant is
instead attracted to the market since b > 0. Figure 10.28 illustrates the entrant’s
responses (see blue shaded arrows).

In this setting, no type of monopolist has incentives to deviate: (1) the tough
monopolist obtains a payoff of a by fighting (as prescribed) but only 0 from
deviating towards Acc; and similarly (2) the normal monopolist obtains 0 by
accommodating (as prescribed) but a negative payoff, —1 + a, by deviating towards
Fight, given that a < 1 by definition. Hence, this separating strategy profile can be
sustained as a PBE.

Separating PBE (Acc, Fight). Let us now check if the alternative separating
strategy profile, in which only the normal monopolist fights, can be supported as a
PBE (We know that this strategy profile sounds crazy, but we want to formally
show that it cannot be sustained as a PBE.) Figure 10.29 illustrates this strategy
profile.

In this setting, the entrant’s beliefs can be updated to » = 1 and g = 0, inducing
the entrant to respond not entering after observing Acc, but entering after observing
Fight, as depicted in Fig. 10.30 (see blue shaded branches).

Given these responses by the entrant, the tough monopolist has incentives to
deviate from Acc, which yields a negative payoff of —1 + q, to Fight, which yields
a higher payoff of zero. Therefore, this separating strategy cannot be supported as a
PBE.



Felix Munoz-Garcia and Daniel Toro-Gonzalez

Erratum to:

F. Munoz-Garcia and D. Toro-Gonzalez, Strategy and Game
Theory, Springer Texts in Business and Economics,

DOI 10.1007/978-3-319-32963-5

The original version of the book was inadvertently published with incorrect
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e Page 1, Introduction. At the end of the second paragraph the index “/” must be
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e Page 1, Introduction. At the end of the third (last) paragraph, the sixth line from
the final “lover” must be changed by “lower”.
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Player 2
Player 1 y =
b 13 | 0,2
e[ 21112
d 01 | 24

Fig. 1.14 Reduced normal-form game

“We can now move to player 1 again. For him, strategy c strictly dominates b,
since it provides an unambiguously larger payoff than b regardless of the strategy
selected by player 2 (regardless of the column). In particular, when player 2 chooses
y (left-hand column), player 1 obtains a payoff of 2 from selecting strategy c but
only one from strategy b. Similarly, if player 2 chooses z (in the right-hand col-
umn), player 1 obtains a payoff of one from strategy ¢ but a payoff of zero from
strategy b. As a consequence, strategy b is strictly dominated, which allows us to
delete strategy b from the above matrix, obtaining the reduced matrix in Fig. 1.15.

Player 2
Player 1 y 2
c 2.1 1,2
0,1 24

Fig. 1.15 Reduced normal-form game

At this point, note that returning to player 2 we note that z strictly dominates y,
so we can delete strategy y for player 2 and finally, considering player 2 always
chooses z, for player 1 strategy d strictly dominates c, since the payoff of 2 is higher
than one unit derived from playing c. Therefore, our most precise equilibrium
prediction after using IDSDS are the solely remaining strategy profile (d,z), indi-
cating that player 1 will always choose d, while player 2 will always select z.”

e Exercise 8, Page 14, In the third paragraph after x; = O change “yields” by “does
not yield”. Similarly, after x, = O change “but the same” by “but lower”.

e Exercise 10, Page 17, The reference to “Fig. 1.21” should be changed for
“Fig. 1.23.”

e Exercise 11, Page 20,

— In the first displayed equation at the top of the page, the multiplicative sign
should have i = 1 in its subscript below and I in the superscript above.

— In the second displayed equation, its second line should have subscript
i everywhere instead of .

— In the third displayed equation, the subscript of the multiplicative sign
should be j # i instead of j = 1.
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e Exercise 12, Page 21, Starting the answer change the word “above” for “below”.

Chapter 2—Nash Equilibrium And Simultaneous-Move Games with Complete
Information

e Page 25, Introduction. Nash equilibrium: Change the word “people” for
“profile”.
o Exercise 4,

— Page 31, After ¢ > 0, add “with no fixed costs”

— Page 32, At the end of the second paragraph of the answer key, “i”” should be
in italics.

— Page 33, In the figures the best response functions are represented by the
acronym BRF. To be consistent with the acronym used in the accompanying
text, all acronyms in the figures should be BR.

e Exercise 8§,

— Page 44, At the end, before the last paragraph starting with “Therefore”
change the payoff of $3 for a payoff of $2.
— Page 46, The solution to the quadratic equation, at the beginning of the

second paragraph, should be m, = Lyiaon W. The results of the rest of the
exercise do not change.

e Exercise 9, Page 48,

— Add at the end of the first case at the top of the page (immediately after “as
depicted in Fig. 2.29”): Similarly, when the location of the three candidates
satisfies xj, = xp =xj > 1/2 each candidate has incentives to deviate
towards the left, while if x}, = x; = xJ <1/2 each candidate has incentives
to deviate to the right.

— Second case. End of the first line. Replace “two candidates chooses” for “two
candidates choose”.

e Exercise 10, Page 51, The second paragraph in the answer key, the best response
function is referred as BRF. For consistency, it should be referred to as BR.
e Exercise 12,

— Page 54, At the end of paragraph 2 instead of “...while the probability of

being caught is Txy” should be “...while the probability of not being caught

1 2
14 xy*

— Page 55, At the end of part (a) it should read “BRg,x(y) = %" instead of
“BRg,x(y) = 2”. In addition, the next sentence should read “it is convenient

is


http://dx.doi.org/10.1007/978-3-319-50574-9_2

E4 F. Munoz-Garcia and D. Toro-Gonzalez

to solve for y which yields y = ¢?x” instead of “it is convenient to solve for y
which yields y = cx”.

— Page 55, Middle of page, makes a reference to “Fig. 2.29” which should be
changed to “Fig. 2.32.”

— Page 55, In part (b), please replace the sentence “...you can plug in the first
expression into the second expression” for “...you can plug in the second
expression into the first expression”.

— Page 55, The title of Fig. 2.32 should be “Incentives and Punishment”
instead of “Lobbying-Best response functions and Nash equilibrium”.

— Page 56, The title of Fig.2.33 should be “Incentives and
Punishment-Comparative = Statics” instead of “Lobbying-Comparative
Statics”.

e Exercise 13,

— Page 57, The last sentence at the end of part (a) should read “Hence,
equilibrium prices are pc = 1 —13¢ — g5 % =1- 3(%) = %, and

2
every firm’s equilibrium profits are mc = (143 — ¢) 15¢ = <1176C) 2
— Page 58, Last paragraph of the page, fifth line from the bottom, “above this
cutoff indicate parameters indicate” must be changed for “above this cutoff

indicate”.

Chapter 3—Mixed Strategies, Strictly Competitive Games, and Correlated
Equilibria

e Exercise 2, Page 69, At the msNE listed immediately above part (c) of the
exercise, the second parentheses should have 1/2 for both sets of probabilities.
e Exercise 5,

— Page 76, The first paragraph should say “Similarly, let p; represent the
probability that player 1 chooses T, p, the probability ...”

— Page 76, The second displayed equation in the triplet at the center of the page
should read EU;(C) = 1g+2(1 —q) =2 —q.

— Page 77, The end of the first paragraph, it should read “showing that only
some of them can be sustained in equilibrium.”

— Page 77, In the section “Mixing between T and C alone” player 1’s indif-
ference condition is EU,(T) = EU,(C), which in the next line becomes
1+29g=2+4¢q. This displayed equation should actually read
14+2g =2 — gq. The text to the right-hand side of the displayed equation
should be then changed for “which yields g = % The following paragraph
(after the displayed equation) should read “Hence, player 1 randomizes
between T and C, assigning a probability of g = % toTand 1 —g = % to C.
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Last, the last displayed equation of the page should read “2 — g = 2, which
yields g = 0.”

— Page 78, The displayed equation at the top of the page should read
1+2q =2 — g = 2. The line immediately after should then read “Providing
us with two equations, 1 +2g =2 and 2 — g = 2, which cannot simulta-
neously hold, i.e., 1 +2¢g = 2 entails ¢ = 1/2 while 2 — g = 2 yields ¢ = 0.

— Page 78, Delete the last paragraph of Exercise 5, starting at “Hence, the
unique msNE ...” and ending at “...probability on each as well.”

e Exercise 7, Page 82, In the last paragraph of the page, replace “this result in
Fig. 3.19 by noticing that” with “this result in Fig. 3.22 by noticing that”.
e Exercise 8,

— Page 85, The first paragraph of part (c) should end with a parenthesis, “...as
illustrated in Fig. 3.27.”

— Page 86, The last paragraph of Exercise 8 should include the following
explanation at the end of the paragraph: “The equation in of the line con-
necting points (2,7) and (7,2) is up = 9 — u;. To see this, recall that the
slope of a line can be found in this context with m = % = —1, while the
vertical intercept is found by inserting either of the two points on the
equation. For instance, using (2,7) we find that 7 = b — 2 which, solving for
b, yields the vertical intercept b = 9. It is then easy to check that point

(4.5,4.5) lies on this line since 4.5 = 9 — 4.5 holds with equality.”
e Exercise 9,

— Page 88, The msNE displayed at the center of the page should read
{(GU.3D). GL.3R)}-

— Page 89, Figure 3.31 should have the labels changed to “(1,2), psNE (D,R)”
in the upper left-hand side of the figure, and to “(2,1), psNE (U,L)” in the
lower right-hand side of the figure.

— Page 91, Fig. 3.33 should have the labels changed to “(1,5), psNE (D,R)” in
the upper left-hand side of the figure, and to “(5,1), psNE (U,L)” in the lower
right-hand side of the figure.

e Exercise 11,

— Page 99, The displayed equation in part (b) should be changed to: “we find
that player 1 prefers the latter, i.e.

u (C,NC) = —10<0 = u; (NC, C)
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while player 2 prefers the former i.e.,

ur(C,NC) = 0> — 10 = uy(NC, C).

e Page 100, The third paragraph starting at “Hence, this game is...” should have
s = (NC,NC) rather than s = (NC; NC).
e Exercise 12,

— Page 102, The last displayed equation of the page should read
3g+3=6—-6p<p=1/3.

— Page 105, The displayed equation at the middle of the page should read
6g =3q+6(1 —q) < g =2/3. (Only the part after the arrow needs to be
fixed.)

— Page 106, The displayed equation at the top of the page should read
{ (4 Top,3 Bottom), (% Left, s Right) }. In part (d) of the exercise, the second
line of expression EU, should read
6(%) (%) + 3(%) (%) + 6(%) GT) =1+ % + % = 4. Similarly, the second line of
expression EU, should read 6(%) (%) +2(%) G) = 1.5. Last, part (e) of the
exercise should read “Player 1’s expected utility form playing the msNE of
the game, 4, coincides with that from playing his maxmin strategy, 4.
A similar argument applies to Player 2, who obtains an expected utility of
1.5 under both strategies.”

Chapter 4—Sequential-Move Games with Complete Information
e Exercise 1,

— Page 108, Two lines before the displayed equation, “his monetary payoff is
lower than” should be replaced for “his monetary payoff is higher than”.

— Page 109, In the 4th line of Part (a) it should read: “...the utility of player 2
(responder) is...” instead of “...the payoff of player 2 (responder) is...”.

— Page 109, The equation 1 — m, immediately after the first displayed equa-
tion, should have a minus sign (not a dash) between the 1 and the m.

— Page 109, At the equilibrium payoffs at the center of the page (displayed
equation), the payoff from player 1 should read lljzaa. That is, the numerator
should be 1+ o rather than 1 — o.

— Page 109, As a consequence, the derivative two lines below should read
o(l-m*) 1
O 7 (1424)
intuition at the end of page 109 remains unaffected.
— Page 110, Fig. 4.2, should be changed according to the correction on Page

109 in the equilibrium payoffs: (1 —m*,m*) = ('*“ Z ) The figure

5. This derivate is still negative, so all the subsequent

14207 142
below should replace Fig. 4.2.
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In Part(c), the last sentence of the paragraph, starting at “When o = 0.5, the
equilibrium split is...”, should be replaced for “When o = 0.5 the equilibrium split

%Q’%) = (L3,%9) = (0.75,0.25), thus indi-

cating that the proposer offers more to the responder as he cares more about the
payoff difference, and when the proposer cares the most about the payoff difference,
o = 1, the equilibrium split becomes (2/3,1/3). However, for all the values of «
between zero and one, the proposer’s payoff is higher than that of the responder.

becomes (1 —m*, m*) = (

e Exercise 4, Page 115, In the sixth line, it should read “player 2 has the
opportunity to give any, all, or none”.
e Exercise 5,

— Page 117, Instead of Q = ¢q; + g it should be Q = g, + gr.

— Page 118, At the bottom of the line, after “which simplifies into” the dis-
played equation should be %[(1 +c¢r) — qr)qL — cLqL- Hence, the last dis-
played equation of page 118 should read §(1+cr) —q, —c, =0. All
subsequent calculations in this exercise are correct.

— Page 121, In the third line of ‘Bertrand competition’, “equliibrium” should
be replaced by “equilibrium”.

— Page 122, In the figure, the Cournot output should be @

e Exercise 6, Page 125, Both profits at the top of the page should be corrected to
n; = 5027.7 and m, = 5181.62, respectively.

e Exercise 12, Page 134, In the seventh line, it should read: “If, instead, the new
iPhone is introduced”.

e Exercise 12, Page 136, On the 4th line of the text, instead of ‘...payoff is only
2...7, should be °...payoff is only O...".

e Exercise 12, Page 136, In the 8th line of the discussion on Company I- case II,
instead of ‘...its payoff is 2...” should be °...its payoff is 4... .
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Chapter 5S—Applications to Industrial Organization
e Exercise 5 (Strategic advertising and product differentiation).

— Page 161, After the sentence “Plugging firm j’s best response function into
firm 7’s, we find” the expression should have a d; in the last numerator on the
right-hand side (end of parenthesis) rather than a d;.

— Page 161, Expression 5.3 should not have a 2 in the second term of the
denominator.

— Page 162, Expression g;* in the second line should not have a 2 in the second
term of the denominator.

— Page 162, The derivative of output g;* with respect to d; should not have a 2 in the
second term of the denominator; neither in the first nor in the second expression.

— Page 162, The derivative of profit 7; with respect to A; should not have a 2 in
the second term of the denominator; neither in the first nor in the second
expression.

— Page 162, The derivative of d; with respect to A; should not have a 2 in the
second term of the numerator.

e Exercise 7, Page 165, The output g; = g; in the second paragraph should not
have a 2 in the second term of the denominator.

e Exercise 9, Page 173, The price p; should go in italics.
o Exercise 11, Pages 180-181, Instead of m — y/m — 1 it should be m + /m — 1.

Chapter 6—Repeated Games and Correlated Equilibria

¢ Exercise 8 (Collusion and Imperfect Monitoring).

— Page 209, The plus sign in <“4+dq’ (firm i’s best response function at the
center of Page 209) should have a minus sign “-” so it reads %.

— Page 210, The first two “4”s in the denominator of the profits from the
collusive agreement, n]" (at the center of the page), should be 2 s, so the
expression reads

a a a az
= <“"2<b+d> dz(b+d>> Ho+d) 8h+d)

— Page 211, The 7” in the right-hand side at the bottom of the page should read
(1+6)nP
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— Page 212, The second displayed equation should have an 8 in the denominator

rather than a discount factor J; reading CE] rather than

b+d) (b+d)
— Page 215, The previous to the last displayed equatlon should have a “greater

than or equal” > sign rather than =; reading 2<b e

Chapter 7—Simultaneous-Move Games with Incomplete Information
e Exercise 1,

— Page 220, Table 7.2 should have a payoff pair (1,—1) in the cell corre-
sponding to (Bf, Bet), located in the second row, left column.

— Page 220, In the first bullet point, it should read “For player 2, his best
response when player 2 bets (in the left-hand column) is to play Bf since it
yields a higher payoff, i.e., 1, than any other strategy, i.e., BR|(Bet) = Bf.

— Page 220, In the second bullet point, the second sentence should read “If,
instead, player 1 chooses Bf (in the second ow), player 2’s best response is to
fold, BR,(Bf) = Fold, since his payoff from folding, —1/3, is larger than from
betting, —1.

— Page 221, Table 7.3 should have a payoff pair (1,—1) in the cell corre-
sponding to (Bf, Bet), located in the second row, left column. In addition,
player 2’s underlined payoff in the second row should be —1/3 (that corre-
sponding to Fold in the right-hand column) rather than that of betting.

e Exercise 2, Page 223, In the paragraph with title “Player 2’s best responses”, the
sixth line should read “i.e., 4 + p>1,4 + p>4-3p, and 4 + p>1 + 4p, which hold
for all values of p.”

e Exercise 5, Page 234, The displayed equation after “rearranging yields” in the
middle of the page should read B(p — fip) > L(p — fp). All subsequent results
are correct.

Chapter 8—Auctions
e Exercise 3, Page 248, The expressions in the section with title “Direct approach”

should nothave N — 1 in the exponents. This applies to the expression of the prob
(win), the EU;(v;), and its rearranged representation at the bottom of the page.

Chapter 9—Perfect Bayesian Equilibrium and Signaling Games
e Exercise 1,

— Page 261, The last sentence of the page should read “with U, which provides
him a payoft...”.
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— Page 262, Part (b) of the exercise should be preceded by space to separate it
from the answer key of part (a).

— Page 265, Footnote 2. Strategy R’ should read R’, for consistency with the
primes in previous parts of the exercise.

e Exercise 2, Page 274, The paragraph labelled Case I should start as follows
“When g > %, the...” The end of this case (immediately before Case 2) should
read “beliefs satisfy g > %.” The paragraph labelled Case 2 should start as
follows “When ¢ < 2 the firm...:”

e Exercise 3,

— Page 277, The first paragraph of part (a), in the last line, should read “only
stems from a sender”.

— Page 280, The second line after the three expected utility expressions should
read “if and only if u > ‘5—‘, 4 —u>5—51" (Now one of the minus signs
looks like a hyphen.).

e Exercise 4,

— Page 285, The expression of p3 immediately above expression (B) should
have a 2 in the denominator, rather than a 3. As a consequence, expression
(B) should become p3 = 1+ 1~ (p}).

— Page 286, The expression of p3 in the paragraph starting with “Firm 1
anticipates...” should be corrected for p} = 1+ 17! (p}). A similar argu-
ment applies to the expression plugged at the end of the big parenthesis in the
profit maximization problem immediately after this paragraph. As a conse-
quence, the subsequent calculations should be replaced for the following:

— “Taking first order condition with respect to pl, we obtain

L=2p}+py+er+2(1=5e)5f (F'(p1)) = 0.

Simplifying and solving for p!, we find firm 1’s best response function in the
first period game

1 _ T (=11
pi(p2) = 1+2c1 +% e Cl)fg(f (v1))

. . . . 1+p! . .
Inserting this expression of p% into pé = %, we obtain the optimal

second-period price for Firm 1

1+ 2 2B =c)f (F 1 (p!
p;: 2C1+ 4 ( Cl)];7<f (Pl))'

W
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Plugging this result into the best response function pl(pl), yields the optimal
first-period price for Firm 1

L3420 4B -l (' (p))
P = 3 + 27

As suggested in the exercise, let us know....”

e Page 288, This Page should be replaced for the following, starting in the
expression at the top of the page:

34 2c¢ 43 —c¢
Ag+Aic) = 3 LA, (27 )

since A| measures the slope of the pricing function (see Fig. 9.30), thus implying
Ay =f (f~'(p})). Rearranging the above expression, we find

A1(3lc; — 12) =27+ 18¢y — 27A¢
which, solving for A;, yields

27(1 —Ao) + 18¢

A =
! 3le; — 12

In addition, when firm 1’s costs are nil, ¢; = 0, the above expression becomes
27A¢ = 27+ 124,

or, after solving for A,
4
Ag =1+ §A]

27(1=A) + 18¢;

Inserting this result into A = =575,

yields

s C27(1 = (14 3A1)) +18¢
= 3le; — 12 '

Solving for A}, we obtain A; = % ~ 0.58. Therefore, the intercept of the pricing
function, Aj, becomes
418 39

Ap =14 ~— ="~ 126.
0=1t531 73]



E12 F. Munoz-Garcia and D. Toro-Gonzalez

Hence, the pricing function p{ of firm 1, p} = Ag+Ajc;, becomes

18 39
Pr=37 T 37

e Exercise 6, Page 296, The two maximization problems in the middle of the page
should have 2c¢ in the last term, rather than c. In addition, the first-order con-
dition with respect to py should have the parenthesis corrected, as follows

Or — 05
05

A—(1=2) 0

Chapter 10—More Advanced Signaling Games
e Exercise 1,

— Page 307, The labels below each term at the center of the page should read
P,’s, with the apostrophe after the P;.
— Footnote 1, Page 307, It reads “alpha” when it should read o.

e Exercise 3, Delete part (b), both in the question (Page 317), and in the answer
key (Pages 319-322).

e Exercise 4, Page 322, last line should read “they are associated with a higher
wage”.

e Exercise 5,

— Page 327, The second line of the answer key of part (a) should read “while
ag 1s the benefit”.

— Page 328, Figure 10.8 should have all subscripts in capital letters, such as f;,
fe, ar, and ag. In addition, all notations in this exercise should go in italics.

e Exercise 6, Page 340, Figure 10.27 should have branch Acc shaded in the lower
part of the game tree, since the figure represents the separating strategy profile
(Fight, Acc).
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